blob: 78f40498bd37cd8d681621ef90e71738e275c383 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Dalvik.h"
#include "alloc/clz.h"
#include "alloc/HeapBitmap.h"
#include "alloc/HeapInternal.h"
#include "alloc/HeapSource.h"
#include "alloc/MarkSweep.h"
#include <limits.h> // for ULONG_MAX
#include <sys/mman.h> // for madvise(), mmap()
#include <cutils/ashmem.h>
#include <errno.h>
#define VERBOSE_GC 0
#define GC_LOG_TAG LOG_TAG "-gc"
#if LOG_NDEBUG
#define LOGV_GC(...) ((void)0)
#define LOGD_GC(...) ((void)0)
#else
#define LOGV_GC(...) LOG(LOG_VERBOSE, GC_LOG_TAG, __VA_ARGS__)
#define LOGD_GC(...) LOG(LOG_DEBUG, GC_LOG_TAG, __VA_ARGS__)
#endif
#if VERBOSE_GC
#define LOGVV_GC(...) LOGV_GC(__VA_ARGS__)
#else
#define LOGVV_GC(...) ((void)0)
#endif
#define LOGI_GC(...) LOG(LOG_INFO, GC_LOG_TAG, __VA_ARGS__)
#define LOGW_GC(...) LOG(LOG_WARN, GC_LOG_TAG, __VA_ARGS__)
#define LOGE_GC(...) LOG(LOG_ERROR, GC_LOG_TAG, __VA_ARGS__)
#define LOG_SCAN(...) LOGV_GC("SCAN: " __VA_ARGS__)
#define LOG_MARK(...) LOGV_GC("MARK: " __VA_ARGS__)
#define LOG_SWEEP(...) LOGV_GC("SWEEP: " __VA_ARGS__)
#define LOG_REF(...) LOGV_GC("REF: " __VA_ARGS__)
#define LOGV_SCAN(...) LOGVV_GC("SCAN: " __VA_ARGS__)
#define LOGV_MARK(...) LOGVV_GC("MARK: " __VA_ARGS__)
#define LOGV_SWEEP(...) LOGVV_GC("SWEEP: " __VA_ARGS__)
#define LOGV_REF(...) LOGVV_GC("REF: " __VA_ARGS__)
#define ALIGN_UP_TO_PAGE_SIZE(p) \
(((size_t)(p) + (SYSTEM_PAGE_SIZE - 1)) & ~(SYSTEM_PAGE_SIZE - 1))
/* Do not cast the result of this to a boolean; the only set bit
* may be > 1<<8.
*/
static inline long isMarked(const void *obj, const GcMarkContext *ctx)
{
return dvmHeapBitmapIsObjectBitSet(ctx->bitmap, obj);
}
static bool
createMarkStack(GcMarkStack *stack)
{
const Object **limit;
size_t size;
int fd, err;
/* Create a stack big enough for the worst possible case,
* where the heap is perfectly full of the smallest object.
* TODO: be better about memory usage; use a smaller stack with
* overflow detection and recovery.
*/
size = dvmHeapSourceGetIdealFootprint() * sizeof(Object*) /
(sizeof(Object) + HEAP_SOURCE_CHUNK_OVERHEAD);
size = ALIGN_UP_TO_PAGE_SIZE(size);
fd = ashmem_create_region("dalvik-heap-markstack", size);
if (fd < 0) {
LOGE_GC("Could not create %d-byte ashmem mark stack: %s\n",
size, strerror(errno));
return false;
}
limit = (const Object **)mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0);
err = errno;
close(fd);
if (limit == MAP_FAILED) {
LOGE_GC("Could not mmap %d-byte ashmem mark stack: %s\n",
size, strerror(err));
return false;
}
memset(stack, 0, sizeof(*stack));
stack->limit = limit;
stack->base = (const Object **)((uintptr_t)limit + size);
stack->top = stack->base;
return true;
}
static void
destroyMarkStack(GcMarkStack *stack)
{
munmap((char *)stack->limit,
(uintptr_t)stack->base - (uintptr_t)stack->limit);
memset(stack, 0, sizeof(*stack));
}
#define MARK_STACK_PUSH(stack, obj) \
do { \
*--(stack).top = (obj); \
} while (false)
bool
dvmHeapBeginMarkStep(GcMode mode)
{
GcMarkContext *mc = &gDvm.gcHeap->markContext;
if (!createMarkStack(&mc->stack)) {
return false;
}
mc->finger = NULL;
mc->immuneLimit = dvmHeapSourceGetImmuneLimit(mode);
return true;
}
static long
setAndReturnMarkBit(GcMarkContext *ctx, const void *obj)
{
return dvmHeapBitmapSetAndReturnObjectBit(ctx->bitmap, obj);
}
static void
markObjectNonNull(const Object *obj, GcMarkContext *ctx,
bool checkFinger, bool forceStack)
{
assert(ctx != NULL);
assert(obj != NULL);
assert(dvmIsValidObject(obj));
if (obj < (Object *)ctx->immuneLimit) {
assert(isMarked(obj, ctx));
return;
}
if (!setAndReturnMarkBit(ctx, obj)) {
/* This object was not previously marked.
