blob: 7d127f8d8350243fe94fab76674525065f3e7bd6 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This file contains codegen and support common to all supported
* ARM variants. It is included by:
*
* Codegen-$(TARGET_ARCH_VARIANT).c
*
* which combines this common code with specific support found in the
* applicable directory below this one.
*/
/* Array holding the entry offset of each template relative to the first one */
static intptr_t templateEntryOffsets[TEMPLATE_LAST_MARK];
/* Track exercised opcodes */
static int opcodeCoverage[256];
/*****************************************************************************/
/*
* The following are building blocks to construct low-level IRs with 0 - 3
* operands.
*/
static ArmLIR *newLIR0(CompilationUnit *cUnit, ArmOpCode opCode)
{
ArmLIR *insn = dvmCompilerNew(sizeof(ArmLIR), true);
assert(isPseudoOpCode(opCode) || (EncodingMap[opCode].flags & NO_OPERAND));
insn->opCode = opCode;
dvmCompilerAppendLIR(cUnit, (LIR *) insn);
return insn;
}
static ArmLIR *newLIR1(CompilationUnit *cUnit, ArmOpCode opCode,
int dest)
{
ArmLIR *insn = dvmCompilerNew(sizeof(ArmLIR), true);
assert(isPseudoOpCode(opCode) || (EncodingMap[opCode].flags & IS_UNARY_OP));
insn->opCode = opCode;
insn->operands[0] = dest;
dvmCompilerAppendLIR(cUnit, (LIR *) insn);
return insn;
}
static ArmLIR *newLIR2(CompilationUnit *cUnit, ArmOpCode opCode,
int dest, int src1)
{
ArmLIR *insn = dvmCompilerNew(sizeof(ArmLIR), true);
assert(isPseudoOpCode(opCode) ||
(EncodingMap[opCode].flags & IS_BINARY_OP));
insn->opCode = opCode;
insn->operands[0] = dest;
insn->operands[1] = src1;
dvmCompilerAppendLIR(cUnit, (LIR *) insn);
return insn;
}
static ArmLIR *newLIR3(CompilationUnit *cUnit, ArmOpCode opCode,
int dest, int src1, int src2)
{
ArmLIR *insn = dvmCompilerNew(sizeof(ArmLIR), true);
assert(isPseudoOpCode(opCode) ||
(EncodingMap[opCode].flags & IS_TERTIARY_OP));
insn->opCode = opCode;
insn->operands[0] = dest;
insn->operands[1] = src1;
insn->operands[2] = src2;
dvmCompilerAppendLIR(cUnit, (LIR *) insn);
return insn;
}
static ArmLIR *newLIR23(CompilationUnit *cUnit, ArmOpCode opCode,
int srcdest, int src2)
{
assert(!isPseudoOpCode(opCode));
if (EncodingMap[opCode].flags & IS_BINARY_OP)
return newLIR2(cUnit, opCode, srcdest, src2);
else
return newLIR3(cUnit, opCode, srcdest, srcdest, src2);
}
/*****************************************************************************/
/*
* The following are building blocks to insert constants into the pool or
* instruction streams.
*/
/* Add a 32-bit constant either in the constant pool or mixed with code */
static ArmLIR *addWordData(CompilationUnit *cUnit, int value, bool inPlace)
{
/* Add the constant to the literal pool */
if (!inPlace) {
ArmLIR *newValue = dvmCompilerNew(sizeof(ArmLIR), true);
newValue->operands[0] = value;
newValue->generic.next = cUnit->wordList;
cUnit->wordList = (LIR *) newValue;
return newValue;
} else {
/* Add the constant in the middle of code stream */
newLIR1(cUnit, ARM_16BIT_DATA, (value & 0xffff));
newLIR1(cUnit, ARM_16BIT_DATA, (value >> 16));
}
return NULL;
}
/*
* Search the existing constants in the literal pool for an exact or close match
* within specified delta (greater or equal to 0).
*/
static ArmLIR *scanLiteralPool(CompilationUnit *cUnit, int value,
unsigned int delta)
{
LIR *dataTarget = cUnit->wordList;
while (dataTarget) {
if (((unsigned) (value - ((ArmLIR *) dataTarget)->operands[0])) <=
delta)
return (ArmLIR *) dataTarget;
dataTarget = dataTarget->next;
}
return NULL;
}
/* Perform the actual operation for OP_RETURN_* */
static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
{
genDispatchToHandler(cUnit, TEMPLATE_RETURN);
#if defined(INVOKE_STATS)
gDvmJit.returnOp++;
#endif
int dPC = (int) (cUnit->method->insns + mir->offset);
/* Insert branch, but defer setting of target */
ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
/* Set up the place holder to reconstruct this Dalvik PC */
ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
pcrLabel->opCode = ARM_PSEUDO_PC_RECONSTRUCTION_CELL;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
/* Branch to the PC reconstruction code */
branch->generic.target = (LIR *) pcrLabel;
}
/*
* Perform a binary operation on 64-bit operands and leave the results in the
* r0/r1 pair.
*/
static void genBinaryOpWide(CompilationUnit *cUnit, int vDest,
ArmOpCode preinst, ArmOpCode inst,
int reg0, int reg2)
{
int reg1 = NEXT_REG(reg0);
int reg3 = NEXT_REG(reg2);
newLIR23(cUnit, preinst, reg0, reg2);
newLIR23(cUnit, inst, reg1, reg3);
storeValuePair(cUnit, reg0, reg1, vDest, reg2);
}
/* Perform a binary operation on 32-bit operands and leave the results in r0. */
static void genBinaryOp(CompilationUnit *cUnit, int vDest, ArmOpCode inst,
int reg0, int reg1, int regDest)
{
if (EncodingMap[inst].flags & IS_BINARY_OP) {
newLIR2(cUnit, inst, reg0, reg1);
storeValue(cUnit, reg0, vDest, reg1);
} else {
newLIR3(cUnit, inst, regDest, reg0, reg1);
storeValue(cUnit, regDest, vDest, reg1);
}
}
/* Create the PC reconstruction slot if not already done */
static inline ArmLIR *genCheckCommon(CompilationUnit *cUnit, int dOffset,
ArmLIR *branch,
ArmLIR *pcrLabel)
{
/* Set up the place holder to reconstruct this Dalvik PC */
if (pcrLabel == NULL) {
int dPC = (int) (cUnit->method->insns + dOffset);
pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
pcrLabel->opCode = ARM_PSEUDO_PC_RECONSTRUCTION_CELL;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = dOffset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
}
/* Branch to the PC reconstruction code */
branch->generic.target = (LIR *) pcrLabel;
return pcrLabel;
}
/*
* Perform a "reg cmp reg" operation and jump to the PCR region if condition
* satisfies.
*/
static inline ArmLIR *inertRegRegCheck(CompilationUnit *cUnit,
ArmConditionCode cond,
int reg1, int reg2, int dOffset,
ArmLIR *pcrLabel)
{
newLIR2(cUnit, THUMB_CMP_RR, reg1, reg2);
ArmLIR *branch = newLIR2(cUnit, THUMB_B_COND, 0, cond);
return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
}
/*
* Perform null-check on a register. vReg is the Dalvik register being checked,
* and mReg is the machine register holding the actual value. If internal state
* indicates that vReg has been checked before the check request is ignored.
*/
static ArmLIR *genNullCheck(CompilationUnit *cUnit, int vReg, int mReg,
int dOffset, ArmLIR *pcrLabel)
{
/* This particular Dalvik register has been null-checked */
if (dvmIsBitSet(cUnit->registerScoreboard.nullCheckedRegs, vReg)) {
return pcrLabel;
}
dvmSetBit(cUnit->registerScoreboard.nullCheckedRegs, vReg);
return genRegImmCheck(cUnit, ARM_COND_EQ, mReg, 0, dOffset, pcrLabel);
}
/*
* Perform zero-check on a register. Similar to genNullCheck but the value being
* checked does not have a corresponding Dalvik register.
*/
static ArmLIR *genZeroCheck(CompilationUnit *cUnit, int mReg,
int dOffset, ArmLIR *pcrLabel)
{
return genRegImmCheck(cUnit, ARM_COND_EQ, mReg, 0, dOffset, pcrLabel);
}
/* Perform bound check on two registers */
static ArmLIR *genBoundsCheck(CompilationUnit *cUnit, int rIndex,
int rBound, int dOffset, ArmLIR *pcrLabel)
{
return inertRegRegCheck(cUnit, ARM_COND_CS, rIndex, rBound, dOffset,
pcrLabel);
}
/* Generate a unconditional branch to go to the interpreter */
static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
ArmLIR *pcrLabel)
{
ArmLIR *branch = newLIR0(cUnit, THUMB_B_UNCOND);
return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
}
/* Load a wide field from an object instance */
static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0, reg1, reg2, reg3;
/* Allocate reg0..reg3 into physical registers r0..r3 */
/* See if vB is in a native register. If so, reuse it. */
reg2 = selectFirstRegister(cUnit, dInsn->vB, false);
/* Ping reg3 to the other register of the same pair containing reg2 */
reg3 = reg2 ^ 0x1;
/*
* Ping reg0 to the first register of the alternate register pair
*/
reg0 = (reg2 + 2) & 0x2;
reg1 = NEXT_REG(reg0);
loadValue(cUnit, dInsn->vB, reg2);
loadConstant(cUnit, reg3, fieldOffset);
genNullCheck(cUnit, dInsn->vB, reg2, mir->offset, NULL); /* null object? */
newLIR3(cUnit, THUMB_ADD_RRR, reg2, reg2, reg3);
newLIR2(cUnit, THUMB_LDMIA, reg2, (1<<reg0 | 1<<reg1));
storeValuePair(cUnit, reg0, reg1, dInsn->vA, reg3);
}
/* Store a wide field to an object instance */
static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0, reg1, reg2, reg3;
/* Allocate reg0..reg3 into physical registers r0..r3 */
/* See if vB is in a native register. If so, reuse it. */
reg2 = selectFirstRegister(cUnit, dInsn->vB, false);
/* Ping reg3 to the other register of the same pair containing reg2 */
reg3 = reg2 ^ 0x1;
/*
* Ping reg0 to the first register of the alternate register pair
*/
reg0 = (reg2 + 2) & 0x2;
reg1 = NEXT_REG(reg0);
loadValue(cUnit, dInsn->vB, reg2);
loadValuePair(cUnit, dInsn->vA, reg0, reg1);
updateLiveRegisterPair(cUnit, dInsn->vA, reg0, reg1);
loadConstant(cUnit, reg3, fieldOffset);
genNullCheck(cUnit, dInsn->vB, reg2, mir->offset, NULL); /* null object? */
newLIR3(cUnit, THUMB_ADD_RRR, reg2, reg2, reg3);
newLIR2(cUnit, THUMB_STMIA, reg2, (1<<reg0 | 1<<reg1));
}
/*
* Load a field from an object instance
*
* Inst should be one of:
* THUMB_LDR_RRR
* THUMB_LDRB_RRR
* THUMB_LDRH_RRR
* THUMB_LDRSB_RRR
* THUMB_LDRSH_RRR
*/
static void genIGet(CompilationUnit *cUnit, MIR *mir, ArmOpCode inst,
int fieldOffset)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0, reg1;
reg0 = selectFirstRegister(cUnit, dInsn->vB, false);
reg1 = NEXT_REG(reg0);
/* TUNING: write a utility routine to load via base + constant offset */
loadValue(cUnit, dInsn->vB, reg0);
loadConstant(cUnit, reg1, fieldOffset);
genNullCheck(cUnit, dInsn->vB, reg0, mir->offset, NULL); /* null object? */
newLIR3(cUnit, inst, reg0, reg0, reg1);
storeValue(cUnit, reg0, dInsn->vA, reg1);
}
/*
* Store a field to an object instance
*
* Inst should be one of:
* THUMB_STR_RRR
* THUMB_STRB_RRR
* THUMB_STRH_RRR
*/
static void genIPut(CompilationUnit *cUnit, MIR *mir, ArmOpCode inst,
int fieldOffset)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0, reg1, reg2;
reg0 = selectFirstRegister(cUnit, dInsn->vB, false);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
/* TUNING: write a utility routine to load via base + constant offset */
loadValue(cUnit, dInsn->vB, reg0);
loadConstant(cUnit, reg1, fieldOffset);
loadValue(cUnit, dInsn->vA, reg2);
updateLiveRegister(cUnit, dInsn->vA, reg2);
genNullCheck(cUnit, dInsn->vB, reg0, mir->offset, NULL); /* null object? */
newLIR3(cUnit, inst, reg2, reg0, reg1);
}
/* TODO: This should probably be done as an out-of-line instruction handler. */
/*
* Generate array load
*
* Inst should be one of:
* THUMB_LDR_RRR
* THUMB_LDRB_RRR
* THUMB_LDRH_RRR
* THUMB_LDRSB_RRR
* THUMB_LDRSH_RRR
*/
static void genArrayGet(CompilationUnit *cUnit, MIR *mir, ArmOpCode inst,
int vArray, int vIndex, int vDest, int scale)
{
int lenOffset = offsetof(ArrayObject, length);
int dataOffset = offsetof(ArrayObject, contents);
int reg0, reg1, reg2, reg3;
reg0 = selectFirstRegister(cUnit, vArray, false);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
reg3 = NEXT_REG(reg2);
loadValue(cUnit, vArray, reg2);
loadValue(cUnit, vIndex, reg3);
/* null object? */
ArmLIR * pcrLabel = genNullCheck(cUnit, vArray, reg2, mir->offset,
NULL);
newLIR3(cUnit, THUMB_LDR_RRI5, reg0, reg2, lenOffset >> 2); /* Get len */
newLIR2(cUnit, THUMB_ADD_RI8, reg2, dataOffset); /* reg2 -> array data */
genBoundsCheck(cUnit, reg3, reg0, mir->offset, pcrLabel);
if (scale) {
newLIR3(cUnit, THUMB_LSL, reg3, reg3, scale);
}
if (scale==3) {
newLIR3(cUnit, inst, reg0, reg2, reg3);
newLIR2(cUnit, THUMB_ADD_RI8, reg2, 4);
newLIR3(cUnit, inst, reg1, reg2, reg3);
storeValuePair(cUnit, reg0, reg1, vDest, reg3);
} else {
newLIR3(cUnit, inst, reg0, reg2, reg3);
storeValue(cUnit, reg0, vDest, reg3);
}
}
/* TODO: This should probably be done as an out-of-line instruction handler. */
/*
* Generate array store
*
* Inst should be one of:
* THUMB_STR_RRR
* THUMB_STRB_RRR
* THUMB_STRH_RRR
*/
static void genArrayPut(CompilationUnit *cUnit, MIR *mir, ArmOpCode inst,
int vArray, int vIndex, int vSrc, int scale)
{
int lenOffset = offsetof(ArrayObject, length);
int dataOffset = offsetof(ArrayObject, contents);
int reg0, reg1, reg2, reg3;
reg0 = selectFirstRegister(cUnit, vArray, false);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
reg3 = NEXT_REG(reg2);
loadValue(cUnit, vArray, reg2);
loadValue(cUnit, vIndex, reg3);
/* null object? */
ArmLIR * pcrLabel = genNullCheck(cUnit, vArray, reg2, mir->offset,
NULL);
newLIR3(cUnit, THUMB_LDR_RRI5, reg0, reg2, lenOffset >> 2); /* Get len */
newLIR2(cUnit, THUMB_ADD_RI8, reg2, dataOffset); /* reg2 -> array data */
genBoundsCheck(cUnit, reg3, reg0, mir->offset, pcrLabel);
/* at this point, reg2 points to array, reg3 is unscaled index */
if (scale==3) {
loadValuePair(cUnit, vSrc, reg0, reg1);
updateLiveRegisterPair(cUnit, vSrc, reg0, reg1);
} else {
loadValue(cUnit, vSrc, reg0);
updateLiveRegister(cUnit, vSrc, reg0);
}
if (scale) {
newLIR3(cUnit, THUMB_LSL, reg3, reg3, scale);
}
/*
* at this point, reg2 points to array, reg3 is scaled index, and
* reg0[reg1] is data
*/
if (scale==3) {
newLIR3(cUnit, inst, reg0, reg2, reg3);
newLIR2(cUnit, THUMB_ADD_RI8, reg2, 4);
newLIR3(cUnit, inst, reg1, reg2, reg3);
} else {
newLIR3(cUnit, inst, reg0, reg2, reg3);
}
}
static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vShift)
{
/*
* Don't mess with the regsiters here as there is a particular calling
* convention to the out-of-line handler.
