blob: 2a535920f85080a55d6d11780d60d382c2b92d93 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This file contains codegen and support common to all supported
* ARM variants. It is included by:
*
* Codegen-$(TARGET_ARCH_VARIANT).c
*
* which combines this common code with specific support found in the
* applicable directory below this one.
*/
/*
* Mark garbage collection card. Skip if the value we're storing is null.
*/
static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
{
int regCardBase = dvmCompilerAllocTemp(cUnit);
int regCardNo = dvmCompilerAllocTemp(cUnit);
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
loadWordDisp(cUnit, rGLUE, offsetof(InterpState, cardTable),
regCardBase);
opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
kUnsignedByte);
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR *)target;
dvmCompilerFreeTemp(cUnit, regCardBase);
dvmCompilerFreeTemp(cUnit, regCardNo);
}
static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
int srcSize, int tgtSize)
{
/*
* Don't optimize the register usage since it calls out to template
* functions
*/
RegLocation rlSrc;
RegLocation rlDest;
dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
if (srcSize == 1) {
rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlSrc, r0);
} else {
rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
}
LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
opReg(cUnit, kOpBlx, r2);
dvmCompilerClobberCallRegs(cUnit);
if (tgtSize == 1) {
RegLocation rlResult;
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
rlResult = dvmCompilerGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
} else {
RegLocation rlResult;
rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
rlResult = dvmCompilerGetReturnWide(cUnit);
storeValueWide(cUnit, rlDest, rlResult);
}
return false;
}
static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
RegLocation rlDest, RegLocation rlSrc1,
RegLocation rlSrc2)
{
RegLocation rlResult;
void* funct;
switch (mir->dalvikInsn.opcode) {
case OP_ADD_FLOAT_2ADDR:
case OP_ADD_FLOAT:
funct = (void*) __aeabi_fadd;
break;
case OP_SUB_FLOAT_2ADDR:
case OP_SUB_FLOAT:
funct = (void*) __aeabi_fsub;
break;
case OP_DIV_FLOAT_2ADDR:
case OP_DIV_FLOAT:
funct = (void*) __aeabi_fdiv;
break;
case OP_MUL_FLOAT_2ADDR:
case OP_MUL_FLOAT:
funct = (void*) __aeabi_fmul;
break;
case OP_REM_FLOAT_2ADDR:
case OP_REM_FLOAT:
funct = (void*) fmodf;
break;
case OP_NEG_FLOAT: {
genNegFloat(cUnit, rlDest, rlSrc1);
return false;
}
default:
return true;
}
dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
loadValueDirectFixed(cUnit, rlSrc1, r0);
loadValueDirectFixed(cUnit, rlSrc2, r1);
LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
opReg(cUnit, kOpBlx, r2);
dvmCompilerClobberCallRegs(cUnit);
rlResult = dvmCompilerGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
return false;
}
static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
RegLocation rlDest, RegLocation rlSrc1,
RegLocation rlSrc2)
{
RegLocation rlResult;
void* funct;
switch (mir->dalvikInsn.opcode) {
case OP_ADD_DOUBLE_2ADDR:
case OP_ADD_DOUBLE:
funct = (void*) __aeabi_dadd;
break;
case OP_SUB_DOUBLE_2ADDR:
case OP_SUB_DOUBLE:
funct = (void*) __aeabi_dsub;
break;
case OP_DIV_DOUBLE_2ADDR:
case OP_DIV_DOUBLE:
funct = (void*) __aeabi_ddiv;
break;
case OP_MUL_DOUBLE_2ADDR:
case OP_MUL_DOUBLE:
funct = (void*) __aeabi_dmul;
break;
case OP_REM_DOUBLE_2ADDR:
case OP_REM_DOUBLE:
funct = (void*) fmod;
break;
case OP_NEG_DOUBLE: {
genNegDouble(cUnit, rlDest, rlSrc1);
return false;
}
default:
return true;
}
dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
LOAD_FUNC_ADDR(cUnit, rlr, (int)funct);
loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
opReg(cUnit, kOpBlx, rlr);
dvmCompilerClobberCallRegs(cUnit);
rlResult = dvmCompilerGetReturnWide(cUnit);
storeValueWide(cUnit, rlDest, rlResult);
return false;
}
static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
{
Opcode opcode = mir->dalvikInsn.opcode;
switch (opcode) {
case OP_INT_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
case OP_FLOAT_TO_INT:
return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
case OP_DOUBLE_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
case OP_FLOAT_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
case OP_INT_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
case OP_DOUBLE_TO_INT:
return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
case OP_FLOAT_TO_LONG:
return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
case OP_LONG_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
case OP_DOUBLE_TO_LONG:
return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
case OP_LONG_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
default:
return true;
}
return false;
}
#if defined(WITH_SELF_VERIFICATION)
static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
int dest, int src1)
{
ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
insn->opcode = opcode;
insn->operands[0] = dest;
insn->operands[1] = src1;
setupResourceMasks(insn);
dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
}
static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
{
ArmLIR *thisLIR;
TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
thisLIR = NEXT_LIR(thisLIR)) {
if (thisLIR->branchInsertSV) {
/* Branch to mem op decode template */
selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
(int) gDvmJit.codeCache + templateEntryOffsets[opcode],
(int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
(int) gDvmJit.codeCache + templateEntryOffsets[opcode],
(int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
}
}
}
#endif
/* Generate conditional branch instructions */
static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
ArmConditionCode cond,
ArmLIR *target)
{
ArmLIR *branch = opCondBranch(cUnit, cond);
branch->generic.target = (LIR *) target;
return branch;
}
/* Generate a unconditional branch to go to the interpreter */
static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
ArmLIR *pcrLabel)
{
ArmLIR *branch = opNone(cUnit, kOpUncondBr);
return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
}
/* Load a wide field from an object instance */
static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
{
RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
RegLocation rlResult;
rlObj = loadValue(cUnit, rlObj, kCoreReg);
int regPtr = dvmCompilerAllocTemp(cUnit);
assert(rlDest.wide);
genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
NULL);/* null object? */
opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
HEAP_ACCESS_SHADOW(true);
loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
HEAP_ACCESS_SHADOW(false);
dvmCompilerFreeTemp(cUnit, regPtr);
storeValueWide(cUnit, rlDest, rlResult);
}
/* Store a wide field to an object instance */
static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
{
RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
rlObj = loadValue(cUnit, rlObj, kCoreReg);
int regPtr;
rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
NULL);/* null object? */
regPtr = dvmCompilerAllocTemp(cUnit);
opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
HEAP_ACCESS_SHADOW(true);
storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
HEAP_ACCESS_SHADOW(false);
dvmCompilerFreeTemp(cUnit, regPtr);
}
/*
* Load a field from an object instance
*
*/
static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
int fieldOffset, bool isVolatile)
{
RegLocation rlResult;
RegisterClass regClass = dvmCompilerRegClassBySize(size);
RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
rlObj = loadValue(cUnit, rlObj, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
NULL);/* null object? */
HEAP_ACCESS_SHADOW(true);
loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
size, rlObj.sRegLow);
HEAP_ACCESS_SHADOW(false);
if (isVolatile) {
dvmCompilerGenMemBarrier(cUnit, kSY);
}
storeValue(cUnit, rlDest, rlResult);
}
/*
* Store a field to an object instance
*
*/
static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
int fieldOffset, bool isObject, bool isVolatile)
{
RegisterClass regClass = dvmCompilerRegClassBySize(size);
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
rlObj = loadValue(cUnit, rlObj, kCoreReg);
rlSrc = loadValue(cUnit, rlSrc, regClass);
genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
NULL);/* null object? */
if (isVolatile) {
dvmCompilerGenMemBarrier(cUnit, kSY);
}
HEAP_ACCESS_SHADOW(true);
storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
HEAP_ACCESS_SHADOW(false);
if (isObject) {
/* NOTE: marking card based on object head */
markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
}
}
/*
* Generate array load
*/
static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
RegLocation rlArray, RegLocation rlIndex,
RegLocation rlDest, int scale)
{
RegisterClass regClass = dvmCompilerRegClassBySize(size);
int lenOffset = offsetof(ArrayObject, length);
int dataOffset = offsetof(ArrayObject, contents);
RegLocation rlResult;
rlArray = loadValue(cUnit, rlArray, kCoreReg);
rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
int regPtr;
/* null object? */
ArmLIR * pcrLabel = NULL;
if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
rlArray.lowReg, mir->offset, NULL);
}
regPtr = dvmCompilerAllocTemp(cUnit);
if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
int regLen = dvmCompilerAllocTemp(cUnit);
/* Get len */
loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
/* regPtr -> array data */
opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
pcrLabel);
dvmCompilerFreeTemp(cUnit, regLen);
} else {
/* regPtr -> array data */
opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
}
if ((size == kLong) || (size == kDouble)) {
if (scale) {
int rNewIndex = dvmCompilerAllocTemp(cUnit);
opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
dvmCompilerFreeTemp(cUnit, rNewIndex);
} else {
opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
}
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
HEAP_ACCESS_SHADOW(true);
loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
HEAP_ACCESS_SHADOW(false);
dvmCompilerFreeTemp(cUnit, regPtr);
storeValueWide(cUnit, rlDest, rlResult);
} else {
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
HEAP_ACCESS_SHADOW(true);
loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
scale, size);
HEAP_ACCESS_SHADOW(false);
dvmCompilerFreeTemp(cUnit, regPtr);
storeValue(cUnit, rlDest, rlResult);
}
}
/*
* Generate array store
*
*/
static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
RegLocation rlArray, RegLocation rlIndex,
RegLocation rlSrc, int scale)
{
RegisterClass regClass = dvmCompilerRegClassBySize(size);
int lenOffset = offsetof(ArrayObject, length);
int dataOffset = offsetof(ArrayObject, contents);
int regPtr;
rlArray = loadValue(cUnit, rlArray, kCoreReg);
rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
dvmCompilerClobber(cUnit, rlArray.lowReg);
regPtr = rlArray.lowReg;
} else {
regPtr = dvmCompilerAllocTemp(cUnit);
genRegCopy(cUnit, regPtr, rlArray.lowReg);
}
/* null object? */
ArmLIR * pcrLabel = NULL;
if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
mir->offset, NULL);
}
if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
int regLen = dvmCompilerAllocTemp(cUnit);
//NOTE: max live temps(4) here.
/* Get len */
loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
/* regPtr -> array data */
opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
pcrLabel);
dvmCompilerFreeTemp(cUnit, regLen);
} else {
/* regPtr -> array data */
opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
}
/* at this point, regPtr points to array, 2 live temps */
if ((size == kLong) || (size == kDouble)) {
//TODO: need specific wide routine that can handle fp regs
if (scale) {
int rNewIndex = dvmCompilerAllocTemp(cUnit);
opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
dvmCompilerFreeTemp(cUnit, rNewIndex);
} else {
opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
}
rlSrc = loadValueWide(cUnit, rlSrc, regClass);
HEAP_ACCESS_SHADOW(true);
storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
HEAP_ACCESS_SHADOW(false);
dvmCompilerFreeTemp(cUnit, regPtr);
} else {
rlSrc = loadValue(cUnit, rlSrc, regClass);
HEAP_ACCESS_SHADOW(true);
storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
scale, size);
HEAP_ACCESS_SHADOW(false);
}
}
/*
* Generate array object store
* Must use explicit register allocation here because of
* call-out to dvmCanPutArrayElement
*/
static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
RegLocation rlArray, RegLocation rlIndex,
RegLocation rlSrc, int scale)
{
int lenOffset = offsetof(ArrayObject, length);
int dataOffset = offsetof(ArrayObject, contents);
dvmCompilerFlushAllRegs(cUnit);
int regLen = r0;
int regPtr = r4PC; /* Preserved across call */
int regArray = r1;
int regIndex = r7; /* Preserved across call */
loadValueDirectFixed(cUnit, rlArray, regArray);
loadValueDirectFixed(cUnit, rlIndex, regIndex);
/* null object? */
ArmLIR * pcrLabel = NULL;
if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
mir->offset, NULL);
}
if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
/* Get len */
loadWordDisp(cUnit, regArray, lenOffset, regLen);
/* regPtr -> array data */
opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
pcrLabel);
} else {
/* regPtr -> array data */
opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
}
/* Get object to store */
loadValueDirectFixed(cUnit, rlSrc, r0);
LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
/* Are we storing null? If so, avoid check */
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
/* Make sure the types are compatible */
loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
opReg(cUnit, kOpBlx, r2);
dvmCompilerClobberCallRegs(cUnit);
/*
* Using fixed registers here, and counting on r4 and r7 being
* preserved across the above call. Tell the register allocation
* utilities about the regs we are using directly
*/
dvmCompilerLockTemp(cUnit, regPtr); // r4PC
dvmCompilerLockTemp(cUnit, regIndex); // r7
dvmCompilerLockTemp(cUnit, r0);
dvmCompilerLockTemp(cUnit, r1);
/* Bad? - roll back and re-execute if so */
genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
/* Resume here - must reload element & array, regPtr & index preserved */
loadValueDirectFixed(cUnit, rlSrc, r0);
loadValueDirectFixed(cUnit, rlArray, r1);
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR *) target;
HEAP_ACCESS_SHADOW(true);
storeBaseIndexed(cUnit, regPtr, regIndex, r0,
scale, kWord);
HEAP_ACCESS_SHADOW(false);
dvmCompilerFreeTemp(cUnit, regPtr);
dvmCompilerFreeTemp(cUnit, regIndex);
/* NOTE: marking card here based on object head */
markCard(cUnit, r0, r1);
}
static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
RegLocation rlDest, RegLocation rlSrc1,
RegLocation rlShift)
{
/*
* Don't mess with the regsiters here as there is a particular calling
* convention to the out-of-line handler.