*/
if (forceStack || (checkFinger && (void *)obj < ctx->finger)) {
/* This object will need to go on the mark stack.
*/
MARK_STACK_PUSH(ctx->stack, obj);
}
#if WITH_HPROF
if (gDvm.gcHeap->hprofContext != NULL) {
hprofMarkRootObject(gDvm.gcHeap->hprofContext, obj, 0);
}
#endif
/* obj->clazz can be NULL if we catch an object between
* dvmMalloc() and DVM_OBJECT_INIT(). This is ok.
*/
LOGV_MARK("0x%08x %s\n", (uint)obj,
obj->clazz == NULL ? "<null class>" : obj->clazz->name);
}
}
/* Used to mark objects when recursing. Recursion is done by moving
* the finger across the bitmaps in address order and marking child
* objects. Any newly-marked objects whose addresses are lower than
* the finger won't be visited by the bitmap scan, so those objects
* need to be added to the mark stack.
*/
static void markObject(const Object *obj, GcMarkContext *ctx)
{
if (obj != NULL) {
markObjectNonNull(obj, ctx, true, false);
}
}
/* If the object hasn't already been marked, mark it and
* schedule it to be scanned for references.
*
* obj may not be NULL. The macro dvmMarkObject() should
* be used in situations where a reference may be NULL.
*
* This function may only be called when marking the root
* set. When recursing, use the internal markObject().
*/
void
dvmMarkObjectNonNull(const Object *obj)
{
assert(obj != NULL);
markObjectNonNull(obj, &gDvm.gcHeap->markContext, false, false);
}
/* Mark the set of root objects.
*
* Things we need to scan:
* - System classes defined by root classloader
* - For each thread:
* - Interpreted stack, from top to "curFrame"
* - Dalvik registers (args + local vars)
* - JNI local references
* - Automatic VM local references (TrackedAlloc)
* - Associated Thread/VMThread object
* - ThreadGroups (could track & start with these instead of working
* upward from Threads)
* - Exception currently being thrown, if present
* - JNI global references
* - Interned string table
* - Primitive classes
* - Special objects
* - gDvm.outOfMemoryObj
* - Objects allocated with ALLOC_NO_GC
* - Objects pending finalization (but not yet finalized)
* - Objects in debugger object registry
*
* Don't need:
* - Native stack (for in-progress stuff in the VM)
* - The TrackedAlloc stuff watches all native VM references.
*/
void dvmHeapMarkRootSet()
{
HeapRefTable *refs;
GcHeap *gcHeap;
Object **op;
gcHeap = gDvm.gcHeap;
HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_STICKY_CLASS, 0);
LOG_SCAN("immune objects");
dvmMarkImmuneObjects(gcHeap->markContext.immuneLimit);
LOG_SCAN("root class loader\n");
dvmGcScanRootClassLoader();
LOG_SCAN("primitive classes\n");
dvmGcScanPrimitiveClasses();
/* dvmGcScanRootThreadGroups() sets a bunch of
* different scan states internally.