*/
loadValue(cUnit, vShift, r2);
loadValuePair(cUnit, vSrc1, r0, r1);
switch( mir->dalvikInsn.opCode) {
case OP_SHL_LONG:
case OP_SHL_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
break;
case OP_SHR_LONG:
case OP_SHR_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
break;
case OP_USHR_LONG:
case OP_USHR_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
break;
default:
return true;
}
storeValuePair(cUnit, r0, r1, vDest, r2);
return false;
}
bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
int vDest, int vSrc1, int vSrc2)
{
/*
* Don't optimize the regsiter usage here as they are governed by the EABI
* calling convention.
*/
void* funct;
int reg0, reg1;
/* TODO: use a proper include file to define these */
float __aeabi_fadd(float a, float b);
float __aeabi_fsub(float a, float b);
float __aeabi_fdiv(float a, float b);
float __aeabi_fmul(float a, float b);
float fmodf(float a, float b);
reg0 = selectFirstRegister(cUnit, vSrc2, false);
reg1 = NEXT_REG(reg0);
switch (mir->dalvikInsn.opCode) {
case OP_ADD_FLOAT_2ADDR:
case OP_ADD_FLOAT:
funct = (void*) __aeabi_fadd;
break;
case OP_SUB_FLOAT_2ADDR:
case OP_SUB_FLOAT:
funct = (void*) __aeabi_fsub;
break;
case OP_DIV_FLOAT_2ADDR:
case OP_DIV_FLOAT:
funct = (void*) __aeabi_fdiv;
break;
case OP_MUL_FLOAT_2ADDR:
case OP_MUL_FLOAT:
funct = (void*) __aeabi_fmul;
break;
case OP_REM_FLOAT_2ADDR:
case OP_REM_FLOAT:
funct = (void*) fmodf;
break;
case OP_NEG_FLOAT: {
loadValue(cUnit, vSrc2, reg0);
loadConstant(cUnit, reg1, 0x80000000);
newLIR3(cUnit, THUMB_ADD_RRR, reg0, reg0, reg1);
storeValue(cUnit, reg0, vDest, reg1);
return false;
}
default:
return true;
}
loadConstant(cUnit, r2, (int)funct);
loadValue(cUnit, vSrc1, r0);
loadValue(cUnit, vSrc2, r1);
newLIR1(cUnit, THUMB_BLX_R, r2);
storeValue(cUnit, r0, vDest, r1);
return false;
}
bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
int vDest, int vSrc1, int vSrc2)
{
void* funct;
int reg0, reg1, reg2;
/* TODO: use a proper include file to define these */
double __aeabi_dadd(double a, double b);
double __aeabi_dsub(double a, double b);
double __aeabi_ddiv(double a, double b);
double __aeabi_dmul(double a, double b);
double fmod(double a, double b);
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
switch (mir->dalvikInsn.opCode) {
case OP_ADD_DOUBLE_2ADDR:
case OP_ADD_DOUBLE:
funct = (void*) __aeabi_dadd;
break;
case OP_SUB_DOUBLE_2ADDR:
case OP_SUB_DOUBLE:
funct = (void*) __aeabi_dsub;
break;
case OP_DIV_DOUBLE_2ADDR:
case OP_DIV_DOUBLE:
funct = (void*) __aeabi_ddiv;
break;
case OP_MUL_DOUBLE_2ADDR:
case OP_MUL_DOUBLE:
funct = (void*) __aeabi_dmul;
break;
case OP_REM_DOUBLE_2ADDR:
case OP_REM_DOUBLE:
funct = (void*) fmod;
break;
case OP_NEG_DOUBLE: {
loadValuePair(cUnit, vSrc2, reg0, reg1);
loadConstant(cUnit, reg2, 0x80000000);
newLIR3(cUnit, THUMB_ADD_RRR, reg1, reg1, reg2);
storeValuePair(cUnit, reg0, reg1, vDest, reg2);
return false;
}
default:
return true;
}
/*
* Don't optimize the regsiter usage here as they are governed by the EABI
* calling convention.
*/
loadConstant(cUnit, r4PC, (int)funct);
loadValuePair(cUnit, vSrc1, r0, r1);
loadValuePair(cUnit, vSrc2, r2, r3);
newLIR1(cUnit, THUMB_BLX_R, r4PC);
storeValuePair(cUnit, r0, r1, vDest, r2);
return false;
}
static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2)
{
int firstOp = THUMB_BKPT;
int secondOp = THUMB_BKPT;
bool callOut = false;
void *callTgt;
int retReg = r0;
int reg0, reg1, reg2, reg3;
/* TODO - find proper .h file to declare these */
long long __aeabi_ldivmod(long long op1, long long op2);
switch (mir->dalvikInsn.opCode) {
case OP_NOT_LONG:
firstOp = THUMB_MVN;
secondOp = THUMB_MVN;
break;
case OP_ADD_LONG:
case OP_ADD_LONG_2ADDR:
firstOp = THUMB_ADD_RRR;
secondOp = THUMB_ADC;
break;
case OP_SUB_LONG:
case OP_SUB_LONG_2ADDR:
firstOp = THUMB_SUB_RRR;
secondOp = THUMB_SBC;
break;
case OP_MUL_LONG:
case OP_MUL_LONG_2ADDR:
loadValuePair(cUnit, vSrc1, r0, r1);
loadValuePair(cUnit, vSrc2, r2, r3);
genDispatchToHandler(cUnit, TEMPLATE_MUL_LONG);
storeValuePair(cUnit, r0, r1, vDest, r2);
return false;
break;
case OP_DIV_LONG:
case OP_DIV_LONG_2ADDR:
callOut = true;
retReg = r0;
callTgt = (void*)__aeabi_ldivmod;
break;
/* NOTE - result is in r2/r3 instead of r0/r1 */
case OP_REM_LONG:
case OP_REM_LONG_2ADDR:
callOut = true;
callTgt = (void*)__aeabi_ldivmod;
retReg = r2;
break;
case OP_AND_LONG:
case OP_AND_LONG_2ADDR:
firstOp = THUMB_AND_RR;
secondOp = THUMB_AND_RR;
break;
case OP_OR_LONG:
case OP_OR_LONG_2ADDR:
firstOp = THUMB_ORR;
secondOp = THUMB_ORR;
break;
case OP_XOR_LONG:
case OP_XOR_LONG_2ADDR:
firstOp = THUMB_EOR;
secondOp = THUMB_EOR;
break;
case OP_NEG_LONG: {
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
reg3 = NEXT_REG(reg2);
loadValuePair(cUnit, vSrc2, reg0, reg1);
loadConstant(cUnit, reg3, 0);
newLIR3(cUnit, THUMB_SUB_RRR, reg2, reg3, reg0);
newLIR2(cUnit, THUMB_SBC, reg3, reg1);
storeValuePair(cUnit, reg2, reg3, vDest, reg0);
return false;
}
default:
LOGE("Invalid long arith op");
dvmAbort();
}
if (!callOut) {
reg0 = selectFirstRegister(cUnit, vSrc1, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
reg3 = NEXT_REG(reg2);
loadValuePair(cUnit, vSrc1, reg0, reg1);
loadValuePair(cUnit, vSrc2, reg2, reg3);
genBinaryOpWide(cUnit, vDest, firstOp, secondOp, reg0, reg2);
/*
* Don't optimize the regsiter usage here as they are governed by the EABI
* calling convention.
*/
} else {
loadValuePair(cUnit, vSrc2, r2, r3);
loadConstant(cUnit, r4PC, (int) callTgt);
loadValuePair(cUnit, vSrc1, r0, r1);
newLIR1(cUnit, THUMB_BLX_R, r4PC);
storeValuePair(cUnit, retReg, retReg+1, vDest, r4PC);
}
return false;
}
static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2)
{
int armOp = THUMB_BKPT;
bool callOut = false;
bool checkZero = false;
int retReg = r0;
void *callTgt;
int reg0, reg1, regDest;
/* TODO - find proper .h file to declare these */
int __aeabi_idivmod(int op1, int op2);
int __aeabi_idiv(int op1, int op2);
switch (mir->dalvikInsn.opCode) {
case OP_NEG_INT:
armOp = THUMB_NEG;
break;
case OP_NOT_INT:
armOp = THUMB_MVN;
break;
case OP_ADD_INT:
case OP_ADD_INT_2ADDR:
armOp = THUMB_ADD_RRR;
break;
case OP_SUB_INT:
case OP_SUB_INT_2ADDR:
armOp = THUMB_SUB_RRR;
break;
case OP_MUL_INT:
case OP_MUL_INT_2ADDR:
armOp = THUMB_MUL;
break;
case OP_DIV_INT:
case OP_DIV_INT_2ADDR:
callOut = true;
checkZero = true;
callTgt = __aeabi_idiv;
retReg = r0;
break;
/* NOTE: returns in r1 */
case OP_REM_INT:
case OP_REM_INT_2ADDR:
callOut = true;
checkZero = true;
callTgt = __aeabi_idivmod;
retReg = r1;
break;
case OP_AND_INT:
case OP_AND_INT_2ADDR:
armOp = THUMB_AND_RR;
break;
case OP_OR_INT:
case OP_OR_INT_2ADDR:
armOp = THUMB_ORR;
break;
case OP_XOR_INT:
case OP_XOR_INT_2ADDR:
armOp = THUMB_EOR;
break;
case OP_SHL_INT:
case OP_SHL_INT_2ADDR:
armOp = THUMB_LSLV;
break;
case OP_SHR_INT:
case OP_SHR_INT_2ADDR:
armOp = THUMB_ASRV;
break;
case OP_USHR_INT:
case OP_USHR_INT_2ADDR:
armOp = THUMB_LSRV;
break;
default:
LOGE("Invalid word arith op: 0x%x(%d)",
mir->dalvikInsn.opCode, mir->dalvikInsn.opCode);
dvmAbort();
}
if (!callOut) {
/* Try to allocate reg0 to the currently cached source operand */
if (cUnit->registerScoreboard.liveDalvikReg == vSrc1) {
reg0 = selectFirstRegister(cUnit, vSrc1, false);
reg1 = NEXT_REG(reg0);
regDest = NEXT_REG(reg1);
loadValue(cUnit, vSrc1, reg0); /* Should be optimized away */
loadValue(cUnit, vSrc2, reg1);
genBinaryOp(cUnit, vDest, armOp, reg0, reg1, regDest);
} else {
reg0 = selectFirstRegister(cUnit, vSrc2, false);
reg1 = NEXT_REG(reg0);
regDest = NEXT_REG(reg1);
loadValue(cUnit, vSrc1, reg1); /* Load this value first */
loadValue(cUnit, vSrc2, reg0); /* May be optimized away */
genBinaryOp(cUnit, vDest, armOp, reg1, reg0, regDest);
}
} else {
/*
* Load the callout target first since it will never be eliminated
* and its value will be used first.