*/
RegLocation rlResult;
loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
loadValueDirect(cUnit, rlShift, r2);
switch( mir->dalvikInsn.opcode) {
case OP_SHL_LONG:
case OP_SHL_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
break;
case OP_SHR_LONG:
case OP_SHR_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
break;
case OP_USHR_LONG:
case OP_USHR_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
break;
default:
return true;
}
rlResult = dvmCompilerGetReturnWide(cUnit);
storeValueWide(cUnit, rlDest, rlResult);
return false;
}
static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
RegLocation rlDest, RegLocation rlSrc1,
RegLocation rlSrc2)
{
RegLocation rlResult;
OpKind firstOp = kOpBkpt;
OpKind secondOp = kOpBkpt;
bool callOut = false;
void *callTgt;
int retReg = r0;
switch (mir->dalvikInsn.opcode) {
case OP_NOT_LONG:
rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
storeValueWide(cUnit, rlDest, rlResult);
return false;
break;
case OP_ADD_LONG:
case OP_ADD_LONG_2ADDR:
firstOp = kOpAdd;
secondOp = kOpAdc;
break;
case OP_SUB_LONG:
case OP_SUB_LONG_2ADDR:
firstOp = kOpSub;
secondOp = kOpSbc;
break;
case OP_MUL_LONG:
case OP_MUL_LONG_2ADDR:
genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
return false;
case OP_DIV_LONG:
case OP_DIV_LONG_2ADDR:
callOut = true;
retReg = r0;
callTgt = (void*)__aeabi_ldivmod;
break;
/* NOTE - result is in r2/r3 instead of r0/r1 */
case OP_REM_LONG:
case OP_REM_LONG_2ADDR:
callOut = true;
callTgt = (void*)__aeabi_ldivmod;
retReg = r2;
break;
case OP_AND_LONG_2ADDR:
case OP_AND_LONG:
firstOp = kOpAnd;
secondOp = kOpAnd;
break;
case OP_OR_LONG:
case OP_OR_LONG_2ADDR:
firstOp = kOpOr;
secondOp = kOpOr;
break;
case OP_XOR_LONG:
case OP_XOR_LONG_2ADDR:
firstOp = kOpXor;
secondOp = kOpXor;
break;
case OP_NEG_LONG: {
//TUNING: can improve this using Thumb2 code
int tReg = dvmCompilerAllocTemp(cUnit);
rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadConstantNoClobber(cUnit, tReg, 0);
opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
tReg, rlSrc2.lowReg);
opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
genRegCopy(cUnit, rlResult.highReg, tReg);
storeValueWide(cUnit, rlDest, rlResult);
return false;
}
default:
LOGE("Invalid long arith op");
dvmCompilerAbort(cUnit);
}
if (!callOut) {
genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
} else {
// Adjust return regs in to handle case of rem returning r2/r3
dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
LOAD_FUNC_ADDR(cUnit, rlr, (int) callTgt);
loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
opReg(cUnit, kOpBlx, rlr);
dvmCompilerClobberCallRegs(cUnit);
if (retReg == r0)
rlResult = dvmCompilerGetReturnWide(cUnit);
else
rlResult = dvmCompilerGetReturnWideAlt(cUnit);
storeValueWide(cUnit, rlDest, rlResult);
}
return false;
}
static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
RegLocation rlDest, RegLocation rlSrc1,
RegLocation rlSrc2)
{
OpKind op = kOpBkpt;
bool callOut = false;
bool checkZero = false;
bool unary = false;
int retReg = r0;
void *callTgt;
RegLocation rlResult;
bool shiftOp = false;
switch (mir->dalvikInsn.opcode) {
case OP_NEG_INT:
op = kOpNeg;
unary = true;
break;
case OP_NOT_INT:
op = kOpMvn;
unary = true;
break;
case OP_ADD_INT:
case OP_ADD_INT_2ADDR:
op = kOpAdd;
break;
case OP_SUB_INT:
case OP_SUB_INT_2ADDR:
op = kOpSub;
break;
case OP_MUL_INT:
case OP_MUL_INT_2ADDR:
op = kOpMul;
break;
case OP_DIV_INT:
case OP_DIV_INT_2ADDR:
callOut = true;
checkZero = true;
callTgt = __aeabi_idiv;
retReg = r0;
break;
/* NOTE: returns in r1 */
case OP_REM_INT:
case OP_REM_INT_2ADDR:
callOut = true;
checkZero = true;
callTgt = __aeabi_idivmod;
retReg = r1;
break;
case OP_AND_INT:
case OP_AND_INT_2ADDR:
op = kOpAnd;
break;
case OP_OR_INT:
case OP_OR_INT_2ADDR:
op = kOpOr;
break;
case OP_XOR_INT:
case OP_XOR_INT_2ADDR:
op = kOpXor;
break;
case OP_SHL_INT:
case OP_SHL_INT_2ADDR:
shiftOp = true;
op = kOpLsl;
break;
case OP_SHR_INT:
case OP_SHR_INT_2ADDR:
shiftOp = true;
op = kOpAsr;
break;
case OP_USHR_INT:
case OP_USHR_INT_2ADDR:
shiftOp = true;
op = kOpLsr;
break;
default:
LOGE("Invalid word arith op: 0x%x(%d)",
mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
dvmCompilerAbort(cUnit);
}
if (!callOut) {
rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
if (unary) {
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, op, rlResult.lowReg,
rlSrc1.lowReg);
} else {
rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
if (shiftOp) {
int tReg = dvmCompilerAllocTemp(cUnit);
opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegRegReg(cUnit, op, rlResult.lowReg,
rlSrc1.lowReg, tReg);
dvmCompilerFreeTemp(cUnit, tReg);
} else {
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegRegReg(cUnit, op, rlResult.lowReg,
rlSrc1.lowReg, rlSrc2.lowReg);
}
}
storeValue(cUnit, rlDest, rlResult);
} else {
RegLocation rlResult;
dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
loadValueDirectFixed(cUnit, rlSrc2, r1);
LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
loadValueDirectFixed(cUnit, rlSrc1, r0);
if (checkZero) {
genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
}
opReg(cUnit, kOpBlx, r2);
dvmCompilerClobberCallRegs(cUnit);
if (retReg == r0)
rlResult = dvmCompilerGetReturn(cUnit);
else
rlResult = dvmCompilerGetReturnAlt(cUnit);
storeValue(cUnit, rlDest, rlResult);
}
return false;
}
static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
{
Opcode opcode = mir->dalvikInsn.opcode;
RegLocation rlDest;
RegLocation rlSrc1;
RegLocation rlSrc2;
/* Deduce sizes of operands */
if (mir->ssaRep->numUses == 2) {
rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
} else if (mir->ssaRep->numUses == 3) {
rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
} else {
rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
assert(mir->ssaRep->numUses == 4);
}
if (mir->ssaRep->numDefs == 1) {
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
} else {
assert(mir->ssaRep->numDefs == 2);
rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
}
if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
}
return true;
}
/* Generate unconditional branch instructions */
static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
{
ArmLIR *branch = opNone(cUnit, kOpUncondBr);
branch->generic.target = (LIR *) target;
return branch;
}
/* Perform the actual operation for OP_RETURN_* */
static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
{
genDispatchToHandler(cUnit, TEMPLATE_RETURN);
#if defined(WITH_JIT_TUNING)
gDvmJit.returnOp++;
#endif
int dPC = (int) (cUnit->method->insns + mir->offset);
/* Insert branch, but defer setting of target */
ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
/* Set up the place holder to reconstruct this Dalvik PC */
ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
pcrLabel->opcode = kArmPseudoPCReconstructionCell;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
/* Branch to the PC reconstruction code */
branch->generic.target = (LIR *) pcrLabel;
}
static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
DecodedInstruction *dInsn,
ArmLIR **pcrLabel)
{
unsigned int i;
unsigned int regMask = 0;
RegLocation rlArg;
int numDone = 0;
/*
* Load arguments to r0..r4. Note that these registers may contain
* live values, so we clobber them immediately after loading to prevent
* them from being used as sources for subsequent loads.
*/
dvmCompilerLockAllTemps(cUnit);
for (i = 0; i < dInsn->vA; i++) {
regMask |= 1 << i;
rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
loadValueDirectFixed(cUnit, rlArg, i);
}
if (regMask) {
/* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
opRegRegImm(cUnit, kOpSub, r7, rFP,
sizeof(StackSaveArea) + (dInsn->vA << 2));
/* generate null check */
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
mir->offset, NULL);
}
storeMultiple(cUnit, r7, regMask);
}
}
static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
DecodedInstruction *dInsn,
ArmLIR **pcrLabel)
{
int srcOffset = dInsn->vC << 2;
int numArgs = dInsn->vA;
int regMask;
/*
* Note: here, all promoted registers will have been flushed
* back to the Dalvik base locations, so register usage restrictins
* are lifted. All parms loaded from original Dalvik register
* region - even though some might conceivably have valid copies
* cached in a preserved register.
*/
dvmCompilerLockAllTemps(cUnit);
/*
* r4PC : &rFP[vC]
* r7: &newFP[0]
*/
opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset);
/* load [r0 .. min(numArgs,4)] */
regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
/*
* Protect the loadMultiple instruction from being reordered with other
* Dalvik stack accesses.
*/
loadMultiple(cUnit, r4PC, regMask);
opRegRegImm(cUnit, kOpSub, r7, rFP,
sizeof(StackSaveArea) + (numArgs << 2));
/* generate null check */
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
mir->offset, NULL);
}
/*
* Handle remaining 4n arguments:
* store previously loaded 4 values and load the next 4 values
*/
if (numArgs >= 8) {
ArmLIR *loopLabel = NULL;
/*
* r0 contains "this" and it will be used later, so push it to the stack
* first. Pushing r5 (rFP) is just for stack alignment purposes.
*/
opImm(cUnit, kOpPush, (1 << r0 | 1 << rFP));
/* No need to generate the loop structure if numArgs <= 11 */
if (numArgs > 11) {
loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
loopLabel->defMask = ENCODE_ALL;
}
storeMultiple(cUnit, r7, regMask);
/*
* Protect the loadMultiple instruction from being reordered with other
* Dalvik stack accesses.
*/
loadMultiple(cUnit, r4PC, regMask);
/* No need to generate the loop structure if numArgs <= 11 */
if (numArgs > 11) {
opRegImm(cUnit, kOpSub, rFP, 4);
genConditionalBranch(cUnit, kArmCondNe, loopLabel);
}
}
/* Save the last batch of loaded values */
storeMultiple(cUnit, r7, regMask);
/* Generate the loop epilogue - don't use r0 */
if ((numArgs > 4) && (numArgs % 4)) {
regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
/*
* Protect the loadMultiple instruction from being reordered with other
* Dalvik stack accesses.
*/
loadMultiple(cUnit, r4PC, regMask);
}
if (numArgs >= 8)
opImm(cUnit, kOpPop, (1 << r0 | 1 << rFP));
/* Save the modulo 4 arguments */
if ((numArgs > 4) && (numArgs % 4)) {
storeMultiple(cUnit, r7, regMask);
}
}
/*
* Generate code to setup the call stack then jump to the chaining cell if it
* is not a native method.
*/
static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, ArmLIR *labelList,
ArmLIR *pcrLabel,
const Method *calleeMethod)
{
/*
* Note: all Dalvik register state should be flushed to
* memory by the point, so register usage restrictions no
* longer apply. All temp & preserved registers may be used.
*/
dvmCompilerLockAllTemps(cUnit);
ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
/* r1 = &retChainingCell */
ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
addrRetChain->generic.target = (LIR *) retChainingCell;
/* r7 = calleeMethod->registersSize */
loadConstant(cUnit, r7, calleeMethod->registersSize);
/*
* r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
* r1 = &ChainingCell
* r2 = calleeMethod->outsSize (to be loaded later for Java callees)
* r4PC = callsiteDPC
* r7 = calleeMethod->registersSize
*/
if (dvmIsNativeMethod(calleeMethod)) {
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NATIVE);
#if defined(WITH_JIT_TUNING)
gDvmJit.invokeNative++;
#endif
} else {
/* For Java callees, set up r2 to be calleeMethod->outsSize */
loadConstant(cUnit, r2, calleeMethod->outsSize);
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_CHAIN);
#if defined(WITH_JIT_TUNING)
gDvmJit.invokeMonomorphic++;
#endif
/* Branch to the chaining cell */
genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
}
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
}
/*
* Generate code to check the validity of a predicted chain and take actions
* based on the result.
*
* 0x426a99aa : ldr r4, [pc, #72] --> r4 <- dalvikPC of this invoke
* 0x426a99ac : add r1, pc, #32 --> r1 <- &retChainingCell
* 0x426a99ae : add r2, pc, #40 --> r2 <- &predictedChainingCell
* 0x426a99b0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
* 0x426a99b2 : blx_2 see above --+
* 0x426a99b4 : b 0x426a99d8 --> off to the predicted chain
* 0x426a99b6 : b 0x426a99c8 --> punt to the interpreter
* 0x426a99b8 : ldr r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
* 0x426a99ba : cmp r1, #0 --> compare r1 (rechain count) against 0
* 0x426a99bc : bgt 0x426a99c2 --> >=0? don't rechain
* 0x426a99be : ldr r7, [r6, #96] --+ dvmJitToPatchPredictedChain
* 0x426a99c0 : blx r7 --+
* 0x426a99c2 : add r1, pc, #12 --> r1 <- &retChainingCell
* 0x426a99c4 : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT
* 0x426a99c6 : blx_2 see above --+
*/
static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
int methodIndex,
ArmLIR *retChainingCell,
ArmLIR *predChainingCell,
ArmLIR *pcrLabel)
{
/*
* Note: all Dalvik register state should be flushed to
* memory by the point, so register usage restrictions no
* longer apply. Lock temps to prevent them from being
* allocated by utility routines.
*/
dvmCompilerLockAllTemps(cUnit);
/* "this" is already left in r0 by genProcessArgs* */
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
/* r1 = &retChainingCell */
ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
/* r2 = &predictedChainingCell */
ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
predictedChainingCell->generic.target = (LIR *) predChainingCell;
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
/* return through lr - jump to the chaining cell */
genUnconditionalBranch(cUnit, predChainingCell);
/*
* null-check on "this" may have been eliminated, but we still need a PC-
* reconstruction label for stack overflow bailout.
*/
if (pcrLabel == NULL) {
int dPC = (int) (cUnit->method->insns + mir->offset);
pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
pcrLabel->opcode = kArmPseudoPCReconstructionCell;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
}
/* return through lr+2 - punt to the interpreter */
genUnconditionalBranch(cUnit, pcrLabel);
/*
* return through lr+4 - fully resolve the callee method.
