blob: c364f181381d67b892b8904e77eb6ca5c77d43d9 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <android_native_app_glue.h>
#include <errno.h>
#include <jni.h>
#include <sys/time.h>
#include <time.h>
#include <android/log.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define LOG_TAG "libplasma"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)
#define LOGW(...) __android_log_print(ANDROID_LOG_WARN,LOG_TAG,__VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)
/* Set to 1 to enable debug log traces. */
#define DEBUG 0
/* Set to 1 to optimize memory stores when generating plasma. */
#define OPTIMIZE_WRITES 1
/* Return current time in milliseconds */
static double now_ms(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec*1000. + tv.tv_usec/1000.;
}
/* We're going to perform computations for every pixel of the target
* bitmap. floating-point operations are very slow on ARMv5, and not
* too bad on ARMv7 with the exception of trigonometric functions.
*
* For better performance on all platforms, we're going to use fixed-point
* arithmetic and all kinds of tricks
*/
typedef int32_t Fixed;
#define FIXED_BITS 16
#define FIXED_ONE (1 << FIXED_BITS)
#define FIXED_AVERAGE(x,y) (((x) + (y)) >> 1)
#define FIXED_FROM_INT(x) ((x) << FIXED_BITS)
#define FIXED_TO_INT(x) ((x) >> FIXED_BITS)
#define FIXED_FROM_FLOAT(x) ((Fixed)((x)*FIXED_ONE))
#define FIXED_TO_FLOAT(x) ((x)/(1.*FIXED_ONE))
#define FIXED_MUL(x,y) (((int64_t)(x) * (y)) >> FIXED_BITS)
#define FIXED_DIV(x,y) (((int64_t)(x) * FIXED_ONE) / (y))
#define FIXED_DIV2(x) ((x) >> 1)
#define FIXED_AVERAGE(x,y) (((x) + (y)) >> 1)
#define FIXED_FRAC(x) ((x) & ((1 << FIXED_BITS)-1))
#define FIXED_TRUNC(x) ((x) & ~((1 << FIXED_BITS)-1))
#define FIXED_FROM_INT_FLOAT(x,f) (Fixed)((x)*(FIXED_ONE*(f)))
typedef int32_t Angle;
#define ANGLE_BITS 9
#if ANGLE_BITS < 8
# error ANGLE_BITS must be at least 8
#endif
#define ANGLE_2PI (1 << ANGLE_BITS)
#define ANGLE_PI (1 << (ANGLE_BITS-1))
#define ANGLE_PI2 (1 << (ANGLE_BITS-2))
#define ANGLE_PI4 (1 << (ANGLE_BITS-3))
#define ANGLE_FROM_FLOAT(x) (Angle)((x)*ANGLE_PI/M_PI)
#define ANGLE_TO_FLOAT(x) ((x)*M_PI/ANGLE_PI)
#if ANGLE_BITS <= FIXED_BITS
# define ANGLE_FROM_FIXED(x) (Angle)((x) >> (FIXED_BITS - ANGLE_BITS))
# define ANGLE_TO_FIXED(x) (Fixed)((x) << (FIXED_BITS - ANGLE_BITS))
#else
# define ANGLE_FROM_FIXED(x) (Angle)((x) << (ANGLE_BITS - FIXED_BITS))
# define ANGLE_TO_FIXED(x) (Fixed)((x) >> (ANGLE_BITS - FIXED_BITS))
#endif
static Fixed angle_sin_tab[ANGLE_2PI+1];
static void init_angles(void)
{
int nn;
for (nn = 0; nn < ANGLE_2PI+1; nn++) {
double radians = nn*M_PI/ANGLE_PI;
angle_sin_tab[nn] = FIXED_FROM_FLOAT(sin(radians));
}
}
static __inline__ Fixed angle_sin( Angle a )
{
return angle_sin_tab[(uint32_t)a & (ANGLE_2PI-1)];
}
static __inline__ Fixed angle_cos( Angle a )
{
return angle_sin(a + ANGLE_PI2);
}
static __inline__ Fixed fixed_sin( Fixed f )
{
return angle_sin(ANGLE_FROM_FIXED(f));
}
static __inline__ Fixed fixed_cos( Fixed f )
{
return angle_cos(ANGLE_FROM_FIXED(f));
}
/* Color palette used for rendering the plasma */
#define PALETTE_BITS 8
#define PALETTE_SIZE (1 << PALETTE_BITS)
#if PALETTE_BITS > FIXED_BITS
# error PALETTE_BITS must be smaller than FIXED_BITS
#endif
static uint16_t palette[PALETTE_SIZE];
static uint16_t make565(int red, int green, int blue)
{
return (uint16_t)( ((red << 8) & 0xf800) |
((green << 2) & 0x03e0) |
((blue >> 3) & 0x001f) );
}
static void init_palette(void)
{
int nn, mm = 0;
/* fun with colors */
for (nn = 0; nn < PALETTE_SIZE/4; nn++) {
int jj = (nn-mm)*4*255/PALETTE_SIZE;
palette[nn] = make565(255, jj, 255-jj);