*/
loadConstant(cUnit, r2, (int) callTgt);
/*
* Load vSrc2 first if it is not cached in a native register or it
* is in r0 which will be clobbered if vSrc1 is loaded first.
*/
if (cUnit->registerScoreboard.liveDalvikReg != vSrc2 ||
cUnit->registerScoreboard.nativeReg == r0) {
/* Cannot be optimized and won't clobber r0 */
loadValue(cUnit, vSrc2, r1);
/* May be optimized if vSrc1 is cached */
loadValue(cUnit, vSrc1, r0);
} else {
loadValue(cUnit, vSrc1, r0);
loadValue(cUnit, vSrc2, r1);
}
if (checkZero) {
genNullCheck(cUnit, vSrc2, r1, mir->offset, NULL);
}
newLIR1(cUnit, THUMB_BLX_R, r2);
storeValue(cUnit, retReg, vDest, r2);
}
return false;
}
static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vA = mir->dalvikInsn.vA;
int vB = mir->dalvikInsn.vB;
int vC = mir->dalvikInsn.vC;
if ((opCode >= OP_ADD_LONG_2ADDR) && (opCode <= OP_XOR_LONG_2ADDR)) {
return genArithOpLong(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_ADD_LONG) && (opCode <= OP_XOR_LONG)) {
return genArithOpLong(cUnit,mir, vA, vB, vC);
}
if ((opCode >= OP_SHL_LONG_2ADDR) && (opCode <= OP_USHR_LONG_2ADDR)) {
return genShiftOpLong(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_SHL_LONG) && (opCode <= OP_USHR_LONG)) {
return genShiftOpLong(cUnit,mir, vA, vB, vC);
}
if ((opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_USHR_INT_2ADDR)) {
return genArithOpInt(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_ADD_INT) && (opCode <= OP_USHR_INT)) {
return genArithOpInt(cUnit,mir, vA, vB, vC);
}
if ((opCode >= OP_ADD_FLOAT_2ADDR) && (opCode <= OP_REM_FLOAT_2ADDR)) {
return genArithOpFloat(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_ADD_FLOAT) && (opCode <= OP_REM_FLOAT)) {
return genArithOpFloat(cUnit, mir, vA, vB, vC);
}
if ((opCode >= OP_ADD_DOUBLE_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
return genArithOpDouble(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_ADD_DOUBLE) && (opCode <= OP_REM_DOUBLE)) {
return genArithOpDouble(cUnit,mir, vA, vB, vC);
}
return true;
}
static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
int srcSize, int tgtSize)
{
/*
* Don't optimize the register usage since it calls out to template
* functions
*/
loadConstant(cUnit, r2, (int)funct);
if (srcSize == 1) {
loadValue(cUnit, mir->dalvikInsn.vB, r0);
} else {
loadValuePair(cUnit, mir->dalvikInsn.vB, r0, r1);
}
newLIR1(cUnit, THUMB_BLX_R, r2);
if (tgtSize == 1) {
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
} else {
storeValuePair(cUnit, r0, r1, mir->dalvikInsn.vA, r2);
}
return false;
}
static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int offset = offsetof(InterpState, retval);
int regObj = selectFirstRegister(cUnit, dInsn->arg[0], false);
int reg1 = NEXT_REG(regObj);
loadValue(cUnit, dInsn->arg[0], regObj);
genNullCheck(cUnit, dInsn->arg[0], regObj, mir->offset, NULL);
loadWordDisp(cUnit, regObj, gDvm.offJavaLangString_count, reg1);
newLIR3(cUnit, THUMB_STR_RRI5, reg1, rGLUE, offset >> 2);
return false;
}
/*
* NOTE: The amount of code for this body suggests it ought to
* be handled in a template (and could also be coded quite a bit
* more efficiently in ARM). However, the code is dependent on the
* internal structure layout of string objects which are most safely
* known at run time.
* TUNING: One possibility (which could also be used for StringCompareTo
* and StringEquals) is to generate string access helper subroutines on
* Jit startup, and then call them from the translated inline-executes.
*/
static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int offset = offsetof(InterpState, retval);
int contents = offsetof(ArrayObject, contents);
int regObj = selectFirstRegister(cUnit, dInsn->arg[0], false);
int regIdx = NEXT_REG(regObj);
int regMax = NEXT_REG(regIdx);
int regOff = NEXT_REG(regMax);
loadValue(cUnit, dInsn->arg[0], regObj);
loadValue(cUnit, dInsn->arg[1], regIdx);
ArmLIR * pcrLabel = genNullCheck(cUnit, dInsn->arg[0], regObj,
mir->offset, NULL);
loadWordDisp(cUnit, regObj, gDvm.offJavaLangString_count, regMax);
loadWordDisp(cUnit, regObj, gDvm.offJavaLangString_offset, regOff);
loadWordDisp(cUnit, regObj, gDvm.offJavaLangString_value, regObj);
genBoundsCheck(cUnit, regIdx, regMax, mir->offset, pcrLabel);
newLIR2(cUnit, THUMB_ADD_RI8, regObj, contents);
newLIR3(cUnit, THUMB_ADD_RRR, regIdx, regIdx, regOff);
newLIR3(cUnit, THUMB_ADD_RRR, regIdx, regIdx, regIdx);
newLIR3(cUnit, THUMB_LDRH_RRR, regMax, regObj, regIdx);
newLIR3(cUnit, THUMB_STR_RRI5, regMax, rGLUE, offset >> 2);
return false;
}
static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0 = selectFirstRegister(cUnit, dInsn->arg[0], false);
int sign = NEXT_REG(reg0);
/* abs(x) = y<=x>>31, (x+y)^y. Shorter in ARM/THUMB2, no skip in THUMB */
loadValue(cUnit, dInsn->arg[0], reg0);
newLIR3(cUnit, THUMB_ASR, sign, reg0, 31);
newLIR3(cUnit, THUMB_ADD_RRR, reg0, reg0, sign);
newLIR2(cUnit, THUMB_EOR, reg0, sign);
newLIR3(cUnit, THUMB_STR_RRI5, reg0, rGLUE, offset >> 2);
return false;
}
static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0 = selectFirstRegister(cUnit, dInsn->arg[0], false);
int signMask = NEXT_REG(reg0);
loadValue(cUnit, dInsn->arg[0], reg0);
loadConstant(cUnit, signMask, 0x7fffffff);
newLIR2(cUnit, THUMB_AND_RR, reg0, signMask);
newLIR3(cUnit, THUMB_STR_RRI5, reg0, rGLUE, offset >> 2);
return false;
}
static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int oplo = selectFirstRegister(cUnit, dInsn->arg[0], true);
int ophi = NEXT_REG(oplo);
int signMask = NEXT_REG(ophi);
loadValuePair(cUnit, dInsn->arg[0], oplo, ophi);
loadConstant(cUnit, signMask, 0x7fffffff);
newLIR3(cUnit, THUMB_STR_RRI5, oplo, rGLUE, offset >> 2);
newLIR2(cUnit, THUMB_AND_RR, ophi, signMask);
newLIR3(cUnit, THUMB_STR_RRI5, ophi, rGLUE, (offset >> 2)+1);
return false;
}
/* No select in thumb, so we need to branch. Thumb2 will do better */
static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0 = selectFirstRegister(cUnit, dInsn->arg[0], false);
int reg1 = NEXT_REG(reg0);
loadValue(cUnit, dInsn->arg[0], reg0);
loadValue(cUnit, dInsn->arg[1], reg1);
newLIR2(cUnit, THUMB_CMP_RR, reg0, reg1);
ArmLIR *branch1 = newLIR2(cUnit, THUMB_B_COND, 2,
isMin ? ARM_COND_LT : ARM_COND_GT);
newLIR2(cUnit, THUMB_MOV_RR, reg0, reg1);
ArmLIR *target =
newLIR3(cUnit, THUMB_STR_RRI5, reg0, rGLUE, offset >> 2);
branch1->generic.target = (LIR *)target;
return false;
}
static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int oplo = selectFirstRegister(cUnit, dInsn->arg[0], true);
int ophi = NEXT_REG(oplo);
int sign = NEXT_REG(ophi);
/* abs(x) = y<=x>>31, (x+y)^y. Shorter in ARM/THUMB2, no skip in THUMB */
loadValuePair(cUnit, dInsn->arg[0], oplo, ophi);
newLIR3(cUnit, THUMB_ASR, sign, ophi, 31);
newLIR3(cUnit, THUMB_ADD_RRR, oplo, oplo, sign);
newLIR2(cUnit, THUMB_ADC, ophi, sign);
newLIR2(cUnit, THUMB_EOR, oplo, sign);
newLIR2(cUnit, THUMB_EOR, ophi, sign);
newLIR3(cUnit, THUMB_STR_RRI5, oplo, rGLUE, offset >> 2);
newLIR3(cUnit, THUMB_STR_RRI5, ophi, rGLUE, (offset >> 2)+1);
return false;
}
static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
DecodedInstruction *dInsn,
ArmLIR **pcrLabel)
{
unsigned int i;
unsigned int regMask = 0;
/* Load arguments to r0..r4 */
for (i = 0; i < dInsn->vA; i++) {
regMask |= 1 << i;
loadValue(cUnit, dInsn->arg[i], i);
}
if (regMask) {
/* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
newLIR2(cUnit, THUMB_MOV_RR, r7, rFP);
newLIR2(cUnit, THUMB_SUB_RI8, r7,
sizeof(StackSaveArea) + (dInsn->vA << 2));
/* generate null check */
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, dInsn->arg[0], r0, mir->offset,
NULL);
}
newLIR2(cUnit, THUMB_STMIA, r7, regMask);
}
}
static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
DecodedInstruction *dInsn,
ArmLIR **pcrLabel)
{
int srcOffset = dInsn->vC << 2;
int numArgs = dInsn->vA;
int regMask;
/*
* r4PC : &rFP[vC]
* r7: &newFP[0]
*/
if (srcOffset < 8) {
newLIR3(cUnit, THUMB_ADD_RRI3, r4PC, rFP, srcOffset);
} else {
loadConstant(cUnit, r4PC, srcOffset);
newLIR3(cUnit, THUMB_ADD_RRR, r4PC, rFP, r4PC);
}
/* load [r0 .. min(numArgs,4)] */
regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
newLIR2(cUnit, THUMB_LDMIA, r4PC, regMask);
if (sizeof(StackSaveArea) + (numArgs << 2) < 256) {
newLIR2(cUnit, THUMB_MOV_RR, r7, rFP);
newLIR2(cUnit, THUMB_SUB_RI8, r7,
sizeof(StackSaveArea) + (numArgs << 2));
} else {
loadConstant(cUnit, r7, sizeof(StackSaveArea) + (numArgs << 2));
newLIR3(cUnit, THUMB_SUB_RRR, r7, rFP, r7);
}
/* generate null check */
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, dInsn->vC, r0, mir->offset, NULL);
}
/*
* Handle remaining 4n arguments:
* store previously loaded 4 values and load the next 4 values
*/
if (numArgs >= 8) {
ArmLIR *loopLabel = NULL;
/*
* r0 contains "this" and it will be used later, so push it to the stack
* first. Pushing r5 is just for stack alignment purposes.
*/
newLIR1(cUnit, THUMB_PUSH, 1 << r0 | 1 << 5);
/* No need to generate the loop structure if numArgs <= 11 */
if (numArgs > 11) {
loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
loopLabel = newLIR0(cUnit, ARM_PSEUDO_TARGET_LABEL);
}
newLIR2(cUnit, THUMB_STMIA, r7, regMask);
newLIR2(cUnit, THUMB_LDMIA, r4PC, regMask);
/* No need to generate the loop structure if numArgs <= 11 */
if (numArgs > 11) {
newLIR2(cUnit, THUMB_SUB_RI8, 5, 4);
genConditionalBranch(cUnit, ARM_COND_NE, loopLabel);
}
}
/* Save the last batch of loaded values */
newLIR2(cUnit, THUMB_STMIA, r7, regMask);
/* Generate the loop epilogue - don't use r0 */
if ((numArgs > 4) && (numArgs % 4)) {
regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
newLIR2(cUnit, THUMB_LDMIA, r4PC, regMask);
}
if (numArgs >= 8)
newLIR1(cUnit, THUMB_POP, 1 << r0 | 1 << 5);
/* Save the modulo 4 arguments */
if ((numArgs > 4) && (numArgs % 4)) {
newLIR2(cUnit, THUMB_STMIA, r7, regMask);
}
}
/*
* Generate code to setup the call stack then jump to the chaining cell if it
* is not a native method.
*/
static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, ArmLIR *labelList,
ArmLIR *pcrLabel,
const Method *calleeMethod)
{
ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
/* r1 = &retChainingCell */
ArmLIR *addrRetChain = newLIR3(cUnit, THUMB_ADD_PC_REL,
r1, 0, 0);
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
addrRetChain->generic.target = (LIR *) retChainingCell;
/*
* r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
* r1 = &ChainingCell
* r4PC = callsiteDPC
*/
if (dvmIsNativeMethod(calleeMethod)) {
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NATIVE);
#if defined(INVOKE_STATS)
gDvmJit.invokeNative++;
#endif
} else {
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_CHAIN);
#if defined(INVOKE_STATS)
gDvmJit.invokeChain++;
#endif
/* Branch to the chaining cell */
genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
}
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
}
/*
* Generate code to check the validity of a predicted chain and take actions
* based on the result.