* r1 <- count
* r2 <- &predictedChainCell
* r3 <- this->class
* r4 <- dPC
* r7 <- this->class->vtable
*/
/* r0 <- calleeMethod */
loadWordDisp(cUnit, r7, methodIndex * 4, r0);
/* Check if rechain limit is reached */
ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
genRegCopy(cUnit, r1, rGLUE);
/*
* r0 = calleeMethod
* r2 = &predictedChainingCell
* r3 = class
*
* &returnChainingCell has been loaded into r1 but is not needed
* when patching the chaining cell and will be clobbered upon
* returning so it will be reconstructed again.
*/
opReg(cUnit, kOpBlx, r7);
/* r1 = &retChainingCell */
addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
bypassRechaining->generic.target = (LIR *) addrRetChain;
/*
* r0 = calleeMethod,
* r1 = &ChainingCell,
* r4PC = callsiteDPC,
*/
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
#if defined(WITH_JIT_TUNING)
gDvmJit.invokePolymorphic++;
#endif
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
}
/* Geneate a branch to go back to the interpreter */
static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
{
/* r0 = dalvik pc */
dvmCompilerFlushAllRegs(cUnit);
loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpPunt), r1);
opReg(cUnit, kOpBlx, r1);
}
/*
* Attempt to single step one instruction using the interpreter and return
* to the compiled code for the next Dalvik instruction
*/
static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
{
int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
kInstrCanThrow;
//If already optimized out, just ignore
if (mir->dalvikInsn.opcode == OP_NOP)
return;
//Ugly, but necessary. Flush all Dalvik regs so Interp can find them
dvmCompilerFlushAllRegs(cUnit);
if ((mir->next == NULL) || (flags & flagsToCheck)) {
genPuntToInterp(cUnit, mir->offset);
return;
}
int entryAddr = offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpSingleStep);
loadWordDisp(cUnit, rGLUE, entryAddr, r2);
/* r0 = dalvik pc */
loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
/* r1 = dalvik pc of following instruction */
loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
opReg(cUnit, kOpBlx, r2);
}
#if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING) || \
defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
/*
* To prevent a thread in a monitor wait from blocking the Jit from
* resetting the code cache, heavyweight monitor lock will not
* be allowed to return to an existing translation. Instead, we will
* handle them by branching to a handler, which will in turn call the
* runtime lock routine and then branch directly back to the
* interpreter main loop. Given the high cost of the heavyweight
* lock operation, this additional cost should be slight (especially when
* considering that we expect the vast majority of lock operations to
* use the fast-path thin lock bypass).
*/
static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
{
bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
genExportPC(cUnit, mir);
dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlSrc, r1);
loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0);
genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
if (isEnter) {
/* Get dPC of next insn */
loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
#if defined(WITH_DEADLOCK_PREDICTION)
genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER_DEBUG);
#else
genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
#endif
} else {
LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
/* Do the call */
opReg(cUnit, kOpBlx, r2);
/* Did we throw? */
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
loadConstant(cUnit, r0,
(int) (cUnit->method->insns + mir->offset +
dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR *) target;
dvmCompilerClobberCallRegs(cUnit);
}
}
#endif
/*
* The following are the first-level codegen routines that analyze the format
* of each bytecode then either dispatch special purpose codegen routines
* or produce corresponding Thumb instructions directly.
*/
static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, ArmLIR *labelList)
{
/* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
return false;
}
static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpcode);
return true;
}
switch (dalvikOpcode) {
case OP_RETURN_VOID_BARRIER:
dvmCompilerGenMemBarrier(cUnit, kST);
// Intentional fallthrough
case OP_RETURN_VOID:
genReturnCommon(cUnit,mir);
break;
case OP_UNUSED_73:
case OP_UNUSED_79:
case OP_UNUSED_7A:
case OP_DISPATCH_FF:
LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpcode);
return true;
case OP_NOP:
break;
default:
return true;
}
return false;
}
static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlDest;
RegLocation rlResult;
if (mir->ssaRep->numDefs == 2) {
rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
} else {
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
}
switch (mir->dalvikInsn.opcode) {
case OP_CONST:
case OP_CONST_4: {
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
storeValue(cUnit, rlDest, rlResult);
break;
}
case OP_CONST_WIDE_32: {
//TUNING: single routine to load constant pair for support doubles
//TUNING: load 0/-1 separately to avoid load dependency
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
rlResult.lowReg, 31);
storeValueWide(cUnit, rlDest, rlResult);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlDest;
RegLocation rlResult;
if (mir->ssaRep->numDefs == 2) {
rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
} else {
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
}
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
switch (mir->dalvikInsn.opcode) {
case OP_CONST_HIGH16: {
loadConstantNoClobber(cUnit, rlResult.lowReg,
mir->dalvikInsn.vB << 16);
storeValue(cUnit, rlDest, rlResult);
break;
}
case OP_CONST_WIDE_HIGH16: {
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
0, mir->dalvikInsn.vB << 16);
storeValueWide(cUnit, rlDest, rlResult);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
{
/* For OP_THROW_VERIFICATION_ERROR */
genInterpSingleStep(cUnit, mir);
return false;
}
static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlResult;
RegLocation rlDest;
RegLocation rlSrc;
switch (mir->dalvikInsn.opcode) {
case OP_CONST_STRING_JUMBO:
case OP_CONST_STRING: {
void *strPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
if (strPtr == NULL) {
LOGE("Unexpected null string");
dvmAbort();
}
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
storeValue(cUnit, rlDest, rlResult);
break;
}
case OP_CONST_CLASS: {
void *classPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
if (classPtr == NULL) {
LOGE("Unexpected null class");
dvmAbort();
}
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
storeValue(cUnit, rlDest, rlResult);
break;
}
case OP_SGET_VOLATILE:
case OP_SGET_OBJECT_VOLATILE:
case OP_SGET_OBJECT:
case OP_SGET_BOOLEAN:
case OP_SGET_CHAR:
case OP_SGET_BYTE:
case OP_SGET_SHORT:
case OP_SGET: {
int valOffset = offsetof(StaticField, value);
int tReg = dvmCompilerAllocTemp(cUnit);
bool isVolatile;
const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
mir->meta.calleeMethod : cUnit->method;
void *fieldPtr = (void*)
(method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
if (fieldPtr == NULL) {
LOGE("Unexpected null static field");
dvmAbort();
}
isVolatile = (mir->dalvikInsn.opcode == OP_SGET_VOLATILE) ||
(mir->dalvikInsn.opcode == OP_SGET_OBJECT_VOLATILE) ||
dvmIsVolatileField((Field *) fieldPtr);
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
if (isVolatile) {
dvmCompilerGenMemBarrier(cUnit, kSY);
}
HEAP_ACCESS_SHADOW(true);
loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
HEAP_ACCESS_SHADOW(false);
storeValue(cUnit, rlDest, rlResult);
break;
}
case OP_SGET_WIDE: {
int valOffset = offsetof(StaticField, value);
const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
mir->meta.calleeMethod : cUnit->method;
void *fieldPtr = (void*)
(method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
if (fieldPtr == NULL) {
LOGE("Unexpected null static field");
dvmAbort();
}
int tReg = dvmCompilerAllocTemp(cUnit);
rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
HEAP_ACCESS_SHADOW(true);
loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
HEAP_ACCESS_SHADOW(false);
storeValueWide(cUnit, rlDest, rlResult);
break;
}
case OP_SPUT_OBJECT:
case OP_SPUT_OBJECT_VOLATILE:
case OP_SPUT_VOLATILE:
case OP_SPUT_BOOLEAN:
case OP_SPUT_CHAR:
case OP_SPUT_BYTE:
case OP_SPUT_SHORT:
case OP_SPUT: {
int valOffset = offsetof(StaticField, value);
int tReg = dvmCompilerAllocTemp(cUnit);
int objHead;
bool isVolatile;
bool isSputObject;
const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
mir->meta.calleeMethod : cUnit->method;
void *fieldPtr = (void*)
(method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
isVolatile = (mir->dalvikInsn.opcode == OP_SPUT_VOLATILE) ||
(mir->dalvikInsn.opcode == OP_SPUT_OBJECT_VOLATILE) ||
dvmIsVolatileField((Field *) fieldPtr);
isSputObject = (mir->dalvikInsn.opcode == OP_SPUT_OBJECT) ||
(mir->dalvikInsn.opcode == OP_SPUT_OBJECT_VOLATILE);
if (fieldPtr == NULL) {
LOGE("Unexpected null static field");
dvmAbort();
}
rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
loadConstant(cUnit, tReg, (int) fieldPtr);
if (isSputObject) {
objHead = dvmCompilerAllocTemp(cUnit);
loadWordDisp(cUnit, tReg, offsetof(Field, clazz), objHead);
}
HEAP_ACCESS_SHADOW(true);
storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
dvmCompilerFreeTemp(cUnit, tReg);
HEAP_ACCESS_SHADOW(false);
if (isVolatile) {
dvmCompilerGenMemBarrier(cUnit, kSY);
}
if (isSputObject) {
/* NOTE: marking card based sfield->clazz */
markCard(cUnit, rlSrc.lowReg, objHead);
dvmCompilerFreeTemp(cUnit, objHead);
}
break;
}
case OP_SPUT_WIDE: {
int tReg = dvmCompilerAllocTemp(cUnit);
int valOffset = offsetof(StaticField, value);
const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
mir->meta.calleeMethod : cUnit->method;
void *fieldPtr = (void*)
(method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
if (fieldPtr == NULL) {
LOGE("Unexpected null static field");
dvmAbort();
}
rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
HEAP_ACCESS_SHADOW(true);
storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
HEAP_ACCESS_SHADOW(false);
break;
}
case OP_NEW_INSTANCE: {
/*
* Obey the calling convention and don't mess with the register
* usage.
*/
ClassObject *classPtr = (ClassObject *)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
if (classPtr == NULL) {
LOGE("Unexpected null class");
dvmAbort();
}
/*
* If it is going to throw, it should not make to the trace to begin
* with. However, Alloc might throw, so we need to genExportPC()
*/
assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
genExportPC(cUnit, mir);
LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
loadConstant(cUnit, r0, (int) classPtr);
loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
opReg(cUnit, kOpBlx, r2);
dvmCompilerClobberCallRegs(cUnit);
/* generate a branch over if allocation is successful */
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
/*
* OOM exception needs to be thrown here and cannot re-execute
*/
loadConstant(cUnit, r0,
(int) (cUnit->method->insns + mir->offset));
genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
/* noreturn */
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR *) target;
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
rlResult = dvmCompilerGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
break;
}
case OP_CHECK_CAST: {
/*
* Obey the calling convention and don't mess with the register
* usage.
*/
ClassObject *classPtr =
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
/*
* Note: It is possible that classPtr is NULL at this point,
* even though this instruction has been successfully interpreted.
* If the previous interpretation had a null source, the
* interpreter would not have bothered to resolve the clazz.
* Bail out to the interpreter in this case, and log it
* so that we can tell if it happens frequently.
*/
if (classPtr == NULL) {
LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
genInterpSingleStep(cUnit, mir);
return false;
}
dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
loadConstant(cUnit, r1, (int) classPtr );
rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
/* Null? */
ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
rlSrc.lowReg, 0);
/*
* rlSrc.lowReg now contains object->clazz. Note that
* it could have been allocated r0, but we're okay so long
* as we don't do anything desctructive until r0 is loaded
* with clazz.
*/
/* r0 now contains object->clazz */
loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
opRegReg(cUnit, kOpCmp, r0, r1);
ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
opReg(cUnit, kOpBlx, r2);
dvmCompilerClobberCallRegs(cUnit);
/*
* If null, check cast failed - punt to the interpreter. Because
* interpreter will be the one throwing, we don't need to
* genExportPC() here.
*/
genZeroCheck(cUnit, r0, mir->offset, NULL);
/* check cast passed - branch target here */
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branch1->generic.target = (LIR *)target;
branch2->generic.target = (LIR *)target;
break;
}
case OP_SGET_WIDE_VOLATILE:
case OP_SPUT_WIDE_VOLATILE:
genInterpSingleStep(cUnit, mir);
break;
default:
return true;
}
return false;
}
/*
* A typical example of inlined getter/setter from a monomorphic callsite:
*
* D/dalvikvm( 289): -------- dalvik offset: 0x0000 @ invoke-static (I)
* D/dalvikvm( 289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
* D/dalvikvm( 289): 0x4427fc22 (0002): ldr r0, [pc, #56]
* D/dalvikvm( 289): 0x4427fc24 (0004): ldr r1, [r0, #0]
* D/dalvikvm( 289): 0x4427fc26 (0006): str r1, [r5, #0]
* D/dalvikvm( 289): 0x4427fc28 (0008): .align4
* D/dalvikvm( 289): L0x0003:
* D/dalvikvm( 289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
*
* Note the invoke-static and move-result-object with the (I) notation are
* turned into no-op.