*/
HPROF_CLEAR_GC_SCAN_STATE();
LOG_SCAN("root thread groups\n");
dvmGcScanRootThreadGroups();
HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_INTERNED_STRING, 0);
LOG_SCAN("interned strings\n");
dvmGcScanInternedStrings();
HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_JNI_GLOBAL, 0);
LOG_SCAN("JNI global refs\n");
dvmGcMarkJniGlobalRefs();
HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_REFERENCE_CLEANUP, 0);
LOG_SCAN("pending reference operations\n");
dvmHeapMarkLargeTableRefs(gcHeap->referenceOperations, true);
HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_FINALIZING, 0);
LOG_SCAN("pending finalizations\n");
dvmHeapMarkLargeTableRefs(gcHeap->pendingFinalizationRefs, false);
HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_DEBUGGER, 0);
LOG_SCAN("debugger refs\n");
dvmGcMarkDebuggerRefs();
HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_VM_INTERNAL, 0);
/* Mark all ALLOC_NO_GC objects.
*/
LOG_SCAN("ALLOC_NO_GC objects\n");
refs = &gcHeap->nonCollectableRefs;
op = refs->table;
while ((uintptr_t)op < (uintptr_t)refs->nextEntry) {
dvmMarkObjectNonNull(*(op++));
}
/* Mark any special objects we have sitting around.
*/
LOG_SCAN("special objects\n");
dvmMarkObjectNonNull(gDvm.outOfMemoryObj);
dvmMarkObjectNonNull(gDvm.internalErrorObj);
dvmMarkObjectNonNull(gDvm.noClassDefFoundErrorObj);
//TODO: scan object references sitting in gDvm; use pointer begin & end
HPROF_CLEAR_GC_SCAN_STATE();
}
/*
* Nothing past this point is allowed to use dvmMarkObject() or
* dvmMarkObjectNonNull(), which are for root-marking only.
* Scanning/recursion must use markObject(), which takes the finger
* into account.
*/
#undef dvmMarkObject
#define dvmMarkObject __dont_use_dvmMarkObject__
#define dvmMarkObjectNonNull __dont_use_dvmMarkObjectNonNull__
/*
* Scans instance fields.
*/
static void scanInstanceFields(const Object *obj, GcMarkContext *ctx)
{
assert(obj != NULL);
assert(obj->clazz != NULL);
assert(ctx != NULL);
if (obj->clazz->refOffsets != CLASS_WALK_SUPER) {
unsigned int refOffsets = obj->clazz->refOffsets;
while (refOffsets != 0) {
const int rshift = CLZ(refOffsets);
refOffsets &= ~(CLASS_HIGH_BIT >> rshift);
markObject(dvmGetFieldObject((Object*)obj,
CLASS_OFFSET_FROM_CLZ(rshift)), ctx);
}
} else {
ClassObject *clazz;
int i;
for (clazz = obj->clazz; clazz != NULL; clazz = clazz->super) {
InstField *field = clazz->ifields;
for (i = 0; i < clazz->ifieldRefCount; ++i, ++field) {
void *addr = BYTE_OFFSET((Object *)obj, field->byteOffset);
markObject(((JValue *)addr)->l, ctx);
}
}
}
}
/*
* Scans the header, static field references, and interface
* pointers of a class object.
*/
static void scanClassObject(const ClassObject *obj, GcMarkContext *ctx)
{
int i;
assert(obj != NULL);
assert(obj->obj.clazz == gDvm.classJavaLangClass);
assert(ctx != NULL);
markObject((Object *)obj->obj.clazz, ctx);
if (IS_CLASS_FLAG_SET(obj, CLASS_ISARRAY)) {
markObject((Object *)obj->elementClass, ctx);
}
markObject((Object *)obj->super, ctx);
markObject(obj->classLoader, ctx);
/* Scan static field references. */
for (i = 0; i < obj->sfieldCount; ++i) {
char ch = obj->sfields[i].field.signature[0];
if (ch == '[' || ch == 'L') {
markObject(obj->sfields[i].value.l, ctx);
}
}
/* Scan the instance fields. */
scanInstanceFields((const Object *)obj, ctx);
/* Scan interface references. */
for (i = 0; i < obj->interfaceCount; ++i) {
markObject((Object *)obj->interfaces[i], ctx);
}
}
/*
* Scans the header of all array objects. If the array object is
* specialized to a reference type, scans the array data as well.
*/
static void scanArrayObject(const ArrayObject *obj, GcMarkContext *ctx)
{
size_t i;
assert(obj != NULL);
assert(obj->obj.clazz != NULL);
assert(ctx != NULL);
/* Scan the class object reference. */
markObject((Object *)obj->obj.clazz, ctx);
if (IS_CLASS_FLAG_SET(obj->obj.clazz, CLASS_ISOBJECTARRAY)) {
/* Scan the array contents. */
Object **contents = (Object **)obj->contents;
for (i = 0; i < obj->length; ++i) {
markObject(contents[i], ctx);
}
}
}
/*
* Process the "referent" field in a java.lang.ref.Reference. If the
* referent has not yet been marked, put it on the appropriate list in
* the gcHeap for later processing.