*
* 0x426a99aa : ldr r4, [pc, #72] --> r4 <- dalvikPC of this invoke
* 0x426a99ac : add r1, pc, #32 --> r1 <- &retChainingCell
* 0x426a99ae : add r2, pc, #40 --> r2 <- &predictedChainingCell
* 0x426a99b0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
* 0x426a99b2 : blx_2 see above --+
* 0x426a99b4 : b 0x426a99d8 --> off to the predicted chain
* 0x426a99b6 : b 0x426a99c8 --> punt to the interpreter
* 0x426a99b8 : ldr r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
* 0x426a99ba : cmp r1, #0 --> compare r1 (rechain count) against 0
* 0x426a99bc : bgt 0x426a99c2 --> >=0? don't rechain
* 0x426a99be : ldr r7, [r6, #96] --+ dvmJitToPatchPredictedChain
* 0x426a99c0 : blx r7 --+
* 0x426a99c2 : add r1, pc, #12 --> r1 <- &retChainingCell
* 0x426a99c4 : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT
* 0x426a99c6 : blx_2 see above --+
*/
static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
int methodIndex,
ArmLIR *retChainingCell,
ArmLIR *predChainingCell,
ArmLIR *pcrLabel)
{
/* "this" is already left in r0 by genProcessArgs* */
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
/* r1 = &retChainingCell */
ArmLIR *addrRetChain = newLIR2(cUnit, THUMB_ADD_PC_REL,
r1, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
/* r2 = &predictedChainingCell */
ArmLIR *predictedChainingCell =
newLIR2(cUnit, THUMB_ADD_PC_REL, r2, 0);
predictedChainingCell->generic.target = (LIR *) predChainingCell;
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
/* return through lr - jump to the chaining cell */
genUnconditionalBranch(cUnit, predChainingCell);
/*
* null-check on "this" may have been eliminated, but we still need a PC-
* reconstruction label for stack overflow bailout.
*/
if (pcrLabel == NULL) {
int dPC = (int) (cUnit->method->insns + mir->offset);
pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
pcrLabel->opCode = ARM_PSEUDO_PC_RECONSTRUCTION_CELL;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
}
/* return through lr+2 - punt to the interpreter */
genUnconditionalBranch(cUnit, pcrLabel);
/*
* return through lr+4 - fully resolve the callee method.
* r1 <- count
* r2 <- &predictedChainCell
* r3 <- this->class
* r4 <- dPC
* r7 <- this->class->vtable
*/
/* r0 <- calleeMethod */
if (methodIndex < 32) {
newLIR3(cUnit, THUMB_LDR_RRI5, r0, r7, methodIndex);
} else {
loadConstant(cUnit, r0, methodIndex<<2);
newLIR3(cUnit, THUMB_LDR_RRR, r0, r7, r0);
}
/* Check if rechain limit is reached */
newLIR2(cUnit, THUMB_CMP_RI8, r1, 0);
ArmLIR *bypassRechaining =
newLIR2(cUnit, THUMB_B_COND, 0, ARM_COND_GT);
newLIR3(cUnit, THUMB_LDR_RRI5, r7, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToPatchPredictedChain)
>> 2);
/*
* r0 = calleeMethod
* r2 = &predictedChainingCell
* r3 = class
*
* &returnChainingCell has been loaded into r1 but is not needed
* when patching the chaining cell and will be clobbered upon
* returning so it will be reconstructed again.
*/
newLIR1(cUnit, THUMB_BLX_R, r7);
/* r1 = &retChainingCell */
addrRetChain = newLIR3(cUnit, THUMB_ADD_PC_REL, r1, 0, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
bypassRechaining->generic.target = (LIR *) addrRetChain;
/*
* r0 = calleeMethod,
* r1 = &ChainingCell,
* r4PC = callsiteDPC,
*/
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
#if defined(INVOKE_STATS)
gDvmJit.invokePredictedChain++;
#endif
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
}
/*
* Up calling this function, "this" is stored in r0. The actual class will be
* chased down off r0 and the predicted one will be retrieved through
* predictedChainingCell then a comparison is performed to see whether the
* previously established chaining is still valid.
*
* The return LIR is a branch based on the comparison result. The actual branch
* target will be setup in the caller.
*/
static ArmLIR *genCheckPredictedChain(CompilationUnit *cUnit,
ArmLIR *predChainingCell,
ArmLIR *retChainingCell,
MIR *mir)
{
/* r3 now contains this->clazz */
newLIR3(cUnit, THUMB_LDR_RRI5, r3, r0,
offsetof(Object, clazz) >> 2);
/*
* r2 now contains predicted class. The starting offset of the
* cached value is 4 bytes into the chaining cell.
*/
ArmLIR *getPredictedClass =
newLIR3(cUnit, THUMB_LDR_PC_REL, r2, 0,
offsetof(PredictedChainingCell, clazz));
getPredictedClass->generic.target = (LIR *) predChainingCell;
/*
* r0 now contains predicted method. The starting offset of the
* cached value is 8 bytes into the chaining cell.
*/
ArmLIR *getPredictedMethod =
newLIR3(cUnit, THUMB_LDR_PC_REL, r0, 0,
offsetof(PredictedChainingCell, method));
getPredictedMethod->generic.target = (LIR *) predChainingCell;
/* Load the stats counter to see if it is time to unchain and refresh */
ArmLIR *getRechainingRequestCount =
newLIR3(cUnit, THUMB_LDR_PC_REL, r7, 0,
offsetof(PredictedChainingCell, counter));
getRechainingRequestCount->generic.target =
(LIR *) predChainingCell;
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
/* r1 = &retChainingCell */
ArmLIR *addrRetChain = newLIR3(cUnit, THUMB_ADD_PC_REL,
r1, 0, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
/* Check if r2 (predicted class) == r3 (actual class) */
newLIR2(cUnit, THUMB_CMP_RR, r2, r3);
return newLIR2(cUnit, THUMB_B_COND, 0, ARM_COND_EQ);
}
/* Geneate a branch to go back to the interpreter */
static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
{
/* r0 = dalvik pc */
loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
newLIR3(cUnit, THUMB_LDR_RRI5, r1, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToInterpPunt) >> 2);
newLIR1(cUnit, THUMB_BLX_R, r1);
}
/*
* Attempt to single step one instruction using the interpreter and return
* to the compiled code for the next Dalvik instruction
*/
static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
{
int flags = dexGetInstrFlags(gDvm.instrFlags, mir->dalvikInsn.opCode);
int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
kInstrCanThrow;
if ((mir->next == NULL) || (flags & flagsToCheck)) {
genPuntToInterp(cUnit, mir->offset);
return;
}
int entryAddr = offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpSingleStep);
newLIR3(cUnit, THUMB_LDR_RRI5, r2, rGLUE, entryAddr >> 2);
/* r0 = dalvik pc */
loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
/* r1 = dalvik pc of following instruction */
loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
newLIR1(cUnit, THUMB_BLX_R, r2);
}
/*****************************************************************************/
/*
* The following are the first-level codegen routines that analyze the format
* of each bytecode then either dispatch special purpose codegen routines
* or produce corresponding Thumb instructions directly.
*/
static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, ArmLIR *labelList)
{
/* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
return false;
}
static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
if (((dalvikOpCode >= OP_UNUSED_3E) && (dalvikOpCode <= OP_UNUSED_43)) ||
((dalvikOpCode >= OP_UNUSED_E3) && (dalvikOpCode <= OP_UNUSED_EC))) {
LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
return true;
}
switch (dalvikOpCode) {
case OP_RETURN_VOID:
genReturnCommon(cUnit,mir);
break;
case OP_UNUSED_73:
case OP_UNUSED_79:
case OP_UNUSED_7A:
LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
return true;
case OP_NOP:
break;
default:
return true;
}
return false;
}
static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
{
int reg0, reg1, reg2;
switch (mir->dalvikInsn.opCode) {
case OP_CONST:
case OP_CONST_4: {
/* Avoid using the previously used register */
reg0 = selectFirstRegister(cUnit, vNone, false);
reg1 = NEXT_REG(reg0);
loadConstant(cUnit, reg0, mir->dalvikInsn.vB);
storeValue(cUnit, reg0, mir->dalvikInsn.vA, reg1);
break;
}
case OP_CONST_WIDE_32: {
/* Avoid using the previously used register */
reg0 = selectFirstRegister(cUnit, vNone, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadConstant(cUnit, reg0, mir->dalvikInsn.vB);
newLIR3(cUnit, THUMB_ASR, reg1, reg0, 31);
storeValuePair(cUnit, reg0, reg1, mir->dalvikInsn.vA, reg2);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
{
int reg0, reg1, reg2;
/* Avoid using the previously used register */
switch (mir->dalvikInsn.opCode) {
case OP_CONST_HIGH16: {
reg0 = selectFirstRegister(cUnit, vNone, false);
reg1 = NEXT_REG(reg0);
loadConstant(cUnit, reg0, mir->dalvikInsn.vB << 16);
storeValue(cUnit, reg0, mir->dalvikInsn.vA, reg1);
break;
}
case OP_CONST_WIDE_HIGH16: {
reg0 = selectFirstRegister(cUnit, vNone, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadConstant(cUnit, reg1, mir->dalvikInsn.vB << 16);
loadConstant(cUnit, reg0, 0);
storeValuePair(cUnit, reg0, reg1, mir->dalvikInsn.vA, reg2);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
{
/* For OP_THROW_VERIFICATION_ERROR */
genInterpSingleStep(cUnit, mir);
return false;
}
static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
{
/* Native register to use if the interested value is vA */
int regvA = selectFirstRegister(cUnit, mir->dalvikInsn.vA, false);
/* Native register to use if source is not from Dalvik registers */
int regvNone = selectFirstRegister(cUnit, vNone, false);
/* Similar to regvA but for 64-bit values */
int regvAWide = selectFirstRegister(cUnit, mir->dalvikInsn.vA, true);
/* Similar to regvNone but for 64-bit values */
int regvNoneWide = selectFirstRegister(cUnit, vNone, true);
switch (mir->dalvikInsn.opCode) {
/*
* TODO: Verify that we can ignore the resolution check here because
* it will have already successfully been interpreted once
*/
case OP_CONST_STRING_JUMBO:
case OP_CONST_STRING: {
void *strPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
assert(strPtr != NULL);
loadConstant(cUnit, regvNone, (int) strPtr );
storeValue(cUnit, regvNone, mir->dalvikInsn.vA, NEXT_REG(regvNone));
break;
}
/*
* TODO: Verify that we can ignore the resolution check here because
* it will have already successfully been interpreted once
*/
case OP_CONST_CLASS: {
void *classPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
assert(classPtr != NULL);
loadConstant(cUnit, regvNone, (int) classPtr );
storeValue(cUnit, regvNone, mir->dalvikInsn.vA, NEXT_REG(regvNone));
break;
}
case OP_SGET_OBJECT:
case OP_SGET_BOOLEAN:
case OP_SGET_CHAR:
case OP_SGET_BYTE:
case OP_SGET_SHORT:
case OP_SGET: {
int valOffset = offsetof(StaticField, value);
void *fieldPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
assert(fieldPtr != NULL);
loadConstant(cUnit, regvNone, (int) fieldPtr + valOffset);
newLIR3(cUnit, THUMB_LDR_RRI5, regvNone, regvNone, 0);
storeValue(cUnit, regvNone, mir->dalvikInsn.vA, NEXT_REG(regvNone));
break;
}
case OP_SGET_WIDE: {
int valOffset = offsetof(StaticField, value);
void *fieldPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
int reg0, reg1, reg2;
assert(fieldPtr != NULL);
reg0 = regvNoneWide;
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadConstant(cUnit, reg2, (int) fieldPtr + valOffset);
newLIR2(cUnit, THUMB_LDMIA, reg2, (1<<reg0 | 1<<reg1));
storeValuePair(cUnit, reg0, reg1, mir->dalvikInsn.vA, reg2);
break;
}
case OP_SPUT_OBJECT:
case OP_SPUT_BOOLEAN:
case OP_SPUT_CHAR:
case OP_SPUT_BYTE:
case OP_SPUT_SHORT:
case OP_SPUT: {
int valOffset = offsetof(StaticField, value);
void *fieldPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
assert(fieldPtr != NULL);
loadValue(cUnit, mir->dalvikInsn.vA, regvA);
updateLiveRegister(cUnit, mir->dalvikInsn.vA, regvA);
loadConstant(cUnit, NEXT_REG(regvA), (int) fieldPtr + valOffset);
newLIR3(cUnit, THUMB_STR_RRI5, regvA, NEXT_REG(regvA), 0);
break;
}
case OP_SPUT_WIDE: {
int reg0, reg1, reg2;
int valOffset = offsetof(StaticField, value);
void *fieldPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
assert(fieldPtr != NULL);
reg0 = regvAWide;
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadValuePair(cUnit, mir->dalvikInsn.vA, reg0, reg1);
updateLiveRegisterPair(cUnit, mir->dalvikInsn.vA, reg0, reg1);
loadConstant(cUnit, reg2, (int) fieldPtr + valOffset);
newLIR2(cUnit, THUMB_STMIA, reg2, (1<<reg0 | 1<<reg1));
break;
}
case OP_NEW_INSTANCE: {
/*
* Obey the calling convention and don't mess with the register
* usage.
*/
ClassObject *classPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
assert(classPtr != NULL);
assert(classPtr->status & CLASS_INITIALIZED);
if ((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) != 0) {
/* It's going to throw, just let the interp. deal with it. */
genInterpSingleStep(cUnit, mir);
return false;
}
loadConstant(cUnit, r4PC, (int)dvmAllocObject);
loadConstant(cUnit, r0, (int) classPtr);
genExportPC(cUnit, mir, r2, r3 );
loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
newLIR1(cUnit, THUMB_BLX_R, r4PC);
/*
* TODO: As coded, we'll bail and reinterpret on alloc failure.