*/
static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
RegLocation rlResult;
switch (dalvikOpcode) {
case OP_MOVE_EXCEPTION: {
int offset = offsetof(InterpState, self);
int exOffset = offsetof(Thread, exception);
int selfReg = dvmCompilerAllocTemp(cUnit);
int resetReg = dvmCompilerAllocTemp(cUnit);
RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadWordDisp(cUnit, rGLUE, offset, selfReg);
loadConstant(cUnit, resetReg, 0);
loadWordDisp(cUnit, selfReg, exOffset, rlResult.lowReg);
storeWordDisp(cUnit, selfReg, exOffset, resetReg);
storeValue(cUnit, rlDest, rlResult);
break;
}
case OP_MOVE_RESULT:
case OP_MOVE_RESULT_OBJECT: {
/* An inlined move result is effectively no-op */
if (mir->OptimizationFlags & MIR_INLINED)
break;
RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
rlSrc.fp = rlDest.fp;
storeValue(cUnit, rlDest, rlSrc);
break;
}
case OP_MOVE_RESULT_WIDE: {
/* An inlined move result is effectively no-op */
if (mir->OptimizationFlags & MIR_INLINED)
break;
RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
rlSrc.fp = rlDest.fp;
storeValueWide(cUnit, rlDest, rlSrc);
break;
}
case OP_RETURN_WIDE: {
RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
rlDest.fp = rlSrc.fp;
storeValueWide(cUnit, rlDest, rlSrc);
genReturnCommon(cUnit,mir);
break;
}
case OP_RETURN:
case OP_RETURN_OBJECT: {
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
rlDest.fp = rlSrc.fp;
storeValue(cUnit, rlDest, rlSrc);
genReturnCommon(cUnit,mir);
break;
}
case OP_MONITOR_EXIT:
case OP_MONITOR_ENTER:
#if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING)
genMonitorPortable(cUnit, mir);
#else
genMonitor(cUnit, mir);
#endif
break;
case OP_THROW: {
genInterpSingleStep(cUnit, mir);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
{
Opcode opcode = mir->dalvikInsn.opcode;
RegLocation rlDest;
RegLocation rlSrc;
RegLocation rlResult;
if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
return genArithOp( cUnit, mir );
}
if (mir->ssaRep->numUses == 2)
rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
else
rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
if (mir->ssaRep->numDefs == 2)
rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
else
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
switch (opcode) {
case OP_DOUBLE_TO_INT:
case OP_INT_TO_FLOAT:
case OP_FLOAT_TO_INT:
case OP_DOUBLE_TO_FLOAT:
case OP_FLOAT_TO_DOUBLE:
case OP_INT_TO_DOUBLE:
case OP_FLOAT_TO_LONG:
case OP_LONG_TO_FLOAT:
case OP_DOUBLE_TO_LONG:
case OP_LONG_TO_DOUBLE:
return genConversion(cUnit, mir);
case OP_NEG_INT:
case OP_NOT_INT:
return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
case OP_NEG_LONG:
case OP_NOT_LONG:
return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
case OP_NEG_FLOAT:
return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
case OP_NEG_DOUBLE:
return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
case OP_MOVE_WIDE:
storeValueWide(cUnit, rlDest, rlSrc);
break;
case OP_INT_TO_LONG:
rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
//TUNING: shouldn't loadValueDirect already check for phys reg?
if (rlSrc.location == kLocPhysReg) {
genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
} else {
loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
}
opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
rlResult.lowReg, 31);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_LONG_TO_INT:
rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
// Intentional fallthrough
case OP_MOVE:
case OP_MOVE_OBJECT:
storeValue(cUnit, rlDest, rlSrc);
break;
case OP_INT_TO_BYTE:
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_INT_TO_SHORT:
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_INT_TO_CHAR:
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_ARRAY_LENGTH: {
int lenOffset = offsetof(ArrayObject, length);
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
mir->offset, NULL);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
rlResult.lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
RegLocation rlDest;
RegLocation rlResult;
int BBBB = mir->dalvikInsn.vB;
if (dalvikOpcode == OP_CONST_WIDE_16) {
rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
//TUNING: do high separately to avoid load dependency
opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
storeValueWide(cUnit, rlDest, rlResult);
} else if (dalvikOpcode == OP_CONST_16) {
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
storeValue(cUnit, rlDest, rlResult);
} else
return true;
return false;
}
/* Compare agaist zero */
static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
ArmLIR *labelList)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
ArmConditionCode cond;
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
//TUNING: break this out to allow use of Thumb2 CB[N]Z
switch (dalvikOpcode) {
case OP_IF_EQZ:
cond = kArmCondEq;
break;
case OP_IF_NEZ:
cond = kArmCondNe;
break;
case OP_IF_LTZ:
cond = kArmCondLt;
break;
case OP_IF_GEZ:
cond = kArmCondGe;
break;
case OP_IF_GTZ:
cond = kArmCondGt;
break;
case OP_IF_LEZ:
cond = kArmCondLe;
break;
default:
cond = 0;
LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpcode);
dvmCompilerAbort(cUnit);
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
/* This mostly likely will be optimized away in a later phase */
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
return false;
}
static bool isPowerOfTwo(int x)
{
return (x & (x - 1)) == 0;
}
// Returns true if no more than two bits are set in 'x'.
static bool isPopCountLE2(unsigned int x)
{
x &= x - 1;
return (x & (x - 1)) == 0;
}
// Returns the index of the lowest set bit in 'x'.
static int lowestSetBit(unsigned int x) {
int bit_posn = 0;
while ((x & 0xf) == 0) {
bit_posn += 4;
x >>= 4;
}
while ((x & 1) == 0) {
bit_posn++;
x >>= 1;
}
return bit_posn;
}
// Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
// and store the result in 'rlDest'.
static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
RegLocation rlSrc, RegLocation rlDest, int lit)
{
if (lit < 2 || !isPowerOfTwo(lit)) {
return false;
}
int k = lowestSetBit(lit);
if (k >= 30) {
// Avoid special cases.
return false;
}
bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
if (div) {
int tReg = dvmCompilerAllocTemp(cUnit);
if (lit == 2) {
// Division by 2 is by far the most common division by constant.
opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
} else {
opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
}
} else {
int cReg = dvmCompilerAllocTemp(cUnit);
loadConstant(cUnit, cReg, lit - 1);
int tReg1 = dvmCompilerAllocTemp(cUnit);
int tReg2 = dvmCompilerAllocTemp(cUnit);
if (lit == 2) {
opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
} else {
opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
}
}
storeValue(cUnit, rlDest, rlResult);
return true;
}
// Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
// and store the result in 'rlDest'.
static bool handleEasyMultiply(CompilationUnit *cUnit,
RegLocation rlSrc, RegLocation rlDest, int lit)
{
// Can we simplify this multiplication?
bool powerOfTwo = false;
bool popCountLE2 = false;
bool powerOfTwoMinusOne = false;
if (lit < 2) {
// Avoid special cases.
return false;
} else if (isPowerOfTwo(lit)) {
powerOfTwo = true;
} else if (isPopCountLE2(lit)) {
popCountLE2 = true;
} else if (isPowerOfTwo(lit + 1)) {
powerOfTwoMinusOne = true;
} else {
return false;
}
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
if (powerOfTwo) {
// Shift.
opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
lowestSetBit(lit));
} else if (popCountLE2) {
// Shift and add and shift.
int firstBit = lowestSetBit(lit);
int secondBit = lowestSetBit(lit ^ (1 << firstBit));
genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
firstBit, secondBit);
} else {
// Reverse subtract: (src << (shift + 1)) - src.
assert(powerOfTwoMinusOne);
// TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
int tReg = dvmCompilerAllocTemp(cUnit);
opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
}
storeValue(cUnit, rlDest, rlResult);
return true;
}
static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
RegLocation rlResult;
int lit = mir->dalvikInsn.vC;
OpKind op = 0; /* Make gcc happy */
int shiftOp = false;
bool isDiv = false;
switch (dalvikOpcode) {
case OP_RSUB_INT_LIT8:
case OP_RSUB_INT: {
int tReg;
//TUNING: add support for use of Arm rsub op
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
tReg = dvmCompilerAllocTemp(cUnit);
loadConstant(cUnit, tReg, lit);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
tReg, rlSrc.lowReg);
storeValue(cUnit, rlDest, rlResult);
return false;
break;
}
case OP_ADD_INT_LIT8:
case OP_ADD_INT_LIT16:
op = kOpAdd;
break;
case OP_MUL_INT_LIT8:
case OP_MUL_INT_LIT16: {
if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
return false;
}
op = kOpMul;
break;
}
case OP_AND_INT_LIT8:
case OP_AND_INT_LIT16:
op = kOpAnd;
break;
case OP_OR_INT_LIT8:
case OP_OR_INT_LIT16:
op = kOpOr;
break;
case OP_XOR_INT_LIT8:
case OP_XOR_INT_LIT16:
op = kOpXor;
break;
case OP_SHL_INT_LIT8:
lit &= 31;
shiftOp = true;
op = kOpLsl;
break;
case OP_SHR_INT_LIT8:
lit &= 31;
shiftOp = true;
op = kOpAsr;
break;
case OP_USHR_INT_LIT8:
lit &= 31;
shiftOp = true;
op = kOpLsr;
break;
case OP_DIV_INT_LIT8:
case OP_DIV_INT_LIT16:
case OP_REM_INT_LIT8:
case OP_REM_INT_LIT16:
if (lit == 0) {
/* Let the interpreter deal with div by 0 */
genInterpSingleStep(cUnit, mir);
return false;
}
if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
return false;
}
dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
loadValueDirectFixed(cUnit, rlSrc, r0);
dvmCompilerClobber(cUnit, r0);
if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
(dalvikOpcode == OP_DIV_INT_LIT16)) {
LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
isDiv = true;
} else {
LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
isDiv = false;
}
loadConstant(cUnit, r1, lit);
opReg(cUnit, kOpBlx, r2);
dvmCompilerClobberCallRegs(cUnit);
if (isDiv)
rlResult = dvmCompilerGetReturn(cUnit);
else
rlResult = dvmCompilerGetReturnAlt(cUnit);
storeValue(cUnit, rlDest, rlResult);
return false;
break;
default:
return true;
}
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
// Avoid shifts by literal 0 - no support in Thumb. Change to copy
if (shiftOp && (lit == 0)) {
genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
} else {
opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
}
storeValue(cUnit, rlDest, rlResult);
return false;
}
static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
int fieldOffset = -1;
bool isVolatile = false;
switch (dalvikOpcode) {
/*
* Wide volatiles currently handled via single step.
* Add them here if generating in-line code.
* case OP_IGET_WIDE_VOLATILE:
* case OP_IPUT_WIDE_VOLATILE:
*/
case OP_IGET:
case OP_IGET_VOLATILE:
case OP_IGET_WIDE:
case OP_IGET_OBJECT:
case OP_IGET_OBJECT_VOLATILE:
case OP_IGET_BOOLEAN:
case OP_IGET_BYTE:
case OP_IGET_CHAR:
case OP_IGET_SHORT:
case OP_IPUT:
case OP_IPUT_VOLATILE:
case OP_IPUT_WIDE:
case OP_IPUT_OBJECT:
case OP_IPUT_OBJECT_VOLATILE:
case OP_IPUT_BOOLEAN:
case OP_IPUT_BYTE:
case OP_IPUT_CHAR:
case OP_IPUT_SHORT: {
const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
mir->meta.calleeMethod : cUnit->method;
Field *fieldPtr =
method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
if (fieldPtr == NULL) {
LOGE("Unexpected null instance field");
dvmAbort();
}
isVolatile = dvmIsVolatileField(fieldPtr);
fieldOffset = ((InstField *)fieldPtr)->byteOffset;
break;
}
default:
break;
}
switch (dalvikOpcode) {
case OP_NEW_ARRAY: {
// Generates a call - use explicit registers
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
RegLocation rlResult;
void *classPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
if (classPtr == NULL) {
LOGE("Unexpected null class");
dvmAbort();
}
dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
genExportPC(cUnit, mir);
loadValueDirectFixed(cUnit, rlSrc, r1); /* Len */
loadConstant(cUnit, r0, (int) classPtr );
LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
/*
* "len < 0": bail to the interpreter to re-execute the
* instruction
*/
genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
opReg(cUnit, kOpBlx, r3);
dvmCompilerClobberCallRegs(cUnit);
/* generate a branch over if allocation is successful */
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
/*
* OOM exception needs to be thrown here and cannot re-execute
*/
loadConstant(cUnit, r0,
(int) (cUnit->method->insns + mir->offset));
genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
/* noreturn */
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR *) target;
rlResult = dvmCompilerGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
break;
}
case OP_INSTANCE_OF: {
// May generate a call - use explicit registers
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
RegLocation rlResult;
ClassObject *classPtr =
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
/*
* Note: It is possible that classPtr is NULL at this point,
* even though this instruction has been successfully interpreted.
* If the previous interpretation had a null source, the
* interpreter would not have bothered to resolve the clazz.
* Bail out to the interpreter in this case, and log it
* so that we can tell if it happens frequently.