}
for ( mm = nn; nn < PALETTE_SIZE/2; nn++ ) {
int jj = (nn-mm)*4*255/PALETTE_SIZE;
palette[nn] = make565(255-jj, 255, jj);
}
for ( mm = nn; nn < PALETTE_SIZE*3/4; nn++ ) {
int jj = (nn-mm)*4*255/PALETTE_SIZE;
palette[nn] = make565(0, 255-jj, 255);
}
for ( mm = nn; nn < PALETTE_SIZE; nn++ ) {
int jj = (nn-mm)*4*255/PALETTE_SIZE;
palette[nn] = make565(jj, 0, 255);
}
}
static __inline__ uint16_t palette_from_fixed( Fixed x )
{
if (x < 0) x = -x;
if (x >= FIXED_ONE) x = FIXED_ONE-1;
int idx = FIXED_FRAC(x) >> (FIXED_BITS - PALETTE_BITS);
return palette[idx & (PALETTE_SIZE-1)];
}
/* Angles expressed as fixed point radians */
static void init_tables(void)
{
init_palette();
init_angles();
}
static void fill_plasma(ANativeWindow_Buffer* buffer, double t)
{
Fixed ft = FIXED_FROM_FLOAT(t/1000.);
Fixed yt1 = FIXED_FROM_FLOAT(t/1230.);
Fixed yt2 = yt1;
Fixed xt10 = FIXED_FROM_FLOAT(t/3000.);
Fixed xt20 = xt10;
#define YT1_INCR FIXED_FROM_FLOAT(1/100.)
#define YT2_INCR FIXED_FROM_FLOAT(1/163.)
void* pixels = buffer->bits;
//LOGI("width=%d height=%d stride=%d format=%d", buffer->width, buffer->height,
// buffer->stride, buffer->format);
int yy;
for (yy = 0; yy < buffer->height; yy++) {
uint16_t* line = (uint16_t*)pixels;
Fixed base = fixed_sin(yt1) + fixed_sin(yt2);
Fixed xt1 = xt10;
Fixed xt2 = xt20;
yt1 += YT1_INCR;
yt2 += YT2_INCR;
#define XT1_INCR FIXED_FROM_FLOAT(1/173.)
#define XT2_INCR FIXED_FROM_FLOAT(1/242.)
#if OPTIMIZE_WRITES
/* optimize memory writes by generating one aligned 32-bit store
* for every pair of pixels.
*/
uint16_t* line_end = line + buffer->width;
if (line < line_end) {
if (((uint32_t)line & 3) != 0) {
Fixed ii = base + fixed_sin(xt1) + fixed_sin(xt2);
xt1 += XT1_INCR;
xt2 += XT2_INCR;
line[0] = palette_from_fixed(ii >> 2);
line++;
}
while (line + 2 <= line_end) {
Fixed i1 = base + fixed_sin(xt1) + fixed_sin(xt2);
xt1 += XT1_INCR;
xt2 += XT2_INCR;
Fixed i2 = base + fixed_sin(xt1) + fixed_sin(xt2);
xt1 += XT1_INCR;
xt2 += XT2_INCR;
uint32_t pixel = ((uint32_t)palette_from_fixed(i1 >> 2) << 16) |
(uint32_t)palette_from_fixed(i2 >> 2);
((uint32_t*)line)[0] = pixel;
line += 2;
}
if (line < line_end) {
Fixed ii = base + fixed_sin(xt1) + fixed_sin(xt2);
line[0] = palette_from_fixed(ii >> 2);
line++;
}
}
#else /* !OPTIMIZE_WRITES */
int xx;
for (xx = 0; xx < buffer->width; xx++) {
Fixed ii = base + fixed_sin(xt1) + fixed_sin(xt2);
xt1 += XT1_INCR;
xt2 += XT2_INCR;
line[xx] = palette_from_fixed(ii / 4);
}
#endif /* !OPTIMIZE_WRITES */
// go to next line
pixels = (uint16_t*)pixels + buffer->stride;
}
}
/* simple stats management */
typedef struct {
double renderTime;
double frameTime;
} FrameStats;
#define MAX_FRAME_STATS 200
#define MAX_PERIOD_MS 1500
typedef struct {
double firstTime;
double lastTime;
double frameTime;
int firstFrame;
int numFrames;
FrameStats frames[ MAX_FRAME_STATS ];
} Stats;
static void
stats_init( Stats* s )
{
s->lastTime = now_ms();
s->firstTime = 0.;
s->firstFrame = 0;
s->numFrames = 0;
}
static void
stats_startFrame( Stats* s )
{
s->frameTime = now_ms();
}
static void
stats_endFrame( Stats* s )
{
double now = now_ms();
double renderTime = now - s->frameTime;
double frameTime = now - s->lastTime;
int nn;
if (now - s->firstTime >= MAX_PERIOD_MS) {
if (s->numFrames > 0) {
double minRender, maxRender, avgRender;
double minFrame, maxFrame, avgFrame;
int count;
nn = s->firstFrame;
minRender = maxRender = avgRender = s->frames[nn].renderTime;
minFrame = maxFrame = avgFrame = s->frames[nn].frameTime;
for (count = s->numFrames; count > 0; count-- ) {
nn += 1;
if (nn >= MAX_FRAME_STATS)
nn -= MAX_FRAME_STATS;