* Need a general mechanism to bail to thrown exception code.
*/
genZeroCheck(cUnit, r0, mir->offset, NULL);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
break;
}
case OP_CHECK_CAST: {
/*
* Obey the calling convention and don't mess with the register
* usage.
*/
ClassObject *classPtr =
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
loadConstant(cUnit, r1, (int) classPtr );
loadValue(cUnit, mir->dalvikInsn.vA, r0); /* Ref */
/*
* TODO - in theory classPtr should be resoved by the time this
* instruction made into a trace, but we are seeing NULL at runtime
* so this check is temporarily used as a workaround.
*/
ArmLIR * pcrLabel = genZeroCheck(cUnit, r1, mir->offset, NULL);
newLIR2(cUnit, THUMB_CMP_RI8, r0, 0); /* Null? */
ArmLIR *branch1 =
newLIR2(cUnit, THUMB_B_COND, 4, ARM_COND_EQ);
/* r0 now contains object->clazz */
newLIR3(cUnit, THUMB_LDR_RRI5, r0, r0,
offsetof(Object, clazz) >> 2);
loadConstant(cUnit, r4PC, (int)dvmInstanceofNonTrivial);
newLIR2(cUnit, THUMB_CMP_RR, r0, r1);
ArmLIR *branch2 =
newLIR2(cUnit, THUMB_B_COND, 2, ARM_COND_EQ);
newLIR1(cUnit, THUMB_BLX_R, r4PC);
/* check cast failed - punt to the interpreter */
genZeroCheck(cUnit, r0, mir->offset, pcrLabel);
/* check cast passed - branch target here */
ArmLIR *target = newLIR0(cUnit, ARM_PSEUDO_TARGET_LABEL);
branch1->generic.target = (LIR *)target;
branch2->generic.target = (LIR *)target;
break;
}
default:
return true;
}
return false;
}
static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
switch (dalvikOpCode) {
case OP_MOVE_EXCEPTION: {
int offset = offsetof(InterpState, self);
int exOffset = offsetof(Thread, exception);
newLIR3(cUnit, THUMB_LDR_RRI5, r1, rGLUE, offset >> 2);
newLIR3(cUnit, THUMB_LDR_RRI5, r0, r1, exOffset >> 2);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
break;
}
case OP_MOVE_RESULT:
case OP_MOVE_RESULT_OBJECT: {
int offset = offsetof(InterpState, retval);
newLIR3(cUnit, THUMB_LDR_RRI5, r0, rGLUE, offset >> 2);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
break;
}
case OP_MOVE_RESULT_WIDE: {
int offset = offsetof(InterpState, retval);
newLIR3(cUnit, THUMB_LDR_RRI5, r0, rGLUE, offset >> 2);
newLIR3(cUnit, THUMB_LDR_RRI5, r1, rGLUE, (offset >> 2)+1);
storeValuePair(cUnit, r0, r1, mir->dalvikInsn.vA, r2);
break;
}
case OP_RETURN_WIDE: {
loadValuePair(cUnit, mir->dalvikInsn.vA, r0, r1);
int offset = offsetof(InterpState, retval);
newLIR3(cUnit, THUMB_STR_RRI5, r0, rGLUE, offset >> 2);
newLIR3(cUnit, THUMB_STR_RRI5, r1, rGLUE, (offset >> 2)+1);
genReturnCommon(cUnit,mir);
break;
}
case OP_RETURN:
case OP_RETURN_OBJECT: {
loadValue(cUnit, mir->dalvikInsn.vA, r0);
int offset = offsetof(InterpState, retval);
newLIR3(cUnit, THUMB_STR_RRI5, r0, rGLUE, offset >> 2);
genReturnCommon(cUnit,mir);
break;
}
/*
* TODO-VERIFY: May be playing a bit fast and loose here. As coded,
* a failure on lock/unlock will cause us to revert to the interpeter
* to try again. This means we essentially ignore the first failure on
* the assumption that the interpreter will correctly handle the 2nd.
*/
case OP_MONITOR_ENTER:
case OP_MONITOR_EXIT: {
int offset = offsetof(InterpState, self);
loadValue(cUnit, mir->dalvikInsn.vA, r1);
newLIR3(cUnit, THUMB_LDR_RRI5, r0, rGLUE, offset >> 2);
if (dalvikOpCode == OP_MONITOR_ENTER) {
loadConstant(cUnit, r2, (int)dvmLockObject);
} else {
loadConstant(cUnit, r2, (int)dvmUnlockObject);
}
/*
* TODO-VERIFY: Note that we're not doing an EXPORT_PC, as
* Lock/unlock won't throw, and this code does not support
* DEADLOCK_PREDICTION or MONITOR_TRACKING. Should it?
*/
genNullCheck(cUnit, mir->dalvikInsn.vA, r1, mir->offset, NULL);
/* Do the call */
newLIR1(cUnit, THUMB_BLX_R, r2);
break;
}
case OP_THROW: {
genInterpSingleStep(cUnit, mir);
break;
}
default:
return true;
}
return false;
}
static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
float __aeabi_i2f( int op1 );
int __aeabi_f2iz( float op1 );
float __aeabi_d2f( double op1 );
double __aeabi_f2d( float op1 );
double __aeabi_i2d( int op1 );
int __aeabi_d2iz( double op1 );
float __aeabi_l2f( long op1 );
double __aeabi_l2d( long op1 );
switch (opCode) {
case OP_INT_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
case OP_FLOAT_TO_INT:
return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
case OP_DOUBLE_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
case OP_FLOAT_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
case OP_INT_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
case OP_DOUBLE_TO_INT:
return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
case OP_FLOAT_TO_LONG:
return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
case OP_LONG_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
case OP_DOUBLE_TO_LONG:
return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
case OP_LONG_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
default:
return true;
}
return false;
}
static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vSrc1Dest = mir->dalvikInsn.vA;
int vSrc2 = mir->dalvikInsn.vB;
int reg0, reg1, reg2;
/* TODO - find the proper include file to declare these */
if ( (opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
return genArithOp( cUnit, mir );
}
/*
* If data type is 64-bit, re-calculate the register numbers in the
* corresponding cases.
*/
reg0 = selectFirstRegister(cUnit, vSrc2, false);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
switch (opCode) {
case OP_INT_TO_FLOAT:
case OP_FLOAT_TO_INT:
case OP_DOUBLE_TO_FLOAT:
case OP_FLOAT_TO_DOUBLE:
case OP_INT_TO_DOUBLE:
case OP_DOUBLE_TO_INT:
case OP_FLOAT_TO_LONG:
case OP_LONG_TO_FLOAT:
case OP_DOUBLE_TO_LONG:
case OP_LONG_TO_DOUBLE:
return genConversion(cUnit, mir);
case OP_NEG_INT:
case OP_NOT_INT:
return genArithOpInt(cUnit, mir, vSrc1Dest, vSrc1Dest, vSrc2);
case OP_NEG_LONG:
case OP_NOT_LONG:
return genArithOpLong(cUnit,mir, vSrc1Dest, vSrc1Dest, vSrc2);
case OP_NEG_FLOAT:
return genArithOpFloat(cUnit, mir, vSrc1Dest, vSrc1Dest, vSrc2);
case OP_NEG_DOUBLE:
return genArithOpDouble(cUnit, mir, vSrc1Dest, vSrc1Dest, vSrc2);
case OP_MOVE_WIDE: {
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadValuePair(cUnit, vSrc2, reg0, reg1);
storeValuePair(cUnit, reg0, reg1, vSrc1Dest, reg2);
break;
}
case OP_INT_TO_LONG: {
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadValue(cUnit, vSrc2, reg0);
newLIR3(cUnit, THUMB_ASR, reg1, reg0, 31);
storeValuePair(cUnit, reg0, reg1, vSrc1Dest, reg2);
break;
}
case OP_MOVE:
case OP_MOVE_OBJECT:
case OP_LONG_TO_INT:
loadValue(cUnit, vSrc2, reg0);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
case OP_INT_TO_BYTE:
loadValue(cUnit, vSrc2, reg0);
newLIR3(cUnit, THUMB_LSL, reg0, reg0, 24);
newLIR3(cUnit, THUMB_ASR, reg0, reg0, 24);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
case OP_INT_TO_SHORT:
loadValue(cUnit, vSrc2, reg0);
newLIR3(cUnit, THUMB_LSL, reg0, reg0, 16);
newLIR3(cUnit, THUMB_ASR, reg0, reg0, 16);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
case OP_INT_TO_CHAR:
loadValue(cUnit, vSrc2, reg0);
newLIR3(cUnit, THUMB_LSL, reg0, reg0, 16);
newLIR3(cUnit, THUMB_LSR, reg0, reg0, 16);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
case OP_ARRAY_LENGTH: {
int lenOffset = offsetof(ArrayObject, length);
loadValue(cUnit, vSrc2, reg0);
genNullCheck(cUnit, vSrc2, reg0, mir->offset, NULL);
newLIR3(cUnit, THUMB_LDR_RRI5, reg0, reg0, lenOffset >> 2);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
int reg0, reg1, reg2;
/* It takes few instructions to handle OP_CONST_WIDE_16 inline */
if (dalvikOpCode == OP_CONST_WIDE_16) {
int vDest = mir->dalvikInsn.vA;
int BBBB = mir->dalvikInsn.vB;
reg0 = selectFirstRegister(cUnit, vNone, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadConstant(cUnit, reg0, BBBB);
newLIR3(cUnit, THUMB_ASR, reg1, reg0, 31);
/* Save the long values to the specified Dalvik register pair */
storeValuePair(cUnit, reg0, reg1, vDest, reg2);
} else if (dalvikOpCode == OP_CONST_16) {
int vDest = mir->dalvikInsn.vA;
int BBBB = mir->dalvikInsn.vB;
reg0 = selectFirstRegister(cUnit, vNone, false);
reg1 = NEXT_REG(reg0);
loadConstant(cUnit, reg0, BBBB);
storeValue(cUnit, reg0, vDest, reg1);
} else {
return true;
}
return false;
}
/* Compare agaist zero */
static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
ArmLIR *labelList)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
ArmConditionCode cond;
int reg0 = selectFirstRegister(cUnit, mir->dalvikInsn.vA, false);
loadValue(cUnit, mir->dalvikInsn.vA, reg0);
newLIR2(cUnit, THUMB_CMP_RI8, reg0, 0);
switch (dalvikOpCode) {
case OP_IF_EQZ:
cond = ARM_COND_EQ;
break;
case OP_IF_NEZ:
cond = ARM_COND_NE;
break;
case OP_IF_LTZ:
cond = ARM_COND_LT;
break;
case OP_IF_GEZ:
cond = ARM_COND_GE;
break;
case OP_IF_GTZ:
cond = ARM_COND_GT;
break;
case OP_IF_LEZ:
cond = ARM_COND_LE;
break;
default:
cond = 0;
LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpCode);
dvmAbort();
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
/* This mostly likely will be optimized away in a later phase */
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
return false;
}
static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
int vSrc = mir->dalvikInsn.vB;
int vDest = mir->dalvikInsn.vA;
int lit = mir->dalvikInsn.vC;
int armOp;
int reg0, reg1, regDest;
reg0 = selectFirstRegister(cUnit, vSrc, false);
reg1 = NEXT_REG(reg0);
regDest = NEXT_REG(reg1);
/* TODO: find the proper .h file to declare these */
int __aeabi_idivmod(int op1, int op2);
int __aeabi_idiv(int op1, int op2);
switch (dalvikOpCode) {
case OP_ADD_INT_LIT8:
case OP_ADD_INT_LIT16:
loadValue(cUnit, vSrc, reg0);
if (lit <= 7 && lit >= 0) {
newLIR3(cUnit, THUMB_ADD_RRI3, regDest, reg0, lit);
storeValue(cUnit, regDest, vDest, reg1);
} else if (lit <= 255 && lit >= 0) {
newLIR2(cUnit, THUMB_ADD_RI8, reg0, lit);
storeValue(cUnit, reg0, vDest, reg1);
} else if (lit >= -7 && lit <= 0) {
/* Convert to a small constant subtraction */
newLIR3(cUnit, THUMB_SUB_RRI3, regDest, reg0, -lit);
storeValue(cUnit, regDest, vDest, reg1);
} else if (lit >= -255 && lit <= 0) {
/* Convert to a small constant subtraction */
newLIR2(cUnit, THUMB_SUB_RI8, reg0, -lit);
storeValue(cUnit, reg0, vDest, reg1);
} else {
loadConstant(cUnit, reg1, lit);
genBinaryOp(cUnit, vDest, THUMB_ADD_RRR, reg0, reg1, regDest);
}
break;
case OP_RSUB_INT_LIT8:
case OP_RSUB_INT:
loadValue(cUnit, vSrc, reg1);
loadConstant(cUnit, reg0, lit);
genBinaryOp(cUnit, vDest, THUMB_SUB_RRR, reg0, reg1, regDest);
break;
case OP_MUL_INT_LIT8:
case OP_MUL_INT_LIT16:
case OP_AND_INT_LIT8:
case OP_AND_INT_LIT16:
case OP_OR_INT_LIT8:
case OP_OR_INT_LIT16:
case OP_XOR_INT_LIT8:
case OP_XOR_INT_LIT16:
loadValue(cUnit, vSrc, reg0);
loadConstant(cUnit, reg1, lit);
switch (dalvikOpCode) {
case OP_MUL_INT_LIT8:
case OP_MUL_INT_LIT16:
armOp = THUMB_MUL;
break;
case OP_AND_INT_LIT8:
case OP_AND_INT_LIT16:
armOp = THUMB_AND_RR;
break;
case OP_OR_INT_LIT8:
case OP_OR_INT_LIT16:
armOp = THUMB_ORR;
break;
case OP_XOR_INT_LIT8:
case OP_XOR_INT_LIT16:
armOp = THUMB_EOR;
break;
default:
dvmAbort();
}
genBinaryOp(cUnit, vDest, armOp, reg0, reg1, regDest);
break;
case OP_SHL_INT_LIT8:
case OP_SHR_INT_LIT8:
case OP_USHR_INT_LIT8:
loadValue(cUnit, vSrc, reg0);
switch (dalvikOpCode) {
case OP_SHL_INT_LIT8:
armOp = THUMB_LSL;
break;
case OP_SHR_INT_LIT8:
armOp = THUMB_ASR;
break;
case OP_USHR_INT_LIT8:
armOp = THUMB_LSR;
break;
default: dvmAbort();
}
newLIR3(cUnit, armOp, reg0, reg0, lit);
storeValue(cUnit, reg0, vDest, reg1);
break;
case OP_DIV_INT_LIT8:
case OP_DIV_INT_LIT16:
/* Register usage based on the calling convention */
if (lit == 0) {
/* Let the interpreter deal with div by 0 */
genInterpSingleStep(cUnit, mir);
return false;
}
loadConstant(cUnit, r2, (int)__aeabi_idiv);
loadConstant(cUnit, r1, lit);
loadValue(cUnit, vSrc, r0);
newLIR1(cUnit, THUMB_BLX_R, r2);
storeValue(cUnit, r0, vDest, r2);
break;
case OP_REM_INT_LIT8:
case OP_REM_INT_LIT16:
/* Register usage based on the calling convention */
if (lit == 0) {
/* Let the interpreter deal with div by 0 */
genInterpSingleStep(cUnit, mir);
return false;
}
loadConstant(cUnit, r2, (int)__aeabi_idivmod);
loadConstant(cUnit, r1, lit);
loadValue(cUnit, vSrc, r0);
newLIR1(cUnit, THUMB_BLX_R, r2);
storeValue(cUnit, r1, vDest, r2);
break;
default:
return true;
}
return false;
}
static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
int fieldOffset;
if (dalvikOpCode >= OP_IGET && dalvikOpCode <= OP_IPUT_SHORT) {
InstField *pInstField = (InstField *)
cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
int fieldOffset;
assert(pInstField != NULL);
fieldOffset = pInstField->byteOffset;
} else {
/* To make the compiler happy */
fieldOffset = 0;
}
switch (dalvikOpCode) {
/*
* TODO: I may be assuming too much here.