*/
if (classPtr == NULL) {
LOGD("null clazz in OP_INSTANCE_OF, single-stepping");
genInterpSingleStep(cUnit, mir);
break;
}
dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
loadValueDirectFixed(cUnit, rlSrc, r0); /* Ref */
loadConstant(cUnit, r2, (int) classPtr );
/* When taken r0 has NULL which can be used for store directly */
ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
/* r1 now contains object->clazz */
loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
/* r1 now contains object->clazz */
LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
loadConstant(cUnit, r0, 1); /* Assume true */
opRegReg(cUnit, kOpCmp, r1, r2);
ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
genRegCopy(cUnit, r0, r1);
genRegCopy(cUnit, r1, r2);
opReg(cUnit, kOpBlx, r3);
dvmCompilerClobberCallRegs(cUnit);
/* branch target here */
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
rlResult = dvmCompilerGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
branch1->generic.target = (LIR *)target;
branch2->generic.target = (LIR *)target;
break;
}
case OP_IGET_WIDE:
genIGetWide(cUnit, mir, fieldOffset);
break;
case OP_IGET_VOLATILE:
case OP_IGET_OBJECT_VOLATILE:
isVolatile = true;
// NOTE: intentional fallthrough
case OP_IGET:
case OP_IGET_OBJECT:
case OP_IGET_BOOLEAN:
case OP_IGET_BYTE:
case OP_IGET_CHAR:
case OP_IGET_SHORT:
genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
break;
case OP_IPUT_WIDE:
genIPutWide(cUnit, mir, fieldOffset);
break;
case OP_IPUT:
case OP_IPUT_SHORT:
case OP_IPUT_CHAR:
case OP_IPUT_BYTE:
case OP_IPUT_BOOLEAN:
genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
break;
case OP_IPUT_VOLATILE:
case OP_IPUT_OBJECT_VOLATILE:
isVolatile = true;
// NOTE: intentional fallthrough
case OP_IPUT_OBJECT:
genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
break;
case OP_IGET_WIDE_VOLATILE:
case OP_IPUT_WIDE_VOLATILE:
genInterpSingleStep(cUnit, mir);
break;
default:
return true;
}
return false;
}
static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
int fieldOffset = mir->dalvikInsn.vC;
switch (dalvikOpcode) {
case OP_IGET_QUICK:
case OP_IGET_OBJECT_QUICK:
genIGet(cUnit, mir, kWord, fieldOffset, false);
break;
case OP_IPUT_QUICK:
genIPut(cUnit, mir, kWord, fieldOffset, false, false);
break;
case OP_IPUT_OBJECT_QUICK:
genIPut(cUnit, mir, kWord, fieldOffset, true, false);
break;
case OP_IGET_WIDE_QUICK:
genIGetWide(cUnit, mir, fieldOffset);
break;
case OP_IPUT_WIDE_QUICK:
genIPutWide(cUnit, mir, fieldOffset);
break;
default:
return true;
}
return false;
}
/* Compare agaist zero */
static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
ArmLIR *labelList)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
ArmConditionCode cond;
RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
switch (dalvikOpcode) {
case OP_IF_EQ:
cond = kArmCondEq;
break;
case OP_IF_NE:
cond = kArmCondNe;
break;
case OP_IF_LT:
cond = kArmCondLt;
break;
case OP_IF_GE:
cond = kArmCondGe;
break;
case OP_IF_GT:
cond = kArmCondGt;
break;
case OP_IF_LE:
cond = kArmCondLe;
break;
default:
cond = 0;
LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpcode);
dvmCompilerAbort(cUnit);
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
/* This mostly likely will be optimized away in a later phase */
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
return false;
}
static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
{
Opcode opcode = mir->dalvikInsn.opcode;
switch (opcode) {
case OP_MOVE_16:
case OP_MOVE_OBJECT_16:
case OP_MOVE_FROM16:
case OP_MOVE_OBJECT_FROM16: {
storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
dvmCompilerGetSrc(cUnit, mir, 0));
break;
}
case OP_MOVE_WIDE_16:
case OP_MOVE_WIDE_FROM16: {
storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
break;
}
default:
return true;
}
return false;
}
static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
{
Opcode opcode = mir->dalvikInsn.opcode;
RegLocation rlSrc1;
RegLocation rlSrc2;
RegLocation rlDest;
if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
return genArithOp( cUnit, mir );
}
/* APUTs have 3 sources and no targets */
if (mir->ssaRep->numDefs == 0) {
if (mir->ssaRep->numUses == 3) {
rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
} else {
assert(mir->ssaRep->numUses == 4);
rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
}
} else {
/* Two sources and 1 dest. Deduce the operand sizes */
if (mir->ssaRep->numUses == 4) {
rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
} else {
assert(mir->ssaRep->numUses == 2);
rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
}
if (mir->ssaRep->numDefs == 2) {
rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
} else {
assert(mir->ssaRep->numDefs == 1);
rlDest = dvmCompilerGetDest(cUnit, mir, 0);
}
}
switch (opcode) {
case OP_CMPL_FLOAT:
case OP_CMPG_FLOAT:
case OP_CMPL_DOUBLE:
case OP_CMPG_DOUBLE:
return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
case OP_CMP_LONG:
genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
break;
case OP_AGET_WIDE:
genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
break;
case OP_AGET:
case OP_AGET_OBJECT:
genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
break;
case OP_AGET_BOOLEAN:
genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
break;
case OP_AGET_BYTE:
genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
break;
case OP_AGET_CHAR:
genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
break;
case OP_AGET_SHORT:
genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
break;
case OP_APUT_WIDE:
genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
break;
case OP_APUT:
genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
break;
case OP_APUT_OBJECT:
genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
break;
case OP_APUT_SHORT:
case OP_APUT_CHAR:
genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
break;
case OP_APUT_BYTE:
case OP_APUT_BOOLEAN:
genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
break;
default:
return true;
}
return false;
}
/*
* Find the matching case.
*
* return values:
* r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
* including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
* r1 (high 32-bit): the branch offset of the matching case (only for indexes
* above MAX_CHAINED_SWITCH_CASES).
*
* Instructions around the call are:
*
* mov r2, pc
* blx &findPackedSwitchIndex
* mov pc, r0
* .align4
* chaining cell for case 0 [12 bytes]
* chaining cell for case 1 [12 bytes]
* :
* chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
* chaining cell for case default [8 bytes]
* noChain exit
*/
static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
{
int size;
int firstKey;
const int *entries;
int index;
int jumpIndex;
int caseDPCOffset = 0;
/* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
int chainingPC = (pc + 4) & ~3;
/*
* Packed switch data format:
* ushort ident = 0x0100 magic value
* ushort size number of entries in the table
* int first_key first (and lowest) switch case value
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (4+size*2) 16-bit code units.
*/
size = switchData[1];
assert(size > 0);
firstKey = switchData[2];
firstKey |= switchData[3] << 16;
/* The entries are guaranteed to be aligned on a 32-bit boundary;
* we can treat them as a native int array.
*/
entries = (const int*) &switchData[4];
assert(((u4)entries & 0x3) == 0);
index = testVal - firstKey;
/* Jump to the default cell */
if (index < 0 || index >= size) {
jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
/* Jump to the non-chaining exit point */
} else if (index >= MAX_CHAINED_SWITCH_CASES) {
jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
caseDPCOffset = entries[index];
/* Jump to the inline chaining cell */
} else {
jumpIndex = index;
}
chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
}
/* See comments for findPackedSwitchIndex */
static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
{
int size;
const int *keys;
const int *entries;
int chainingPC = (pc + 4) & ~3;
int i;
/*
* Sparse switch data format:
* ushort ident = 0x0200 magic value
* ushort size number of entries in the table; > 0
* int keys[size] keys, sorted low-to-high; 32-bit aligned
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (2+size*4) 16-bit code units.
*/
size = switchData[1];
assert(size > 0);
/* The keys are guaranteed to be aligned on a 32-bit boundary;
* we can treat them as a native int array.
*/
keys = (const int*) &switchData[2];
assert(((u4)keys & 0x3) == 0);
/* The entries are guaranteed to be aligned on a 32-bit boundary;
* we can treat them as a native int array.
*/
entries = keys + size;
assert(((u4)entries & 0x3) == 0);
/*
* Run through the list of keys, which are guaranteed to
* be sorted low-to-high.
*
* Most tables have 3-4 entries. Few have more than 10. A binary
* search here is probably not useful.
*/
for (i = 0; i < size; i++) {
int k = keys[i];
if (k == testVal) {
/* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
i : MAX_CHAINED_SWITCH_CASES + 1;
chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
return (((s8) entries[i]) << 32) | (u8) chainingPC;
} else if (k > testVal) {
break;
}
}
return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
CHAIN_CELL_NORMAL_SIZE;
}
static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
{
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
switch (dalvikOpcode) {
case OP_FILL_ARRAY_DATA: {
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
// Making a call - use explicit registers
dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
genExportPC(cUnit, mir);
loadValueDirectFixed(cUnit, rlSrc, r0);
LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
loadConstant(cUnit, r1,
(int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
opReg(cUnit, kOpBlx, r2);
dvmCompilerClobberCallRegs(cUnit);
/* generate a branch over if successful */
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
loadConstant(cUnit, r0,
(int) (cUnit->method->insns + mir->offset));
genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR *) target;
break;
}
/*
* Compute the goto target of up to
* MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
* See the comment before findPackedSwitchIndex for the code layout.
*/
case OP_PACKED_SWITCH:
case OP_SPARSE_SWITCH: {
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
loadValueDirectFixed(cUnit, rlSrc, r1);
dvmCompilerLockAllTemps(cUnit);
if (dalvikOpcode == OP_PACKED_SWITCH) {
LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
} else {
LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
}
/* r0 <- Addr of the switch data */
loadConstant(cUnit, r0,
(int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
/* r2 <- pc of the instruction following the blx */
opRegReg(cUnit, kOpMov, r2, rpc);
opReg(cUnit, kOpBlx, r4PC);
dvmCompilerClobberCallRegs(cUnit);
/* pc <- computed goto target */
opRegReg(cUnit, kOpMov, rpc, r0);
break;
}
default:
return true;
}
return false;
}
/*
* See the example of predicted inlining listed before the
* genValidationForPredictedInline function. The function here takes care the
* branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
*/
static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb,
ArmLIR *labelList)
{
BasicBlock *fallThrough = bb->fallThrough;
/* Bypass the move-result block if there is one */
if (fallThrough->firstMIRInsn) {
assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
fallThrough = fallThrough->fallThrough;
}
/* Generate a branch over if the predicted inlining is correct */
genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
/* Reset the register state */
dvmCompilerResetRegPool(cUnit);
dvmCompilerClobberAllRegs(cUnit);
dvmCompilerResetNullCheck(cUnit);
/* Target for the slow invoke path */
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
/* Hook up the target to the verification branch */
mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
}
static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
ArmLIR *labelList)
{
ArmLIR *retChainingCell = NULL;
ArmLIR *pcrLabel = NULL;
/* An invoke with the MIR_INLINED is effectively a no-op */
if (mir->OptimizationFlags & MIR_INLINED)
return false;
if (bb->fallThrough != NULL)
retChainingCell = &labelList[bb->fallThrough->id];
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch (mir->dalvikInsn.opcode) {
/*
* calleeMethod = this->clazz->vtable[
* method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
* ]
*/
case OP_INVOKE_VIRTUAL:
case OP_INVOKE_VIRTUAL_RANGE: {
ArmLIR *predChainingCell = &labelList[bb->taken->id];
int methodIndex =
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
methodIndex;
/*
* If the invoke has non-null misPredBranchOver, we need to generate
* the non-inlined version of the invoke here to handle the
* mispredicted case.
*/
if (mir->meta.callsiteInfo->misPredBranchOver) {
genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
}
if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
genInvokeVirtualCommon(cUnit, mir, methodIndex,
retChainingCell,
predChainingCell,
pcrLabel);
break;
}
/*
* calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
* ->pResMethods[BBBB]->methodIndex]
*/
case OP_INVOKE_SUPER:
case OP_INVOKE_SUPER_RANGE: {
/* Grab the method ptr directly from what the interpreter sees */
const Method *calleeMethod = mir->meta.callsiteInfo->method;
assert(calleeMethod == cUnit->method->clazz->super->vtable[
cUnit->method->clazz->pDvmDex->
pResMethods[dInsn->vB]->methodIndex]);
if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
case OP_INVOKE_DIRECT:
case OP_INVOKE_DIRECT_RANGE: {
/* Grab the method ptr directly from what the interpreter sees */
const Method *calleeMethod = mir->meta.callsiteInfo->method;
assert(calleeMethod ==
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
case OP_INVOKE_STATIC:
case OP_INVOKE_STATIC_RANGE: {
/* Grab the method ptr directly from what the interpreter sees */
const Method *calleeMethod = mir->meta.callsiteInfo->method;
assert(calleeMethod ==
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
genProcessArgsNoRange(cUnit, mir, dInsn,
NULL /* no null check */);
else
genProcessArgsRange(cUnit, mir, dInsn,
NULL /* no null check */);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/*
* calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
* BBBB, method, method->clazz->pDvmDex)
*
* The following is an example of generated code for
* "invoke-interface v0"
*
* -------- dalvik offset: 0x0008 @ invoke-interface v0
* 0x47357e36 : ldr r0, [r5, #0] --+
* 0x47357e38 : sub r7,r5,#24 |
* 0x47357e3c : cmp r0, #0 | genProcessArgsNoRange
* 0x47357e3e : beq 0x47357e82 |
* 0x47357e40 : stmia r7, <r0> --+
* 0x47357e42 : ldr r4, [pc, #120] --> r4 <- dalvikPC of this invoke
* 0x47357e44 : add r1, pc, #64 --> r1 <- &retChainingCell
* 0x47357e46 : add r2, pc, #72 --> r2 <- &predictedChainingCell
* 0x47357e48 : blx_1 0x47348190 --+ TEMPLATE_INVOKE_METHOD_
* 0x47357e4a : blx_2 see above --+ PREDICTED_CHAIN
* 0x47357e4c : b 0x47357e90 --> off to the predicted chain
* 0x47357e4e : b 0x47357e82 --> punt to the interpreter
* 0x47357e50 : mov r8, r1 --+
* 0x47357e52 : mov r9, r2 |
* 0x47357e54 : ldr r2, [pc, #96] |
* 0x47357e56 : mov r10, r3 |
* 0x47357e58 : movs r0, r3 | dvmFindInterfaceMethodInCache
* 0x47357e5a : ldr r3, [pc, #88] |
* 0x47357e5c : ldr r7, [pc, #80] |
* 0x47357e5e : mov r1, #1452 |
* 0x47357e62 : blx r7 --+
* 0x47357e64 : cmp r0, #0 --> calleeMethod == NULL?
* 0x47357e66 : bne 0x47357e6e --> branch over the throw if !r0
* 0x47357e68 : ldr r0, [pc, #80] --> load Dalvik PC of the invoke
* 0x47357e6a : blx_1 0x47348494 --+ TEMPLATE_THROW_EXCEPTION_
* 0x47357e6c : blx_2 see above --+ COMMON
* 0x47357e6e : mov r1, r8 --> r1 <- &retChainingCell
* 0x47357e70 : cmp r1, #0 --> compare against 0
* 0x47357e72 : bgt 0x47357e7c --> >=0? don't rechain
* 0x47357e74 : ldr r7, [r6, #108] --+
* 0x47357e76 : mov r2, r9 | dvmJitToPatchPredictedChain
* 0x47357e78 : mov r3, r10 |
* 0x47357e7a : blx r7 --+
* 0x47357e7c : add r1, pc, #8 --> r1 <- &retChainingCell
* 0x47357e7e : blx_1 0x4734809c --+ TEMPLATE_INVOKE_METHOD_NO_OPT
* 0x47357e80 : blx_2 see above --+
* -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
* 0x47357e82 : ldr r0, [pc, #56]
* Exception_Handling:
* 0x47357e84 : ldr r1, [r6, #92]
* 0x47357e86 : blx r1
* 0x47357e88 : .align4
* -------- chaining cell (hot): 0x000b
* 0x47357e88 : ldr r0, [r6, #104]
* 0x47357e8a : blx r0
* 0x47357e8c : data 0x19e2(6626)
* 0x47357e8e : data 0x4257(16983)
* 0x47357e90 : .align4
* -------- chaining cell (predicted)
* 0x47357e90 : data 0xe7fe(59390) --> will be patched into bx
* 0x47357e92 : data 0x0000(0)
* 0x47357e94 : data 0x0000(0) --> class
* 0x47357e96 : data 0x0000(0)
* 0x47357e98 : data 0x0000(0) --> method
* 0x47357e9a : data 0x0000(0)
* 0x47357e9c : data 0x0000(0) --> rechain count
* 0x47357e9e : data 0x0000(0)
* -------- end of chaining cells (0x006c)
* 0x47357eb0 : .word (0xad03e369)
* 0x47357eb4 : .word (0x28a90)
* 0x47357eb8 : .word (0x41a63394)
* 0x47357ebc : .word (0x425719dc)
*/
case OP_INVOKE_INTERFACE:
case OP_INVOKE_INTERFACE_RANGE: {
ArmLIR *predChainingCell = &labelList[bb->taken->id];
/*
* If the invoke has non-null misPredBranchOver, we need to generate
* the non-inlined version of the invoke here to handle the
* mispredicted case.