double render = s->frames[nn].renderTime;
if (render < minRender) minRender = render;
if (render > maxRender) maxRender = render;
double frame = s->frames[nn].frameTime;
if (frame < minFrame) minFrame = frame;
if (frame > maxFrame) maxFrame = frame;
avgRender += render;
avgFrame += frame;
}
avgRender /= s->numFrames;
avgFrame /= s->numFrames;
LOGI("frame/s (avg,min,max) = (%.1f,%.1f,%.1f) "
"render time ms (avg,min,max) = (%.1f,%.1f,%.1f)\n",
1000./avgFrame, 1000./maxFrame, 1000./minFrame,
avgRender, minRender, maxRender);
}
s->numFrames = 0;
s->firstFrame = 0;
s->firstTime = now;
}
nn = s->firstFrame + s->numFrames;
if (nn >= MAX_FRAME_STATS)
nn -= MAX_FRAME_STATS;
s->frames[nn].renderTime = renderTime;
s->frames[nn].frameTime = frameTime;
if (s->numFrames < MAX_FRAME_STATS) {
s->numFrames += 1;
} else {
s->firstFrame += 1;
if (s->firstFrame >= MAX_FRAME_STATS)
s->firstFrame -= MAX_FRAME_STATS;
}
s->lastTime = now;
}
// ----------------------------------------------------------------------
struct engine {
struct android_app* app;
Stats stats;
int animating;
};
static void engine_draw_frame(struct engine* engine) {
if (engine->app->window == NULL) {
// No window.
return;
}
ANativeWindow_Buffer buffer;
if (ANativeWindow_lock(engine->app->window, &buffer, NULL) < 0) {
LOGW("Unable to lock window buffer");
return;
}
stats_startFrame(&engine->stats);
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
int64_t time_ms = (((int64_t)t.tv_sec)*1000000000LL + t.tv_nsec)/1000000;
/* Now fill the values with a nice little plasma */
fill_plasma(&buffer, time_ms);
ANativeWindow_unlockAndPost(engine->app->window);
stats_endFrame(&engine->stats);
}
static int engine_term_display(struct engine* engine) {
engine->animating = 0;
}
static int32_t engine_handle_input(struct android_app* app, AInputEvent* event) {
struct engine* engine = (struct engine*)app->userData;
if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION) {
engine->animating = 1;
return 1;
} else if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_KEY) {
LOGI("Key event: action=%d keyCode=%d metaState=0x%x",
AKeyEvent_getAction(event),
AKeyEvent_getKeyCode(event),
AKeyEvent_getMetaState(event));
}
return 0;
}
static void engine_handle_cmd(struct android_app* app, int32_t cmd) {
struct engine* engine = (struct engine*)app->userData;
switch (cmd) {
case APP_CMD_INIT_WINDOW:
if (engine->app->window != NULL) {
engine_draw_frame(engine);
}
break;
case APP_CMD_TERM_WINDOW:
engine_term_display(engine);
break;
case APP_CMD_LOST_FOCUS:
engine->animating = 0;
engine_draw_frame(engine);
break;
}
}
void android_main(struct android_app* state) {
static int init;
struct engine engine;
// Make sure glue isn't stripped.
app_dummy();
memset(&engine, 0, sizeof(engine));
state->userData = &engine;
state->onAppCmd = engine_handle_cmd;
state->onInputEvent = engine_handle_input;
engine.app = state;
if (!init) {
init_tables();
init = 1;
}
stats_init(&engine.stats);
// loop waiting for stuff to do.
while (1) {
// Read all pending events.
int ident;
int events;
struct android_poll_source* source;
// If not animating, we will block forever waiting for events.
// If animating, we loop until all events are read, then continue
// to draw the next frame of animation.
while ((ident=ALooper_pollAll(engine.animating ? 0 : -1, &events,
(void**)&source)) >= 0) {
// Process this event.
if (source != NULL) {
source->process(state, source);
}
// Check if we are exiting.
if (state->destroyRequested != 0) {
LOGI("Engine thread destroy requested!");
engine_term_display(&engine);
return;
}
}
if (engine.animating) {
engine_draw_frame(&engine);
}
}
}