* Verify what is known at JIT time.
*/
case OP_NEW_ARRAY: {
void *classPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
assert(classPtr != NULL);
loadValue(cUnit, mir->dalvikInsn.vB, r1); /* Len */
loadConstant(cUnit, r0, (int) classPtr );
loadConstant(cUnit, r4PC, (int)dvmAllocArrayByClass);
ArmLIR *pcrLabel =
genRegImmCheck(cUnit, ARM_COND_MI, r1, 0, mir->offset, NULL);
genExportPC(cUnit, mir, r2, r3 );
newLIR2(cUnit, THUMB_MOV_IMM,r2,ALLOC_DONT_TRACK);
newLIR1(cUnit, THUMB_BLX_R, r4PC);
/*
* TODO: As coded, we'll bail and reinterpret on alloc failure.
* Need a general mechanism to bail to thrown exception code.
*/
genZeroCheck(cUnit, r0, mir->offset, pcrLabel);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
break;
}
/*
* TODO: I may be assuming too much here.
* Verify what is known at JIT time.
*/
case OP_INSTANCE_OF: {
ClassObject *classPtr =
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
assert(classPtr != NULL);
loadValue(cUnit, mir->dalvikInsn.vB, r0); /* Ref */
loadConstant(cUnit, r2, (int) classPtr );
newLIR2(cUnit, THUMB_CMP_RI8, r0, 0); /* Null? */
/* When taken r0 has NULL which can be used for store directly */
ArmLIR *branch1 = newLIR2(cUnit, THUMB_B_COND, 4,
ARM_COND_EQ);
/* r1 now contains object->clazz */
newLIR3(cUnit, THUMB_LDR_RRI5, r1, r0,
offsetof(Object, clazz) >> 2);
loadConstant(cUnit, r4PC, (int)dvmInstanceofNonTrivial);
loadConstant(cUnit, r0, 1); /* Assume true */
newLIR2(cUnit, THUMB_CMP_RR, r1, r2);
ArmLIR *branch2 = newLIR2(cUnit, THUMB_B_COND, 2,
ARM_COND_EQ);
newLIR2(cUnit, THUMB_MOV_RR, r0, r1);
newLIR2(cUnit, THUMB_MOV_RR, r1, r2);
newLIR1(cUnit, THUMB_BLX_R, r4PC);
/* branch target here */
ArmLIR *target = newLIR0(cUnit, ARM_PSEUDO_TARGET_LABEL);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
branch1->generic.target = (LIR *)target;
branch2->generic.target = (LIR *)target;
break;
}
case OP_IGET_WIDE:
genIGetWide(cUnit, mir, fieldOffset);
break;
case OP_IGET:
case OP_IGET_OBJECT:
genIGet(cUnit, mir, THUMB_LDR_RRR, fieldOffset);
break;
case OP_IGET_BOOLEAN:
genIGet(cUnit, mir, THUMB_LDRB_RRR, fieldOffset);
break;
case OP_IGET_BYTE:
genIGet(cUnit, mir, THUMB_LDRSB_RRR, fieldOffset);
break;
case OP_IGET_CHAR:
genIGet(cUnit, mir, THUMB_LDRH_RRR, fieldOffset);
break;
case OP_IGET_SHORT:
genIGet(cUnit, mir, THUMB_LDRSH_RRR, fieldOffset);
break;
case OP_IPUT_WIDE:
genIPutWide(cUnit, mir, fieldOffset);
break;
case OP_IPUT:
case OP_IPUT_OBJECT:
genIPut(cUnit, mir, THUMB_STR_RRR, fieldOffset);
break;
case OP_IPUT_SHORT:
case OP_IPUT_CHAR:
genIPut(cUnit, mir, THUMB_STRH_RRR, fieldOffset);
break;
case OP_IPUT_BYTE:
case OP_IPUT_BOOLEAN:
genIPut(cUnit, mir, THUMB_STRB_RRR, fieldOffset);
break;
default:
return true;
}
return false;
}
static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
int fieldOffset = mir->dalvikInsn.vC;
switch (dalvikOpCode) {
case OP_IGET_QUICK:
case OP_IGET_OBJECT_QUICK:
genIGet(cUnit, mir, THUMB_LDR_RRR, fieldOffset);
break;
case OP_IPUT_QUICK:
case OP_IPUT_OBJECT_QUICK:
genIPut(cUnit, mir, THUMB_STR_RRR, fieldOffset);
break;
case OP_IGET_WIDE_QUICK:
genIGetWide(cUnit, mir, fieldOffset);
break;
case OP_IPUT_WIDE_QUICK:
genIPutWide(cUnit, mir, fieldOffset);
break;
default:
return true;
}
return false;
}
/* Compare agaist zero */
static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
ArmLIR *labelList)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
ArmConditionCode cond;
int reg0, reg1;
if (cUnit->registerScoreboard.liveDalvikReg == (int) mir->dalvikInsn.vA) {
reg0 = selectFirstRegister(cUnit, mir->dalvikInsn.vA, false);
reg1 = NEXT_REG(reg0);
/* Load vB first since vA can be fetched via a move */
loadValue(cUnit, mir->dalvikInsn.vB, reg1);
loadValue(cUnit, mir->dalvikInsn.vA, reg0);
} else {
reg0 = selectFirstRegister(cUnit, mir->dalvikInsn.vB, false);
reg1 = NEXT_REG(reg0);
/* Load vA first since vB can be fetched via a move */
loadValue(cUnit, mir->dalvikInsn.vA, reg0);
loadValue(cUnit, mir->dalvikInsn.vB, reg1);
}
newLIR2(cUnit, THUMB_CMP_RR, reg0, reg1);
switch (dalvikOpCode) {
case OP_IF_EQ:
cond = ARM_COND_EQ;
break;
case OP_IF_NE:
cond = ARM_COND_NE;
break;
case OP_IF_LT:
cond = ARM_COND_LT;
break;
case OP_IF_GE:
cond = ARM_COND_GE;
break;
case OP_IF_GT:
cond = ARM_COND_GT;
break;
case OP_IF_LE:
cond = ARM_COND_LE;
break;
default:
cond = 0;
LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpCode);
dvmAbort();
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
/* This mostly likely will be optimized away in a later phase */
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
return false;
}
static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vSrc1Dest = mir->dalvikInsn.vA;
int vSrc2 = mir->dalvikInsn.vB;
int reg0, reg1, reg2;
switch (opCode) {
case OP_MOVE_16:
case OP_MOVE_OBJECT_16:
case OP_MOVE_FROM16:
case OP_MOVE_OBJECT_FROM16: {
reg0 = selectFirstRegister(cUnit, vSrc2, false);
reg1 = NEXT_REG(reg0);
loadValue(cUnit, vSrc2, reg0);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
}
case OP_MOVE_WIDE_16:
case OP_MOVE_WIDE_FROM16: {
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadValuePair(cUnit, vSrc2, reg0, reg1);
storeValuePair(cUnit, reg0, reg1, vSrc1Dest, reg2);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vA = mir->dalvikInsn.vA;
int vB = mir->dalvikInsn.vB;
int vC = mir->dalvikInsn.vC;
/* Don't optimize for register usage since out-of-line handlers are used */
if ( (opCode >= OP_ADD_INT) && (opCode <= OP_REM_DOUBLE)) {
return genArithOp( cUnit, mir );
}
switch (opCode) {
case OP_CMPL_FLOAT:
case OP_CMPG_FLOAT:
case OP_CMPL_DOUBLE:
case OP_CMPG_DOUBLE:
return genCmpX(cUnit, mir, vA, vB, vC);
case OP_CMP_LONG:
loadValuePair(cUnit,vB, r0, r1);
loadValuePair(cUnit, vC, r2, r3);
genDispatchToHandler(cUnit, TEMPLATE_CMP_LONG);
storeValue(cUnit, r0, vA, r1);
break;
case OP_AGET_WIDE:
genArrayGet(cUnit, mir, THUMB_LDR_RRR, vB, vC, vA, 3);
break;
case OP_AGET:
case OP_AGET_OBJECT:
genArrayGet(cUnit, mir, THUMB_LDR_RRR, vB, vC, vA, 2);
break;
case OP_AGET_BOOLEAN:
genArrayGet(cUnit, mir, THUMB_LDRB_RRR, vB, vC, vA, 0);
break;
case OP_AGET_BYTE:
genArrayGet(cUnit, mir, THUMB_LDRSB_RRR, vB, vC, vA, 0);
break;
case OP_AGET_CHAR:
genArrayGet(cUnit, mir, THUMB_LDRH_RRR, vB, vC, vA, 1);
break;
case OP_AGET_SHORT:
genArrayGet(cUnit, mir, THUMB_LDRSH_RRR, vB, vC, vA, 1);
break;
case OP_APUT_WIDE:
genArrayPut(cUnit, mir, THUMB_STR_RRR, vB, vC, vA, 3);
break;
case OP_APUT:
case OP_APUT_OBJECT:
genArrayPut(cUnit, mir, THUMB_STR_RRR, vB, vC, vA, 2);
break;
case OP_APUT_SHORT:
case OP_APUT_CHAR:
genArrayPut(cUnit, mir, THUMB_STRH_RRR, vB, vC, vA, 1);
break;
case OP_APUT_BYTE:
case OP_APUT_BOOLEAN:
genArrayPut(cUnit, mir, THUMB_STRB_RRR, vB, vC, vA, 0);
break;
default:
return true;
}
return false;
}
static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
switch (dalvikOpCode) {
case OP_FILL_ARRAY_DATA: {
loadConstant(cUnit, r4PC, (int)dvmInterpHandleFillArrayData);
loadValue(cUnit, mir->dalvikInsn.vA, r0);
loadConstant(cUnit, r1, (mir->dalvikInsn.vB << 1) +
(int) (cUnit->method->insns + mir->offset));
genExportPC(cUnit, mir, r2, r3 );
newLIR1(cUnit, THUMB_BLX_R, r4PC);
genZeroCheck(cUnit, r0, mir->offset, NULL);
break;
}
/*
* TODO
* - Add a 1 to 3-entry per-location cache here to completely
* bypass the dvmInterpHandle[Packed/Sparse]Switch call w/ chaining
* - Use out-of-line handlers for both of these
*/
case OP_PACKED_SWITCH:
case OP_SPARSE_SWITCH: {
if (dalvikOpCode == OP_PACKED_SWITCH) {
loadConstant(cUnit, r4PC, (int)dvmInterpHandlePackedSwitch);
} else {
loadConstant(cUnit, r4PC, (int)dvmInterpHandleSparseSwitch);
}
loadValue(cUnit, mir->dalvikInsn.vA, r1);
loadConstant(cUnit, r0, (mir->dalvikInsn.vB << 1) +
(int) (cUnit->method->insns + mir->offset));
newLIR1(cUnit, THUMB_BLX_R, r4PC);
loadConstant(cUnit, r1, (int)(cUnit->method->insns + mir->offset));
newLIR3(cUnit, THUMB_LDR_RRI5, r2, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNoChain)
>> 2);
newLIR3(cUnit, THUMB_ADD_RRR, r0, r0, r0);
newLIR3(cUnit, THUMB_ADD_RRR, r4PC, r0, r1);
newLIR1(cUnit, THUMB_BLX_R, r2);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
ArmLIR *labelList)
{
ArmLIR *retChainingCell = NULL;
ArmLIR *pcrLabel = NULL;
if (bb->fallThrough != NULL)
retChainingCell = &labelList[bb->fallThrough->id];
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch (mir->dalvikInsn.opCode) {
/*
* calleeMethod = this->clazz->vtable[
* method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
* ]
*/
case OP_INVOKE_VIRTUAL:
case OP_INVOKE_VIRTUAL_RANGE: {
ArmLIR *predChainingCell = &labelList[bb->taken->id];
int methodIndex =
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
methodIndex;
if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
genInvokeVirtualCommon(cUnit, mir, methodIndex,
retChainingCell,
predChainingCell,
pcrLabel);
break;
}
/*
* calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
* ->pResMethods[BBBB]->methodIndex]
*/
/* TODO - not excersized in RunPerf.jar */
case OP_INVOKE_SUPER:
case OP_INVOKE_SUPER_RANGE: {
int mIndex = cUnit->method->clazz->pDvmDex->
pResMethods[dInsn->vB]->methodIndex;
const Method *calleeMethod =
cUnit->method->clazz->super->vtable[mIndex];
if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
case OP_INVOKE_DIRECT:
case OP_INVOKE_DIRECT_RANGE: {
const Method *calleeMethod =
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB];
if (mir->dalvikInsn.opCode == OP_INVOKE_DIRECT)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
case OP_INVOKE_STATIC:
case OP_INVOKE_STATIC_RANGE: {
const Method *calleeMethod =
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB];
if (mir->dalvikInsn.opCode == OP_INVOKE_STATIC)
genProcessArgsNoRange(cUnit, mir, dInsn,
NULL /* no null check */);
else
genProcessArgsRange(cUnit, mir, dInsn,
NULL /* no null check */);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/*
* calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