*/
if (mir->meta.callsiteInfo->misPredBranchOver) {
genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
}
if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* "this" is already left in r0 by genProcessArgs* */
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
/* r1 = &retChainingCell */
ArmLIR *addrRetChain =
opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
/* r2 = &predictedChainingCell */
ArmLIR *predictedChainingCell =
opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
predictedChainingCell->generic.target = (LIR *) predChainingCell;
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
/* return through lr - jump to the chaining cell */
genUnconditionalBranch(cUnit, predChainingCell);
/*
* null-check on "this" may have been eliminated, but we still need
* a PC-reconstruction label for stack overflow bailout.
*/
if (pcrLabel == NULL) {
int dPC = (int) (cUnit->method->insns + mir->offset);
pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
pcrLabel->opcode = kArmPseudoPCReconstructionCell;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
}
/* return through lr+2 - punt to the interpreter */
genUnconditionalBranch(cUnit, pcrLabel);
/*
* return through lr+4 - fully resolve the callee method.
* r1 <- count
* r2 <- &predictedChainCell
* r3 <- this->class
* r4 <- dPC
* r7 <- this->class->vtable
*/
/* Save count, &predictedChainCell, and class to high regs first */
genRegCopy(cUnit, r8, r1);
genRegCopy(cUnit, r9, r2);
genRegCopy(cUnit, r10, r3);
/* r0 now contains this->clazz */
genRegCopy(cUnit, r0, r3);
/* r1 = BBBB */
loadConstant(cUnit, r1, dInsn->vB);
/* r2 = method (caller) */
loadConstant(cUnit, r2, (int) cUnit->method);
/* r3 = pDvmDex */
loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
LOAD_FUNC_ADDR(cUnit, r7,
(intptr_t) dvmFindInterfaceMethodInCache);
opReg(cUnit, kOpBlx, r7);
/* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
dvmCompilerClobberCallRegs(cUnit);
/* generate a branch over if the interface method is resolved */
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
/*
* calleeMethod == NULL -> throw
*/
loadConstant(cUnit, r0,
(int) (cUnit->method->insns + mir->offset));
genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
/* noreturn */
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR *) target;
genRegCopy(cUnit, r1, r8);
/* Check if rechain limit is reached */
ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
r1, 0);
loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
genRegCopy(cUnit, r1, rGLUE);
genRegCopy(cUnit, r2, r9);
genRegCopy(cUnit, r3, r10);
/*
* r0 = calleeMethod
* r2 = &predictedChainingCell
* r3 = class
*
* &returnChainingCell has been loaded into r1 but is not needed
* when patching the chaining cell and will be clobbered upon
* returning so it will be reconstructed again.
*/
opReg(cUnit, kOpBlx, r7);
/* r1 = &retChainingCell */
addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
bypassRechaining->generic.target = (LIR *) addrRetChain;
/*
* r0 = this, r1 = calleeMethod,
* r1 = &ChainingCell,
* r4PC = callsiteDPC,
*/
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
#if defined(WITH_JIT_TUNING)
gDvmJit.invokePolymorphic++;
#endif
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
break;
}
/* NOP */
case OP_INVOKE_DIRECT_EMPTY: {
return false;
}
case OP_FILLED_NEW_ARRAY:
case OP_FILLED_NEW_ARRAY_RANGE: {
/* Just let the interpreter deal with these */
genInterpSingleStep(cUnit, mir);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, ArmLIR *labelList)
{
ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
ArmLIR *predChainingCell = &labelList[bb->taken->id];
ArmLIR *pcrLabel = NULL;
/* An invoke with the MIR_INLINED is effectively a no-op */
if (mir->OptimizationFlags & MIR_INLINED)
return false;
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch (mir->dalvikInsn.opcode) {
/* calleeMethod = this->clazz->vtable[BBBB] */
case OP_INVOKE_VIRTUAL_QUICK_RANGE:
case OP_INVOKE_VIRTUAL_QUICK: {
int methodIndex = dInsn->vB;
/*
* If the invoke has non-null misPredBranchOver, we need to generate
* the non-inlined version of the invoke here to handle the
* mispredicted case.
*/
if (mir->meta.callsiteInfo->misPredBranchOver) {
genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
}
if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
genInvokeVirtualCommon(cUnit, mir, methodIndex,
retChainingCell,
predChainingCell,
pcrLabel);
break;
}
/* calleeMethod = method->clazz->super->vtable[BBBB] */
case OP_INVOKE_SUPER_QUICK:
case OP_INVOKE_SUPER_QUICK_RANGE: {
/* Grab the method ptr directly from what the interpreter sees */
const Method *calleeMethod = mir->meta.callsiteInfo->method;
assert(calleeMethod ==
cUnit->method->clazz->super->vtable[dInsn->vB]);
if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
default:
return true;
}
return false;
}
/*
* This operation is complex enough that we'll do it partly inline
* and partly with a handler. NOTE: the handler uses hardcoded
* values for string object offsets and must be revisitied if the
* layout changes.
*/
static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
{
#if defined(USE_GLOBAL_STRING_DEFS)
return false;
#else
ArmLIR *rollback;
RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
loadValueDirectFixed(cUnit, rlThis, r0);
loadValueDirectFixed(cUnit, rlComp, r1);
/* Test objects for NULL */
rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
/*
* TUNING: we could check for object pointer equality before invoking
* handler. Unclear whether the gain would be worth the added code size
* expansion.
*/
genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
storeValue(cUnit, inlinedTarget(cUnit, mir, false),
dvmCompilerGetReturn(cUnit));
return true;
#endif
}
static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
{
#if defined(USE_GLOBAL_STRING_DEFS)
return false;
#else
RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
loadValueDirectFixed(cUnit, rlThis, r0);
loadValueDirectFixed(cUnit, rlChar, r1);
RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
loadValueDirectFixed(cUnit, rlStart, r2);
/* Test objects for NULL */
genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
storeValue(cUnit, inlinedTarget(cUnit, mir, false),
dvmCompilerGetReturn(cUnit));
return true;
#endif
}
// Generates an inlined String.isEmpty or String.length.
static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
bool isEmpty)
{
// dst = src.length();
RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = inlinedTarget(cUnit, mir, false);
rlObj = loadValue(cUnit, rlObj, kCoreReg);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
rlResult.lowReg);
if (isEmpty) {
// dst = (dst == 0);
int tReg = dvmCompilerAllocTemp(cUnit);
opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
}
storeValue(cUnit, rlDest, rlResult);
return false;
}
static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
{
return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
}
static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
{
return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
}
static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
{
int contents = offsetof(ArrayObject, contents);
RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
RegLocation rlDest = inlinedTarget(cUnit, mir, false);
RegLocation rlResult;
rlObj = loadValue(cUnit, rlObj, kCoreReg);
rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
int regMax = dvmCompilerAllocTemp(cUnit);
int regOff = dvmCompilerAllocTemp(cUnit);
int regPtr = dvmCompilerAllocTemp(cUnit);
ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
mir->offset, NULL);
loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
dvmCompilerFreeTemp(cUnit, regMax);
opRegImm(cUnit, kOpAdd, regPtr, contents);
opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
storeValue(cUnit, rlDest, rlResult);
return false;
}
static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
RegLocation rlDest = inlinedTarget(cUnit, mir, false);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
int signReg = dvmCompilerAllocTemp(cUnit);
/*
* abs(x) = y<=x>>31, (x+y)^y.
* Thumb2's IT block also yields 3 instructions, but imposes
* scheduling constraints.
*/
opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
storeValue(cUnit, rlDest, rlResult);
return false;
}
static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
{
RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
int signReg = dvmCompilerAllocTemp(cUnit);
/*
* abs(x) = y<=x>>31, (x+y)^y.
* Thumb2 IT block allows slightly shorter sequence,
* but introduces a scheduling barrier. Stick with this
* mechanism for now.
*/
opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
storeValueWide(cUnit, rlDest, rlResult);
return false;
}
static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
{
// Just move from source to destination...
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlDest = inlinedTarget(cUnit, mir, false);
storeValue(cUnit, rlDest, rlSrc);
return false;
}
static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
{
// Just move from source to destination...
RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
storeValueWide(cUnit, rlDest, rlSrc);
return false;
}
/*
* NOTE: Handles both range and non-range versions (arguments
* have already been normalized by this point).
*/
static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch( mir->dalvikInsn.opcode) {
case OP_EXECUTE_INLINE_RANGE:
case OP_EXECUTE_INLINE: {
unsigned int i;
const InlineOperation* inLineTable = dvmGetInlineOpsTable();
int offset = offsetof(InterpState, retval);
int operation = dInsn->vB;
switch (operation) {
case INLINE_EMPTYINLINEMETHOD:
return false; /* Nop */
case INLINE_STRING_LENGTH:
return genInlinedStringLength(cUnit, mir);
case INLINE_STRING_IS_EMPTY:
return genInlinedStringIsEmpty(cUnit, mir);
case INLINE_MATH_ABS_INT:
return genInlinedAbsInt(cUnit, mir);
case INLINE_MATH_ABS_LONG:
return genInlinedAbsLong(cUnit, mir);
case INLINE_MATH_MIN_INT:
return genInlinedMinMaxInt(cUnit, mir, true);
case INLINE_MATH_MAX_INT:
return genInlinedMinMaxInt(cUnit, mir, false);
case INLINE_STRING_CHARAT:
return genInlinedStringCharAt(cUnit, mir);
case INLINE_MATH_SQRT:
if (genInlineSqrt(cUnit, mir))
return false;
else
break; /* Handle with C routine */
case INLINE_MATH_ABS_FLOAT:
if (genInlinedAbsFloat(cUnit, mir))
return false;
else
break;
case INLINE_MATH_ABS_DOUBLE:
if (genInlinedAbsDouble(cUnit, mir))
return false;
else
break;
case INLINE_STRING_COMPARETO:
if (genInlinedCompareTo(cUnit, mir))
return false;
else
break;
case INLINE_STRING_FASTINDEXOF_II:
if (genInlinedFastIndexOf(cUnit, mir))
return false;
else
break;
case INLINE_FLOAT_TO_RAW_INT_BITS:
case INLINE_INT_BITS_TO_FLOAT:
return genInlinedIntFloatConversion(cUnit, mir);
case INLINE_DOUBLE_TO_RAW_LONG_BITS:
case INLINE_LONG_BITS_TO_DOUBLE:
return genInlinedLongDoubleConversion(cUnit, mir);
case INLINE_STRING_EQUALS:
case INLINE_MATH_COS:
case INLINE_MATH_SIN:
case INLINE_FLOAT_TO_INT_BITS:
case INLINE_DOUBLE_TO_LONG_BITS:
break; /* Handle with C routine */
default:
dvmCompilerAbort(cUnit);
}
dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
dvmCompilerClobberCallRegs(cUnit);
dvmCompilerClobber(cUnit, r4PC);
dvmCompilerClobber(cUnit, r7);
opRegRegImm(cUnit, kOpAdd, r4PC, rGLUE, offset);
opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
LOAD_FUNC_ADDR(cUnit, r4PC, (int)inLineTable[operation].func);
genExportPC(cUnit, mir);
for (i=0; i < dInsn->vA; i++) {
loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
}
opReg(cUnit, kOpBlx, r4PC);
opRegImm(cUnit, kOpAdd, r13, 8);
/* NULL? */
ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
loadConstant(cUnit, r0,
(int) (cUnit->method->insns + mir->offset));
genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR *) target;
break;
}
default:
return true;
}
return false;
}
static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
{
//TUNING: We're using core regs here - not optimal when target is a double
RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg,
mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
loadConstantNoClobber(cUnit, rlResult.highReg,
(mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
storeValueWide(cUnit, rlDest, rlResult);
return false;
}
/*
* The following are special processing routines that handle transfer of
* controls between compiled code and the interpreter. Certain VM states like
* Dalvik PC and special-purpose registers are reconstructed here.
*/
/*
* Insert a
* b .+4
* nop
* pair at the beginning of a chaining cell. This serves as the
* switch branch that selects between reverting to the interpreter or
* not. Once the cell is chained to a translation, the cell will
* contain a 32-bit branch. Subsequent chain/unchain operations will
* then only alter that first 16-bits - the "b .+4" for unchaining,
* and the restoration of the first half of the 32-bit branch for
* rechaining.
*/
static void insertChainingSwitch(CompilationUnit *cUnit)
{
ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
newLIR2(cUnit, kThumbOrr, r0, r0);
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branch->generic.target = (LIR *) target;
}
/* Chaining cell for code that may need warmup. */
static void handleNormalChainingCell(CompilationUnit *cUnit,
unsigned int offset)
{
/*
* Use raw instruction constructors to guarantee that the generated
* instructions fit the predefined cell size.
*/
insertChainingSwitch(cUnit);
newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpNormal) >> 2);
newLIR1(cUnit, kThumbBlxR, r0);
addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
}
/*
* Chaining cell for instructions that immediately following already translated
* code.
*/
static void handleHotChainingCell(CompilationUnit *cUnit,
unsigned int offset)
{
/*
* Use raw instruction constructors to guarantee that the generated
* instructions fit the predefined cell size.