*/
static void delayReferenceReferent(const DataObject *obj,
GcMarkContext *ctx)
{
assert(obj != NULL);
assert(obj->obj.clazz != NULL);
assert(ctx != NULL);
GcHeap *gcHeap = gDvm.gcHeap;
Object *referent;
/* It's a subclass of java/lang/ref/Reference.
* The fields in this class have been arranged
* such that scanInstanceFields() did not actually
* mark the "referent" field; we need to handle
* it specially.
*
* If the referent already has a strong mark (isMarked(referent)),
* we don't care about its reference status.
*/
referent = dvmGetFieldObject((Object *)obj,
gDvm.offJavaLangRefReference_referent);
if (referent != NULL && !isMarked(referent, ctx))
{
u4 refFlags;
/* Find out what kind of reference is pointing
* to referent.
*/
refFlags = GET_CLASS_FLAG_GROUP(obj->obj.clazz,
CLASS_ISREFERENCE |
CLASS_ISWEAKREFERENCE |
CLASS_ISPHANTOMREFERENCE);
/* We use the vmData field of Reference objects
* as a next pointer in a singly-linked list.
* That way, we don't need to allocate any memory
* while we're doing a GC.
*/
#define ADD_REF_TO_LIST(list, ref) \
do { \
Object *ARTL_ref_ = (/*de-const*/Object *)(ref); \
dvmSetFieldObject(ARTL_ref_, \
gDvm.offJavaLangRefReference_vmData, list); \
list = ARTL_ref_; \
} while (false)
/* At this stage, we just keep track of all of
* the live references that we've seen. Later,
* we'll walk through each of these lists and
* deal with the referents.
*/
if (refFlags == CLASS_ISREFERENCE) {
/* It's a soft reference. Depending on the state,
* we'll attempt to collect all of them, some of
* them, or none of them.
*/
ADD_REF_TO_LIST(gcHeap->softReferences, obj);
} else {
/* It's a weak or phantom reference.
* Clearing CLASS_ISREFERENCE will reveal which.
*/
refFlags &= ~CLASS_ISREFERENCE;
if (refFlags == CLASS_ISWEAKREFERENCE) {
ADD_REF_TO_LIST(gcHeap->weakReferences, obj);
} else if (refFlags == CLASS_ISPHANTOMREFERENCE) {
ADD_REF_TO_LIST(gcHeap->phantomReferences, obj);
} else {
assert(!"Unknown reference type");
}
}
#undef ADD_REF_TO_LIST
}
}
/*
* Scans the header and field references of a data object.
*/
static void scanDataObject(const DataObject *obj, GcMarkContext *ctx)
{
assert(obj != NULL);
assert(obj->obj.clazz != NULL);
assert(ctx != NULL);
/* Scan the class object. */
markObject((Object *)obj->obj.clazz, ctx);
/* Scan the instance fields. */
scanInstanceFields((const Object *)obj, ctx);
if (IS_CLASS_FLAG_SET(obj->obj.clazz, CLASS_ISREFERENCE)) {
delayReferenceReferent(obj, ctx);
}
}
/*
* Scans an object reference. Determines the type of the reference
* and dispatches to a specialized scanning routine.
*/
static void scanObject(const Object *obj, GcMarkContext *ctx)
{
ClassObject *clazz;
assert(obj != NULL);
assert(ctx != NULL);
/* Check that the object is aligned. */
assert(((uintptr_t)obj & 7) == 0);
clazz = obj->clazz;
/* Check that the class object is aligned. */
assert(((uintptr_t)clazz & 7) == 0);
/* Dispatch a type-specific scan routine. */
if (clazz == gDvm.classJavaLangClass) {
scanClassObject((ClassObject *)obj, ctx);
} else if (clazz == NULL) {
return;
} else if (clazz == gDvm.unlinkedJavaLangClass) {
return;
} else {
assert(clazz != NULL);
if (IS_CLASS_FLAG_SET(clazz, CLASS_ISARRAY)) {
scanArrayObject((ArrayObject *)obj, ctx);
} else {
scanDataObject((DataObject *)obj, ctx);
}
}
}
static void
processMarkStack(GcMarkContext *ctx)
{
const Object **const base = ctx->stack.base;
/* Scan anything that's on the mark stack.