* BBBB, method, method->clazz->pDvmDex)
*
* Given "invoke-interface {v0}", the following is the generated code:
*
* 0x426a9abe : ldr r0, [r5, #0] --+
* 0x426a9ac0 : mov r7, r5 |
* 0x426a9ac2 : sub r7, #24 |
* 0x426a9ac4 : cmp r0, #0 | genProcessArgsNoRange
* 0x426a9ac6 : beq 0x426a9afe |
* 0x426a9ac8 : stmia r7, <r0> --+
* 0x426a9aca : ldr r4, [pc, #104] --> r4 <- dalvikPC of this invoke
* 0x426a9acc : add r1, pc, #52 --> r1 <- &retChainingCell
* 0x426a9ace : add r2, pc, #60 --> r2 <- &predictedChainingCell
* 0x426a9ad0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_
* 0x426a9ad2 : blx_2 see above --+ PREDICTED_CHAIN
* 0x426a9ad4 : b 0x426a9b0c --> off to the predicted chain
* 0x426a9ad6 : b 0x426a9afe --> punt to the interpreter
* 0x426a9ad8 : mov r9, r1 --+
* 0x426a9ada : mov r10, r2 |
* 0x426a9adc : mov r12, r3 |
* 0x426a9ade : mov r0, r3 |
* 0x426a9ae0 : mov r1, #74 | dvmFindInterfaceMethodInCache
* 0x426a9ae2 : ldr r2, [pc, #76] |
* 0x426a9ae4 : ldr r3, [pc, #68] |
* 0x426a9ae6 : ldr r7, [pc, #64] |
* 0x426a9ae8 : blx r7 --+
* 0x426a9aea : mov r1, r9 --> r1 <- rechain count
* 0x426a9aec : cmp r1, #0 --> compare against 0
* 0x426a9aee : bgt 0x426a9af8 --> >=0? don't rechain
* 0x426a9af0 : ldr r7, [r6, #96] --+
* 0x426a9af2 : mov r2, r10 | dvmJitToPatchPredictedChain
* 0x426a9af4 : mov r3, r12 |
* 0x426a9af6 : blx r7 --+
* 0x426a9af8 : add r1, pc, #8 --> r1 <- &retChainingCell
* 0x426a9afa : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT
* 0x426a9afc : blx_2 see above --+
* -------- reconstruct dalvik PC : 0x428b786c @ +0x001e
* 0x426a9afe (0042): ldr r0, [pc, #52]
* Exception_Handling:
* 0x426a9b00 (0044): ldr r1, [r6, #84]
* 0x426a9b02 (0046): blx r1
* 0x426a9b04 (0048): .align4
* -------- chaining cell (hot): 0x0021
* 0x426a9b04 (0048): ldr r0, [r6, #92]
* 0x426a9b06 (004a): blx r0
* 0x426a9b08 (004c): data 0x7872(30834)
* 0x426a9b0a (004e): data 0x428b(17035)
* 0x426a9b0c (0050): .align4
* -------- chaining cell (predicted)
* 0x426a9b0c (0050): data 0x0000(0) --> will be patched into bx
* 0x426a9b0e (0052): data 0x0000(0)
* 0x426a9b10 (0054): data 0x0000(0) --> class
* 0x426a9b12 (0056): data 0x0000(0)
* 0x426a9b14 (0058): data 0x0000(0) --> method
* 0x426a9b16 (005a): data 0x0000(0)
* 0x426a9b18 (005c): data 0x0000(0) --> reset count
* 0x426a9b1a (005e): data 0x0000(0)
* 0x426a9b28 (006c): .word (0xad0392a5)
* 0x426a9b2c (0070): .word (0x6e750)
* 0x426a9b30 (0074): .word (0x4109a618)
* 0x426a9b34 (0078): .word (0x428b786c)
*/
case OP_INVOKE_INTERFACE:
case OP_INVOKE_INTERFACE_RANGE: {
ArmLIR *predChainingCell = &labelList[bb->taken->id];
int methodIndex = dInsn->vB;
if (mir->dalvikInsn.opCode == OP_INVOKE_INTERFACE)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* "this" is already left in r0 by genProcessArgs* */
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
/* r1 = &retChainingCell */
ArmLIR *addrRetChain = newLIR2(cUnit, THUMB_ADD_PC_REL,
r1, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
/* r2 = &predictedChainingCell */
ArmLIR *predictedChainingCell =
newLIR2(cUnit, THUMB_ADD_PC_REL, r2, 0);
predictedChainingCell->generic.target = (LIR *) predChainingCell;
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
/* return through lr - jump to the chaining cell */
genUnconditionalBranch(cUnit, predChainingCell);
/*
* null-check on "this" may have been eliminated, but we still need
* a PC-reconstruction label for stack overflow bailout.
*/
if (pcrLabel == NULL) {
int dPC = (int) (cUnit->method->insns + mir->offset);
pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
pcrLabel->opCode = ARM_PSEUDO_PC_RECONSTRUCTION_CELL;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
}
/* return through lr+2 - punt to the interpreter */
genUnconditionalBranch(cUnit, pcrLabel);
/*
* return through lr+4 - fully resolve the callee method.
* r1 <- count
* r2 <- &predictedChainCell
* r3 <- this->class
* r4 <- dPC
* r7 <- this->class->vtable
*/
/* Save count, &predictedChainCell, and class to high regs first */
newLIR2(cUnit, THUMB_MOV_RR_L2H, r9 & THUMB_REG_MASK, r1);
newLIR2(cUnit, THUMB_MOV_RR_L2H, r10 & THUMB_REG_MASK, r2);
newLIR2(cUnit, THUMB_MOV_RR_L2H, r12 & THUMB_REG_MASK, r3);
/* r0 now contains this->clazz */
newLIR2(cUnit, THUMB_MOV_RR, r0, r3);
/* r1 = BBBB */
loadConstant(cUnit, r1, dInsn->vB);
/* r2 = method (caller) */
loadConstant(cUnit, r2, (int) cUnit->method);
/* r3 = pDvmDex */
loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
loadConstant(cUnit, r7,
(intptr_t) dvmFindInterfaceMethodInCache);
newLIR1(cUnit, THUMB_BLX_R, r7);
/* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
newLIR2(cUnit, THUMB_MOV_RR_H2L, r1, r9 & THUMB_REG_MASK);
/* Check if rechain limit is reached */
newLIR2(cUnit, THUMB_CMP_RI8, r1, 0);
ArmLIR *bypassRechaining =
newLIR2(cUnit, THUMB_B_COND, 0, ARM_COND_GT);
newLIR3(cUnit, THUMB_LDR_RRI5, r7, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToPatchPredictedChain)
>> 2);
newLIR2(cUnit, THUMB_MOV_RR_H2L, r2, r10 & THUMB_REG_MASK);
newLIR2(cUnit, THUMB_MOV_RR_H2L, r3, r12 & THUMB_REG_MASK);
/*
* r0 = calleeMethod
* r2 = &predictedChainingCell
* r3 = class
*
* &returnChainingCell has been loaded into r1 but is not needed
* when patching the chaining cell and will be clobbered upon
* returning so it will be reconstructed again.
*/
newLIR1(cUnit, THUMB_BLX_R, r7);
/* r1 = &retChainingCell */
addrRetChain = newLIR3(cUnit, THUMB_ADD_PC_REL,
r1, 0, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
bypassRechaining->generic.target = (LIR *) addrRetChain;
/*
* r0 = this, r1 = calleeMethod,
* r1 = &ChainingCell,
* r4PC = callsiteDPC,
*/
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
#if defined(INVOKE_STATS)
gDvmJit.invokePredictedChain++;
#endif
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
break;
}
/* NOP */
case OP_INVOKE_DIRECT_EMPTY: {
return false;
}
case OP_FILLED_NEW_ARRAY:
case OP_FILLED_NEW_ARRAY_RANGE: {
/* Just let the interpreter deal with these */
genInterpSingleStep(cUnit, mir);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, ArmLIR *labelList)
{
ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
ArmLIR *predChainingCell = &labelList[bb->taken->id];
ArmLIR *pcrLabel = NULL;
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch (mir->dalvikInsn.opCode) {
/* calleeMethod = this->clazz->vtable[BBBB] */
case OP_INVOKE_VIRTUAL_QUICK_RANGE:
case OP_INVOKE_VIRTUAL_QUICK: {
int methodIndex = dInsn->vB;
if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL_QUICK)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
genInvokeVirtualCommon(cUnit, mir, methodIndex,
retChainingCell,
predChainingCell,
pcrLabel);
break;
}
/* calleeMethod = method->clazz->super->vtable[BBBB] */
case OP_INVOKE_SUPER_QUICK:
case OP_INVOKE_SUPER_QUICK_RANGE: {
const Method *calleeMethod =
cUnit->method->clazz->super->vtable[dInsn->vB];
if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER_QUICK)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
break;
}
default:
return true;
}
return false;
}
/*
* NOTE: We assume here that the special native inline routines
* are side-effect free. By making this assumption, we can safely
* re-execute the routine from the interpreter if it decides it
* wants to throw an exception. We still need to EXPORT_PC(), though.
*/
static bool handleFmt3inline(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch( mir->dalvikInsn.opCode) {
case OP_EXECUTE_INLINE: {
unsigned int i;
const InlineOperation* inLineTable = dvmGetInlineOpsTable();
int offset = offsetof(InterpState, retval);
int operation = dInsn->vB;
switch (operation) {
case INLINE_EMPTYINLINEMETHOD:
return false; /* Nop */
case INLINE_STRING_LENGTH:
return genInlinedStringLength(cUnit, mir);
case INLINE_MATH_ABS_INT:
return genInlinedAbsInt(cUnit, mir);
case INLINE_MATH_ABS_LONG:
return genInlinedAbsLong(cUnit, mir);
case INLINE_MATH_MIN_INT:
return genInlinedMinMaxInt(cUnit, mir, true);
case INLINE_MATH_MAX_INT:
return genInlinedMinMaxInt(cUnit, mir, false);
case INLINE_STRING_CHARAT:
return genInlinedStringCharAt(cUnit, mir);
case INLINE_MATH_SQRT:
if (genInlineSqrt(cUnit, mir))
return false;
else
break; /* Handle with C routine */
case INLINE_MATH_COS:
if (genInlineCos(cUnit, mir))
return false;
else
break; /* Handle with C routine */
case INLINE_MATH_SIN:
if (genInlineSin(cUnit, mir))
return false;
else
break; /* Handle with C routine */
case INLINE_MATH_ABS_FLOAT:
return genInlinedAbsFloat(cUnit, mir);
case INLINE_MATH_ABS_DOUBLE:
return genInlinedAbsDouble(cUnit, mir);
case INLINE_STRING_COMPARETO:
case INLINE_STRING_EQUALS:
break;
default:
dvmAbort();
}
/* Materialize pointer to retval & push */
newLIR2(cUnit, THUMB_MOV_RR, r4PC, rGLUE);
newLIR2(cUnit, THUMB_ADD_RI8, r4PC, offset);
/* Push r4 and (just to take up space) r5) */
newLIR1(cUnit, THUMB_PUSH, (1<<r4PC | 1<<rFP));
/* Get code pointer to inline routine */
loadConstant(cUnit, r4PC, (int)inLineTable[operation].func);
/* Export PC */
genExportPC(cUnit, mir, r0, r1 );
/* Load arguments to r0 through r3 as applicable */
for (i=0; i < dInsn->vA; i++) {
loadValue(cUnit, dInsn->arg[i], i);
}
/* Call inline routine */
newLIR1(cUnit, THUMB_BLX_R, r4PC);
/* Strip frame */
newLIR1(cUnit, THUMB_ADD_SPI7, 2);
/* Did we throw? If so, redo under interpreter*/
genZeroCheck(cUnit, r0, mir->offset, NULL);
resetRegisterScoreboard(cUnit);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
{
loadConstant(cUnit, r0, mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
loadConstant(cUnit, r1, (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
storeValuePair(cUnit, r0, r1, mir->dalvikInsn.vA, r2);
return false;
}
/*****************************************************************************/
/*
* The following are special processing routines that handle transfer of
* controls between compiled code and the interpreter. Certain VM states like
* Dalvik PC and special-purpose registers are reconstructed here.