*/
insertChainingSwitch(cUnit);
newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
newLIR1(cUnit, kThumbBlxR, r0);
addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
}
#if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
/* Chaining cell for branches that branch back into the same basic block */
static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
unsigned int offset)
{
/*
* Use raw instruction constructors to guarantee that the generated
* instructions fit the predefined cell size.
*/
insertChainingSwitch(cUnit);
#if defined(WITH_SELF_VERIFICATION)
newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
#else
newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
#endif
newLIR1(cUnit, kThumbBlxR, r0);
addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
}
#endif
/* Chaining cell for monomorphic method invocations. */
static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
const Method *callee)
{
/*
* Use raw instruction constructors to guarantee that the generated
* instructions fit the predefined cell size.
*/
insertChainingSwitch(cUnit);
newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
newLIR1(cUnit, kThumbBlxR, r0);
addWordData(cUnit, (int) (callee->insns), true);
}
/* Chaining cell for monomorphic method invocations. */
static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
{
/* Should not be executed in the initial state */
addWordData(cUnit, PREDICTED_CHAIN_BX_PAIR_INIT, true);
/* To be filled: class */
addWordData(cUnit, PREDICTED_CHAIN_CLAZZ_INIT, true);
/* To be filled: method */
addWordData(cUnit, PREDICTED_CHAIN_METHOD_INIT, true);
/*
* Rechain count. The initial value of 0 here will trigger chaining upon
* the first invocation of this callsite.
*/
addWordData(cUnit, PREDICTED_CHAIN_COUNTER_INIT, true);
}
/* Load the Dalvik PC into r0 and jump to the specified target */
static void handlePCReconstruction(CompilationUnit *cUnit,
ArmLIR *targetLabel)
{
ArmLIR **pcrLabel =
(ArmLIR **) cUnit->pcReconstructionList.elemList;
int numElems = cUnit->pcReconstructionList.numUsed;
int i;
for (i = 0; i < numElems; i++) {
dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
/* r0 = dalvik PC */
loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
genUnconditionalBranch(cUnit, targetLabel);
}
}
static char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
"kMirOpPhi",
"kMirOpNullNRangeUpCheck",
"kMirOpNullNRangeDownCheck",
"kMirOpLowerBound",
"kMirOpPunt",
"kMirOpCheckInlinePrediction",
};
/*
* vA = arrayReg;
* vB = idxReg;
* vC = endConditionReg;
* arg[0] = maxC
* arg[1] = minC
* arg[2] = loopBranchConditionCode
*/
static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
{
/*
* NOTE: these synthesized blocks don't have ssa names assigned
* for Dalvik registers. However, because they dominate the following
* blocks we can simply use the Dalvik name w/ subscript 0 as the
* ssa name.
*/
DecodedInstruction *dInsn = &mir->dalvikInsn;
const int lenOffset = offsetof(ArrayObject, length);
const int maxC = dInsn->arg[0];
int regLength;
RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
/* regArray <- arrayRef */
rlArray = loadValue(cUnit, rlArray, kCoreReg);
rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
(ArmLIR *) cUnit->loopAnalysis->branchToPCR);
/* regLength <- len(arrayRef) */
regLength = dvmCompilerAllocTemp(cUnit);
loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
int delta = maxC;
/*
* If the loop end condition is ">=" instead of ">", then the largest value
* of the index is "endCondition - 1".
*/
if (dInsn->arg[2] == OP_IF_GE) {
delta--;
}
if (delta) {
int tReg = dvmCompilerAllocTemp(cUnit);
opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
rlIdxEnd.lowReg = tReg;
dvmCompilerFreeTemp(cUnit, tReg);
}
/* Punt if "regIdxEnd < len(Array)" is false */
genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
(ArmLIR *) cUnit->loopAnalysis->branchToPCR);
}
/*
* vA = arrayReg;
* vB = idxReg;
* vC = endConditionReg;
* arg[0] = maxC
* arg[1] = minC
* arg[2] = loopBranchConditionCode
*/
static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
const int lenOffset = offsetof(ArrayObject, length);
const int regLength = dvmCompilerAllocTemp(cUnit);
const int maxC = dInsn->arg[0];
RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
/* regArray <- arrayRef */
rlArray = loadValue(cUnit, rlArray, kCoreReg);
rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
(ArmLIR *) cUnit->loopAnalysis->branchToPCR);
/* regLength <- len(arrayRef) */
loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
if (maxC) {
int tReg = dvmCompilerAllocTemp(cUnit);
opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
rlIdxInit.lowReg = tReg;
dvmCompilerFreeTemp(cUnit, tReg);
}
/* Punt if "regIdxInit < len(Array)" is false */
genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
(ArmLIR *) cUnit->loopAnalysis->branchToPCR);
}
/*
* vA = idxReg;
* vB = minC;
*/
static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
const int minC = dInsn->vB;
RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
/* regIdx <- initial index value */
rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
/* Punt if "regIdxInit + minC >= 0" is false */
genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
(ArmLIR *) cUnit->loopAnalysis->branchToPCR);
}
/*
* vC = this
*
* A predicted inlining target looks like the following, where instructions
* between 0x4858de66 and 0x4858de72 are checking if the predicted class
* matches "this", and the verificaion code is generated by this routine.
*
* (C) means the instruction is inlined from the callee, and (PI) means the
* instruction is the predicted inlined invoke, whose corresponding
* instructions are still generated to handle the mispredicted case.
*
* D/dalvikvm( 86): -------- kMirOpCheckInlinePrediction
* D/dalvikvm( 86): 0x4858de66 (0002): ldr r0, [r5, #68]
* D/dalvikvm( 86): 0x4858de68 (0004): ldr r1, [pc, #140]
* D/dalvikvm( 86): 0x4858de6a (0006): cmp r0, #0
* D/dalvikvm( 86): 0x4858de6c (0008): beq 0x4858deb2
* D/dalvikvm( 86): 0x4858de6e (000a): ldr r2, [r0, #0]
* D/dalvikvm( 86): 0x4858de70 (000c): cmp r1, r2
* D/dalvikvm( 86): 0x4858de72 (000e): bne 0x4858de7a
* D/dalvikvm( 86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
* v4, v17, (#8)
* D/dalvikvm( 86): 0x4858de74 (0010): ldr r3, [r0, #8]
* D/dalvikvm( 86): 0x4858de76 (0012): str r3, [r5, #16]
* D/dalvikvm( 86): -------- dalvik offset: 0x004c @
* +invoke-virtual-quick/range (PI) v17..v17
* D/dalvikvm( 86): 0x4858de78 (0014): b 0x4858debc
* D/dalvikvm( 86): 0x4858de7a (0016): add r4,r5,#68
* D/dalvikvm( 86): -------- BARRIER
* D/dalvikvm( 86): 0x4858de7e (001a): ldmia r4, <r0>
* D/dalvikvm( 86): -------- BARRIER
* D/dalvikvm( 86): 0x4858de80 (001c): sub r7,r5,#24
* D/dalvikvm( 86): 0x4858de84 (0020): cmp r0, #0
* D/dalvikvm( 86): 0x4858de86 (0022): beq 0x4858deb6
* D/dalvikvm( 86): -------- BARRIER
* D/dalvikvm( 86): 0x4858de88 (0024): stmia r7, <r0>
* D/dalvikvm( 86): -------- BARRIER
* D/dalvikvm( 86): 0x4858de8a (0026): ldr r4, [pc, #104]
* D/dalvikvm( 86): 0x4858de8c (0028): add r1, pc, #28
* D/dalvikvm( 86): 0x4858de8e (002a): add r2, pc, #56
* D/dalvikvm( 86): 0x4858de90 (002c): blx_1 0x48589198
* D/dalvikvm( 86): 0x4858de92 (002e): blx_2 see above
* D/dalvikvm( 86): 0x4858de94 (0030): b 0x4858dec8
* D/dalvikvm( 86): 0x4858de96 (0032): b 0x4858deb6
* D/dalvikvm( 86): 0x4858de98 (0034): ldr r0, [r7, #72]
* D/dalvikvm( 86): 0x4858de9a (0036): cmp r1, #0
* D/dalvikvm( 86): 0x4858de9c (0038): bgt 0x4858dea4
* D/dalvikvm( 86): 0x4858de9e (003a): ldr r7, [r6, #116]
* D/dalvikvm( 86): 0x4858dea0 (003c): movs r1, r6
* D/dalvikvm( 86): 0x4858dea2 (003e): blx r7
* D/dalvikvm( 86): 0x4858dea4 (0040): add r1, pc, #4
* D/dalvikvm( 86): 0x4858dea6 (0042): blx_1 0x485890a0
* D/dalvikvm( 86): 0x4858dea8 (0044): blx_2 see above
* D/dalvikvm( 86): 0x4858deaa (0046): b 0x4858deb6
* D/dalvikvm( 86): 0x4858deac (0048): .align4
* D/dalvikvm( 86): L0x004f:
* D/dalvikvm( 86): -------- dalvik offset: 0x004f @ move-result-object (PI)
* v4, (#0), (#0)
* D/dalvikvm( 86): 0x4858deac (0048): ldr r4, [r6, #8]
* D/dalvikvm( 86): 0x4858deae (004a): str r4, [r5, #16]
* D/dalvikvm( 86): 0x4858deb0 (004c): b 0x4858debc
* D/dalvikvm( 86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
* D/dalvikvm( 86): 0x4858deb2 (004e): ldr r0, [pc, #64]
* D/dalvikvm( 86): 0x4858deb4 (0050): b 0x4858deb8
* D/dalvikvm( 86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
* D/dalvikvm( 86): 0x4858deb6 (0052): ldr r0, [pc, #60]
* D/dalvikvm( 86): Exception_Handling:
* D/dalvikvm( 86): 0x4858deb8 (0054): ldr r1, [r6, #100]
* D/dalvikvm( 86): 0x4858deba (0056): blx r1
* D/dalvikvm( 86): 0x4858debc (0058): .align4
* D/dalvikvm( 86): -------- chaining cell (hot): 0x0050
* D/dalvikvm( 86): 0x4858debc (0058): b 0x4858dec0
* D/dalvikvm( 86): 0x4858debe (005a): orrs r0, r0
* D/dalvikvm( 86): 0x4858dec0 (005c): ldr r0, [r6, #112]
* D/dalvikvm( 86): 0x4858dec2 (005e): blx r0
* D/dalvikvm( 86): 0x4858dec4 (0060): data 0xefd4(61396)
* D/dalvikvm( 86): 0x4858dec6 (0062): data 0x42be(17086)
* D/dalvikvm( 86): 0x4858dec8 (0064): .align4
* D/dalvikvm( 86): -------- chaining cell (predicted)
* D/dalvikvm( 86): 0x4858dec8 (0064): data 0xe7fe(59390)
* D/dalvikvm( 86): 0x4858deca (0066): data 0x0000(0)
* D/dalvikvm( 86): 0x4858decc (0068): data 0x0000(0)
* D/dalvikvm( 86): 0x4858dece (006a): data 0x0000(0)
* :
*/
static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
{
CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
rlThis = loadValue(cUnit, rlThis, kCoreReg);
int regPredictedClass = dvmCompilerAllocTemp(cUnit);
loadConstant(cUnit, regPredictedClass, (int) callsiteInfo->clazz);
genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
NULL);/* null object? */
int regActualClass = dvmCompilerAllocTemp(cUnit);
loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
/*
* Set the misPredBranchOver target so that it will be generated when the
* code for the non-optimized invoke is generated.
*/
callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
}
/* Extended MIR instructions like PHI */
static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
{
int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
false);
strcpy(msg, extendedMIROpNames[opOffset]);
newLIR1(cUnit, kArmPseudoExtended, (int) msg);
switch (mir->dalvikInsn.opcode) {
case kMirOpPhi: {
char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
break;
}
case kMirOpNullNRangeUpCheck: {
genHoistedChecksForCountUpLoop(cUnit, mir);
break;
}
case kMirOpNullNRangeDownCheck: {
genHoistedChecksForCountDownLoop(cUnit, mir);
break;
}
case kMirOpLowerBound: {
genHoistedLowerBoundCheck(cUnit, mir);
break;
}
case kMirOpPunt: {
genUnconditionalBranch(cUnit,
(ArmLIR *) cUnit->loopAnalysis->branchToPCR);
break;
}
case kMirOpCheckInlinePrediction: {
genValidationForPredictedInline(cUnit, mir);
break;
}
default:
break;
}
}
/*
* Create a PC-reconstruction cell for the starting offset of this trace.
* Since the PCR cell is placed near the end of the compiled code which is
* usually out of range for a conditional branch, we put two branches (one
* branch over to the loop body and one layover branch to the actual PCR) at the
* end of the entry block.
*/
static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
ArmLIR *bodyLabel)
{
/* Set up the place holder to reconstruct this Dalvik PC */
ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
pcrLabel->opcode = kArmPseudoPCReconstructionCell;
pcrLabel->operands[0] =
(int) (cUnit->method->insns + entry->startOffset);
pcrLabel->operands[1] = entry->startOffset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
/*
* Next, create two branches - one branch over to the loop body and the
* other branch to the PCR cell to punt.
*/
ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
branchToBody->opcode = kThumbBUncond;
branchToBody->generic.target = (LIR *) bodyLabel;
setupResourceMasks(branchToBody);
cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
branchToPCR->opcode = kThumbBUncond;
branchToPCR->generic.target = (LIR *) pcrLabel;
setupResourceMasks(branchToPCR);
cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
}
#if defined(WITH_SELF_VERIFICATION)
static bool selfVerificationPuntOps(MIR *mir)
{
DecodedInstruction *decInsn = &mir->dalvikInsn;
Opcode op = decInsn->opcode;
/*
* All opcodes that can throw exceptions and use the
* TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
* under self-verification mode.
*/
return (op == OP_MONITOR_ENTER || op == OP_MONITOR_EXIT ||
op == OP_NEW_INSTANCE || op == OP_NEW_ARRAY ||
op == OP_CHECK_CAST || op == OP_MOVE_EXCEPTION ||
op == OP_FILL_ARRAY_DATA || op == OP_EXECUTE_INLINE ||
op == OP_EXECUTE_INLINE_RANGE);
}
#endif
void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
{
/* Used to hold the labels of each block */
ArmLIR *labelList =
(ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
GrowableList chainingListByType[kChainingCellGap];
int i;
/*
* Initialize various types chaining lists.