*/
/* Chaining cell for code that may need warmup. */
static void handleNormalChainingCell(CompilationUnit *cUnit,
unsigned int offset)
{
newLIR3(cUnit, THUMB_LDR_RRI5, r0, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
newLIR1(cUnit, THUMB_BLX_R, r0);
addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
}
/*
* Chaining cell for instructions that immediately following already translated
* code.
*/
static void handleHotChainingCell(CompilationUnit *cUnit,
unsigned int offset)
{
newLIR3(cUnit, THUMB_LDR_RRI5, r0, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToTraceSelect) >> 2);
newLIR1(cUnit, THUMB_BLX_R, r0);
addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
}
/* Chaining cell for monomorphic method invocations. */
static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
const Method *callee)
{
newLIR3(cUnit, THUMB_LDR_RRI5, r0, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToTraceSelect) >> 2);
newLIR1(cUnit, THUMB_BLX_R, r0);
addWordData(cUnit, (int) (callee->insns), true);
}
/* Chaining cell for monomorphic method invocations. */
static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
{
/* Should not be executed in the initial state */
addWordData(cUnit, PREDICTED_CHAIN_BX_PAIR_INIT, true);
/* To be filled: class */
addWordData(cUnit, PREDICTED_CHAIN_CLAZZ_INIT, true);
/* To be filled: method */
addWordData(cUnit, PREDICTED_CHAIN_METHOD_INIT, true);
/*
* Rechain count. The initial value of 0 here will trigger chaining upon
* the first invocation of this callsite.
*/
addWordData(cUnit, PREDICTED_CHAIN_COUNTER_INIT, true);
}
/* Load the Dalvik PC into r0 and jump to the specified target */
static void handlePCReconstruction(CompilationUnit *cUnit,
ArmLIR *targetLabel)
{
ArmLIR **pcrLabel =
(ArmLIR **) cUnit->pcReconstructionList.elemList;
int numElems = cUnit->pcReconstructionList.numUsed;
int i;
for (i = 0; i < numElems; i++) {
dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
/* r0 = dalvik PC */
loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
genUnconditionalBranch(cUnit, targetLabel);
}
}
/* Entry function to invoke the backend of the JIT compiler */
void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
{
/* Used to hold the labels of each block */
ArmLIR *labelList =
dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
GrowableList chainingListByType[CHAINING_CELL_LAST];
int i;
/*
* Initialize various types chaining lists.
*/
for (i = 0; i < CHAINING_CELL_LAST; i++) {
dvmInitGrowableList(&chainingListByType[i], 2);
}
BasicBlock **blockList = cUnit->blockList;
if (cUnit->executionCount) {
/*
* Reserve 6 bytes at the beginning of the trace
* +----------------------------+
* | execution count (4 bytes) |
* +----------------------------+
* | chain cell offset (2 bytes)|
* +----------------------------+
* ...and then code to increment the execution
* count:
* mov r0, pc @ move adr of "mov r0,pc" + 4 to r0
* sub r0, #10 @ back up to addr of executionCount
* ldr r1, [r0]
* add r1, #1
* str r1, [r0]
*/
newLIR1(cUnit, ARM_16BIT_DATA, 0);
newLIR1(cUnit, ARM_16BIT_DATA, 0);
cUnit->chainCellOffsetLIR =
(LIR *) newLIR1(cUnit, ARM_16BIT_DATA, CHAIN_CELL_OFFSET_TAG);
cUnit->headerSize = 6;
newLIR2(cUnit, THUMB_MOV_RR_H2L, r0, rpc & THUMB_REG_MASK);
newLIR2(cUnit, THUMB_SUB_RI8, r0, 10);
newLIR3(cUnit, THUMB_LDR_RRI5, r1, r0, 0);
newLIR2(cUnit, THUMB_ADD_RI8, r1, 1);
newLIR3(cUnit, THUMB_STR_RRI5, r1, r0, 0);
} else {
/* Just reserve 2 bytes for the chain cell offset */
cUnit->chainCellOffsetLIR =
(LIR *) newLIR1(cUnit, ARM_16BIT_DATA, CHAIN_CELL_OFFSET_TAG);
cUnit->headerSize = 2;
}
/* Handle the content in each basic block */
for (i = 0; i < cUnit->numBlocks; i++) {
blockList[i]->visited = true;
MIR *mir;
labelList[i].operands[0] = blockList[i]->startOffset;
if (blockList[i]->blockType >= CHAINING_CELL_LAST) {
/*
* Append the label pseudo LIR first. Chaining cells will be handled
* separately afterwards.
*/
dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
}
if (blockList[i]->blockType == DALVIK_BYTECODE) {
labelList[i].opCode = ARM_PSEUDO_NORMAL_BLOCK_LABEL;
/* Reset the register state */
resetRegisterScoreboard(cUnit);
} else {
switch (blockList[i]->blockType) {
case CHAINING_CELL_NORMAL:
labelList[i].opCode = ARM_PSEUDO_CHAINING_CELL_NORMAL;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[CHAINING_CELL_NORMAL], (void *) i);
break;
case CHAINING_CELL_INVOKE_SINGLETON:
labelList[i].opCode =
ARM_PSEUDO_CHAINING_CELL_INVOKE_SINGLETON;
labelList[i].operands[0] =
(int) blockList[i]->containingMethod;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[CHAINING_CELL_INVOKE_SINGLETON],
(void *) i);
break;
case CHAINING_CELL_INVOKE_PREDICTED:
labelList[i].opCode =
ARM_PSEUDO_CHAINING_CELL_INVOKE_PREDICTED;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[CHAINING_CELL_INVOKE_PREDICTED],
(void *) i);
break;
case CHAINING_CELL_HOT:
labelList[i].opCode =
ARM_PSEUDO_CHAINING_CELL_HOT;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[CHAINING_CELL_HOT],
(void *) i);
break;
case PC_RECONSTRUCTION:
/* Make sure exception handling block is next */
labelList[i].opCode =
ARM_PSEUDO_PC_RECONSTRUCTION_BLOCK_LABEL;
assert (i == cUnit->numBlocks - 2);
handlePCReconstruction(cUnit, &labelList[i+1]);
break;
case EXCEPTION_HANDLING:
labelList[i].opCode = ARM_PSEUDO_EH_BLOCK_LABEL;
if (cUnit->pcReconstructionList.numUsed) {
newLIR3(cUnit, THUMB_LDR_RRI5, r1, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpPunt)
>> 2);
newLIR1(cUnit, THUMB_BLX_R, r1);
}
break;
default:
break;
}
continue;
}
ArmLIR *headLIR = NULL;
for (mir = blockList[i]->firstMIRInsn; mir; mir = mir->next) {
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
InstructionFormat dalvikFormat =
dexGetInstrFormat(gDvm.instrFormat, dalvikOpCode);
ArmLIR *boundaryLIR =
newLIR2(cUnit, ARM_PSEUDO_DALVIK_BYTECODE_BOUNDARY,
mir->offset,dalvikOpCode);
/* Remember the first LIR for this block */
if (headLIR == NULL) {
headLIR = boundaryLIR;
}
bool notHandled;
/*
* Debugging: screen the opcode first to see if it is in the
* do[-not]-compile list
*/
bool singleStepMe =
gDvmJit.includeSelectedOp !=
((gDvmJit.opList[dalvikOpCode >> 3] &
(1 << (dalvikOpCode & 0x7))) !=
0);
if (singleStepMe || cUnit->allSingleStep) {
notHandled = false;
genInterpSingleStep(cUnit, mir);
} else {
opcodeCoverage[dalvikOpCode]++;
switch (dalvikFormat) {
case kFmt10t:
case kFmt20t:
case kFmt30t:
notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
mir, blockList[i], labelList);
break;
case kFmt10x:
notHandled = handleFmt10x(cUnit, mir);
break;
case kFmt11n:
case kFmt31i:
notHandled = handleFmt11n_Fmt31i(cUnit, mir);
break;
case kFmt11x:
notHandled = handleFmt11x(cUnit, mir);
break;
case kFmt12x:
notHandled = handleFmt12x(cUnit, mir);
break;
case kFmt20bc:
notHandled = handleFmt20bc(cUnit, mir);
break;
case kFmt21c:
case kFmt31c:
notHandled = handleFmt21c_Fmt31c(cUnit, mir);
break;
case kFmt21h:
notHandled = handleFmt21h(cUnit, mir);
break;
case kFmt21s:
notHandled = handleFmt21s(cUnit, mir);
break;
case kFmt21t:
notHandled = handleFmt21t(cUnit, mir, blockList[i],
labelList);
break;
case kFmt22b:
case kFmt22s:
notHandled = handleFmt22b_Fmt22s(cUnit, mir);
break;
case kFmt22c:
notHandled = handleFmt22c(cUnit, mir);
break;
case kFmt22cs:
notHandled = handleFmt22cs(cUnit, mir);
break;
case kFmt22t:
notHandled = handleFmt22t(cUnit, mir, blockList[i],
labelList);
break;
case kFmt22x:
case kFmt32x:
notHandled = handleFmt22x_Fmt32x(cUnit, mir);
break;
case kFmt23x:
notHandled = handleFmt23x(cUnit, mir);
break;
case kFmt31t:
notHandled = handleFmt31t(cUnit, mir);
break;
case kFmt3rc:
case kFmt35c:
notHandled = handleFmt35c_3rc(cUnit, mir, blockList[i],
labelList);
break;
case kFmt3rms:
case kFmt35ms:
notHandled = handleFmt35ms_3rms(cUnit, mir,blockList[i],
labelList);
break;
case kFmt3inline:
notHandled = handleFmt3inline(cUnit, mir);
break;
case kFmt51l:
notHandled = handleFmt51l(cUnit, mir);
break;
default:
notHandled = true;
break;
}
}
if (notHandled) {
LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n",
mir->offset,
dalvikOpCode, getOpcodeName(dalvikOpCode),
dalvikFormat);
dvmAbort();
break;
}
}
/* Eliminate redundant loads/stores and delay stores into later slots */
dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
cUnit->lastLIRInsn);
/*
* Check if the block is terminated due to trace length constraint -
* insert an unconditional branch to the chaining cell.
*/
if (blockList[i]->needFallThroughBranch) {
genUnconditionalBranch(cUnit,
&labelList[blockList[i]->fallThrough->id]);
}
}
/* Handle the chaining cells in predefined order */
for (i = 0; i < CHAINING_CELL_LAST; i++) {
size_t j;
int *blockIdList = (int *) chainingListByType[i].elemList;
cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
/* No chaining cells of this type */
if (cUnit->numChainingCells[i] == 0)
continue;
/* Record the first LIR for a new type of chaining cell */
cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
for (j = 0; j < chainingListByType[i].numUsed; j++) {
int blockId = blockIdList[j];
/* Align this chaining cell first */
newLIR0(cUnit, ARM_PSEUDO_ALIGN4);
/* Insert the pseudo chaining instruction */
dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
switch (blockList[blockId]->blockType) {
case CHAINING_CELL_NORMAL:
handleNormalChainingCell(cUnit,
blockList[blockId]->startOffset);
break;
case CHAINING_CELL_INVOKE_SINGLETON:
handleInvokeSingletonChainingCell(cUnit,
blockList[blockId]->containingMethod);
break;
case CHAINING_CELL_INVOKE_PREDICTED:
handleInvokePredictedChainingCell(cUnit);
break;
case CHAINING_CELL_HOT:
handleHotChainingCell(cUnit,
blockList[blockId]->startOffset);
break;
default:
dvmAbort();
break;
}
}
}
dvmCompilerApplyGlobalOptimizations(cUnit);
}
/* Accept the work and start compiling */
bool dvmCompilerDoWork(CompilerWorkOrder *work)
{
bool res;
if (gDvmJit.codeCacheFull) {
return false;
}
switch (work->kind) {
case kWorkOrderMethod:
res = dvmCompileMethod(work->info, &work->result);
break;
case kWorkOrderTrace:
/* Start compilation with maximally allowed trace length */
res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result);
break;
default:
res = false;
dvmAbort();
}
return res;
}
/* Architectural-specific debugging helpers go here */
void dvmCompilerArchDump(void)
{
/* Print compiled opcode in this VM instance */
int i, start, streak;
char buf[1024];
streak = i = 0;
buf[0] = 0;
while (opcodeCoverage[i] == 0 && i < 256) {
i++;
}
if (i == 256) {
return;
}
for (start = i++, streak = 1; i < 256; i++) {
if (opcodeCoverage[i]) {
streak++;
} else {
if (streak == 1) {
sprintf(buf+strlen(buf), "%x,", start);
} else {
sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
}
streak = 0;
while (opcodeCoverage[i] == 0 && i < 256) {
i++;
}
if (i < 256) {
streak = 1;
start = i;
}
}
}
if (streak) {
if (streak == 1) {
sprintf(buf+strlen(buf), "%x", start);
} else {
sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
}
}
if (strlen(buf)) {
LOGD("dalvik.vm.jit.op = %s", buf);
}
}