*/
for (i = 0; i < kChainingCellGap; i++) {
dvmInitGrowableList(&chainingListByType[i], 2);
}
BasicBlock **blockList = cUnit->blockList;
if (cUnit->executionCount) {
/*
* Reserve 6 bytes at the beginning of the trace
* +----------------------------+
* | execution count (4 bytes) |
* +----------------------------+
* | chain cell offset (2 bytes)|
* +----------------------------+
* ...and then code to increment the execution
* count:
* mov r0, pc @ move adr of "mov r0,pc" + 4 to r0
* sub r0, #10 @ back up to addr of executionCount
* ldr r1, [r0]
* add r1, #1
* str r1, [r0]
*/
newLIR1(cUnit, kArm16BitData, 0);
newLIR1(cUnit, kArm16BitData, 0);
cUnit->chainCellOffsetLIR =
(LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
cUnit->headerSize = 6;
/* Thumb instruction used directly here to ensure correct size */
newLIR2(cUnit, kThumbMovRR_H2L, r0, rpc);
newLIR2(cUnit, kThumbSubRI8, r0, 10);
newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
newLIR2(cUnit, kThumbAddRI8, r1, 1);
newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
} else {
/* Just reserve 2 bytes for the chain cell offset */
cUnit->chainCellOffsetLIR =
(LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
cUnit->headerSize = 2;
}
/* Handle the content in each basic block */
for (i = 0; i < cUnit->numBlocks; i++) {
blockList[i]->visited = true;
MIR *mir;
labelList[i].operands[0] = blockList[i]->startOffset;
if (blockList[i]->blockType >= kChainingCellGap) {
if (blockList[i]->isFallThroughFromInvoke == true) {
/* Align this block first since it is a return chaining cell */
newLIR0(cUnit, kArmPseudoPseudoAlign4);
}
/*
* Append the label pseudo LIR first. Chaining cells will be handled
* separately afterwards.
*/
dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
}
if (blockList[i]->blockType == kTraceEntryBlock) {
labelList[i].opcode = kArmPseudoEntryBlock;
if (blockList[i]->firstMIRInsn == NULL) {
continue;
} else {
setupLoopEntryBlock(cUnit, blockList[i],
&labelList[blockList[i]->fallThrough->id]);
}
} else if (blockList[i]->blockType == kTraceExitBlock) {
labelList[i].opcode = kArmPseudoExitBlock;
goto gen_fallthrough;
} else if (blockList[i]->blockType == kDalvikByteCode) {
labelList[i].opcode = kArmPseudoNormalBlockLabel;
/* Reset the register state */
dvmCompilerResetRegPool(cUnit);
dvmCompilerClobberAllRegs(cUnit);
dvmCompilerResetNullCheck(cUnit);
} else {
switch (blockList[i]->blockType) {
case kChainingCellNormal:
labelList[i].opcode = kArmPseudoChainingCellNormal;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[kChainingCellNormal], (void *) i);
break;
case kChainingCellInvokeSingleton:
labelList[i].opcode =
kArmPseudoChainingCellInvokeSingleton;
labelList[i].operands[0] =
(int) blockList[i]->containingMethod;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[kChainingCellInvokeSingleton],
(void *) i);
break;
case kChainingCellInvokePredicted:
labelList[i].opcode =
kArmPseudoChainingCellInvokePredicted;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[kChainingCellInvokePredicted],
(void *) i);
break;
case kChainingCellHot:
labelList[i].opcode =
kArmPseudoChainingCellHot;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[kChainingCellHot],
(void *) i);
break;
case kPCReconstruction:
/* Make sure exception handling block is next */
labelList[i].opcode =
kArmPseudoPCReconstructionBlockLabel;
assert (i == cUnit->numBlocks - 2);
handlePCReconstruction(cUnit, &labelList[i+1]);
break;
case kExceptionHandling:
labelList[i].opcode = kArmPseudoEHBlockLabel;
if (cUnit->pcReconstructionList.numUsed) {
loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpPunt),
r1);
opReg(cUnit, kOpBlx, r1);
}
break;
#if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
case kChainingCellBackwardBranch:
labelList[i].opcode =
kArmPseudoChainingCellBackwardBranch;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[kChainingCellBackwardBranch],
(void *) i);
break;
#endif
default:
break;
}
continue;
}
ArmLIR *headLIR = NULL;
for (mir = blockList[i]->firstMIRInsn; mir; mir = mir->next) {
dvmCompilerResetRegPool(cUnit);
if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
dvmCompilerClobberAllRegs(cUnit);
}
if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
dvmCompilerResetDefTracking(cUnit);
}
if (mir->dalvikInsn.opcode >= kMirOpFirst) {
handleExtendedMIR(cUnit, mir);
continue;
}
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
InstructionFormat dalvikFormat = dexGetFormatFromOpcode(dalvikOpcode);
char *note;
if (mir->OptimizationFlags & MIR_INLINED) {
note = " (I)";
} else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
note = " (PI)";
} else if (mir->OptimizationFlags & MIR_CALLEE) {
note = " (C)";
} else {
note = NULL;
}
ArmLIR *boundaryLIR =
newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
mir->offset,
(int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn,
note));
if (mir->ssaRep) {
char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
}
/* Remember the first LIR for this block */
if (headLIR == NULL) {
headLIR = boundaryLIR;
/* Set the first boundaryLIR as a scheduling barrier */
headLIR->defMask = ENCODE_ALL;
}
bool notHandled;
/*
* Debugging: screen the opcode first to see if it is in the
* do[-not]-compile list
*/
bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
#if defined(WITH_SELF_VERIFICATION)
if (singleStepMe == false) {
singleStepMe = selfVerificationPuntOps(mir);
}
#endif
if (singleStepMe || cUnit->allSingleStep) {
notHandled = false;
genInterpSingleStep(cUnit, mir);
} else {
opcodeCoverage[dalvikOpcode]++;
switch (dalvikFormat) {
case kFmt10t:
case kFmt20t:
case kFmt30t:
notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
mir, blockList[i], labelList);
break;
case kFmt10x:
notHandled = handleFmt10x(cUnit, mir);
break;
case kFmt11n:
case kFmt31i:
notHandled = handleFmt11n_Fmt31i(cUnit, mir);
break;
case kFmt11x:
notHandled = handleFmt11x(cUnit, mir);
break;
case kFmt12x:
notHandled = handleFmt12x(cUnit, mir);
break;
case kFmt20bc:
notHandled = handleFmt20bc(cUnit, mir);
break;
case kFmt21c:
case kFmt31c:
notHandled = handleFmt21c_Fmt31c(cUnit, mir);
break;
case kFmt21h:
notHandled = handleFmt21h(cUnit, mir);
break;
case kFmt21s:
notHandled = handleFmt21s(cUnit, mir);
break;
case kFmt21t:
notHandled = handleFmt21t(cUnit, mir, blockList[i],
labelList);
break;
case kFmt22b:
case kFmt22s:
notHandled = handleFmt22b_Fmt22s(cUnit, mir);
break;
case kFmt22c:
notHandled = handleFmt22c(cUnit, mir);
break;
case kFmt22cs:
notHandled = handleFmt22cs(cUnit, mir);
break;
case kFmt22t:
notHandled = handleFmt22t(cUnit, mir, blockList[i],
labelList);
break;
case kFmt22x:
case kFmt32x:
notHandled = handleFmt22x_Fmt32x(cUnit, mir);
break;
case kFmt23x:
notHandled = handleFmt23x(cUnit, mir);
break;
case kFmt31t:
notHandled = handleFmt31t(cUnit, mir);
break;
case kFmt3rc:
case kFmt35c:
notHandled = handleFmt35c_3rc(cUnit, mir, blockList[i],
labelList);
break;
case kFmt3rms:
case kFmt35ms:
notHandled = handleFmt35ms_3rms(cUnit, mir,blockList[i],
labelList);
break;
case kFmt35mi:
case kFmt3rmi:
notHandled = handleExecuteInline(cUnit, mir);
break;
case kFmt51l:
notHandled = handleFmt51l(cUnit, mir);
break;
default:
notHandled = true;
break;
}
}
if (notHandled) {
LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n",
mir->offset,
dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
dalvikFormat);
dvmCompilerAbort(cUnit);
break;
}
}
if (blockList[i]->blockType == kTraceEntryBlock) {
dvmCompilerAppendLIR(cUnit,
(LIR *) cUnit->loopAnalysis->branchToBody);
dvmCompilerAppendLIR(cUnit,
(LIR *) cUnit->loopAnalysis->branchToPCR);
}
if (headLIR) {
/*
* Eliminate redundant loads/stores and delay stores into later
* slots
*/
dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
cUnit->lastLIRInsn);
}
gen_fallthrough:
/*
* Check if the block is terminated due to trace length constraint -
* insert an unconditional branch to the chaining cell.
*/
if (blockList[i]->needFallThroughBranch) {
genUnconditionalBranch(cUnit,
&labelList[blockList[i]->fallThrough->id]);
}
}
/* Handle the chaining cells in predefined order */
for (i = 0; i < kChainingCellGap; i++) {
size_t j;
int *blockIdList = (int *) chainingListByType[i].elemList;
cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
/* No chaining cells of this type */
if (cUnit->numChainingCells[i] == 0)
continue;
/* Record the first LIR for a new type of chaining cell */
cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
for (j = 0; j < chainingListByType[i].numUsed; j++) {
int blockId = blockIdList[j];
/* Align this chaining cell first */
newLIR0(cUnit, kArmPseudoPseudoAlign4);
/* Insert the pseudo chaining instruction */
dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
switch (blockList[blockId]->blockType) {
case kChainingCellNormal:
handleNormalChainingCell(cUnit,
blockList[blockId]->startOffset);
break;
case kChainingCellInvokeSingleton:
handleInvokeSingletonChainingCell(cUnit,
blockList[blockId]->containingMethod);
break;
case kChainingCellInvokePredicted:
handleInvokePredictedChainingCell(cUnit);
break;
case kChainingCellHot:
handleHotChainingCell(cUnit,
blockList[blockId]->startOffset);
break;
#if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
case kChainingCellBackwardBranch:
handleBackwardBranchChainingCell(cUnit,
blockList[blockId]->startOffset);
break;
#endif
default:
LOGE("Bad blocktype %d", blockList[blockId]->blockType);
dvmCompilerAbort(cUnit);
}
}
}
/* Mark the bottom of chaining cells */
cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
/*
* Generate the branch to the dvmJitToInterpNoChain entry point at the end
* of all chaining cells for the overflow cases.
*/
if (cUnit->switchOverflowPad) {
loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpNoChain), r2);
opRegReg(cUnit, kOpAdd, r1, r1);
opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
#if defined(WITH_JIT_TUNING)
loadConstant(cUnit, r0, kSwitchOverflow);
#endif
opReg(cUnit, kOpBlx, r2);
}
dvmCompilerApplyGlobalOptimizations(cUnit);
#if defined(WITH_SELF_VERIFICATION)
selfVerificationBranchInsertPass(cUnit);
#endif
}
/* Accept the work and start compiling */
bool dvmCompilerDoWork(CompilerWorkOrder *work)
{
JitTraceDescription *desc;
bool res;
if (gDvmJit.codeCacheFull) {
return false;
}
switch (work->kind) {
case kWorkOrderTrace:
/* Start compilation with maximally allowed trace length */
desc = (JitTraceDescription *)work->info;
res = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
work->bailPtr, 0 /* no hints */);
break;
case kWorkOrderTraceDebug: {
bool oldPrintMe = gDvmJit.printMe;
gDvmJit.printMe = true;
/* Start compilation with maximally allowed trace length */
desc = (JitTraceDescription *)work->info;
res = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
work->bailPtr, 0 /* no hints */);
gDvmJit.printMe = oldPrintMe;
break;
}
default:
res = false;
LOGE("Jit: unknown work order type");
assert(0); // Bail if debug build, discard otherwise
}
return res;
}
/* Architectural-specific debugging helpers go here */
void dvmCompilerArchDump(void)
{
/* Print compiled opcode in this VM instance */
int i, start, streak;
char buf[1024];
streak = i = 0;
buf[0] = 0;
while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
i++;
}
if (i == kNumPackedOpcodes) {
return;
}
for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
if (opcodeCoverage[i]) {
streak++;
} else {
if (streak == 1) {
sprintf(buf+strlen(buf), "%x,", start);
} else {
sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
}
streak = 0;
while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
i++;
}
if (i < kNumPackedOpcodes) {
streak = 1;
start = i;
}
}
}
if (streak) {
if (streak == 1) {
sprintf(buf+strlen(buf), "%x", start);
} else {
sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
}
}
if (strlen(buf)) {
LOGD("dalvik.vm.jit.op = %s", buf);
}
}
/* Common initialization routine for an architecture family */
bool dvmCompilerArchInit()
{
int i;
for (i = 0; i < kArmLast; i++) {
if (EncodingMap[i].opcode != i) {
LOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
EncodingMap[i].name, i, EncodingMap[i].opcode);
dvmAbort(); // OK to dvmAbort - build error
}
}
return dvmCompilerArchVariantInit();
}
void *dvmCompilerGetInterpretTemplate()
{
return (void*) ((int)gDvmJit.codeCache +
templateEntryOffsets[TEMPLATE_INTERPRET]);
}
/* Needed by the Assembler */
void dvmCompilerSetupResourceMasks(ArmLIR *lir)
{
setupResourceMasks(lir);
}
/* Needed by the ld/st optmizatons */
ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
{
return genRegCopyNoInsert(cUnit, rDest, rSrc);
}
/* Needed by the register allocator */
ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
{
return genRegCopy(cUnit, rDest, rSrc);
}
/* Needed by the register allocator */
void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
int srcLo, int srcHi)
{
genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
}
void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
int displacement, int rSrc, OpSize size)
{
storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
}
void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
int displacement, int rSrcLo, int rSrcHi)
{
storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
}