* We can't use the bitmaps anymore, so use
* a finger that points past the end of them.
*/
ctx->finger = (void *)ULONG_MAX;
while (ctx->stack.top != base) {
scanObject(*ctx->stack.top++, ctx);
}
}
#ifndef NDEBUG
static uintptr_t gLastFinger = 0;
#endif
static bool
scanBitmapCallback(size_t numPtrs, void **ptrs, const void *finger, void *arg)
{
GcMarkContext *ctx = (GcMarkContext *)arg;
size_t i;
#ifndef NDEBUG
assert((uintptr_t)finger >= gLastFinger);
gLastFinger = (uintptr_t)finger;
#endif
ctx->finger = finger;
for (i = 0; i < numPtrs; i++) {
scanObject(*ptrs++, ctx);
}
return true;
}
/* Given bitmaps with the root set marked, find and mark all
* reachable objects. When this returns, the entire set of
* live objects will be marked and the mark stack will be empty.
*/
void dvmHeapScanMarkedObjects(void)
{
GcMarkContext *ctx = &gDvm.gcHeap->markContext;
assert(ctx->finger == NULL);
/* The bitmaps currently have bits set for the root set.
* Walk across the bitmaps and scan each object.
*/
#ifndef NDEBUG
gLastFinger = 0;
#endif
dvmHeapBitmapWalk(ctx->bitmap, scanBitmapCallback, ctx);
/* We've walked the mark bitmaps. Scan anything that's
* left on the mark stack.
*/
processMarkStack(ctx);
LOG_SCAN("done with marked objects\n");
}
/** Clear the referent field.
*/
static void clearReference(Object *reference)
{
/* This is what the default implementation of Reference.clear()
* does. We're required to clear all references to a given
* referent atomically, so we can't pop in and out of interp
* code each time.
*
* We don't ever actaully call overriding implementations of
* Reference.clear().
*/
dvmSetFieldObject(reference,
gDvm.offJavaLangRefReference_referent, NULL);
}
/*
* Returns true if the reference was registered with a reference queue
* and has not yet been enqueued.
*/
static bool isEnqueuable(const Object *reference)
{
Object *queue = dvmGetFieldObject(reference,
gDvm.offJavaLangRefReference_queue);
Object *queueNext = dvmGetFieldObject(reference,
gDvm.offJavaLangRefReference_queueNext);
if (queue == NULL || queueNext != NULL) {
/* There is no queue, or the reference has already
* been enqueued. The Reference.enqueue() method
* will do nothing even if we call it.
*/
return false;
}
/* We need to call enqueue(), but if we called it from
* here we'd probably deadlock. Schedule a call.
*/
return true;
}
/*
* Schedules a reference to be appended to its reference queue.
*/
static void enqueueReference(Object *ref)
{
LargeHeapRefTable **table;
Object *op;
assert(((uintptr_t)ref & 3) == 0);
assert((WORKER_ENQUEUE & ~3) == 0);
assert(dvmGetFieldObject(ref, gDvm.offJavaLangRefReference_queue) != NULL);
assert(dvmGetFieldObject(ref, gDvm.offJavaLangRefReference_queueNext) == NULL);
/* Stuff the enqueue bit in the bottom of the pointer.
* Assumes that objects are 8-byte aligned.
*
* Note that we are adding the *Reference* (which
* is by definition already marked at this point) to
* this list; we're not adding the referent (which
* has already been cleared).
*/
table = &gDvm.gcHeap->referenceOperations;
op = (Object *)((uintptr_t)ref | WORKER_ENQUEUE);
if (!dvmHeapAddRefToLargeTable(table, op)) {
LOGE_HEAP("enqueueReference(): no room for any more "
"reference operations\n");
dvmAbort();
}
}
/*
* Walks the reference list marking any references subject to the
* reference clearing policy. References with a black referent are
* removed from the list. References with white referents biased
* toward saving are blackened and also removed from the list.
*/
void dvmHandleSoftRefs(Object **list)
{
GcMarkContext *markContext;
Object *ref, *referent;
Object *prev, *next;
size_t referentOffset, vmDataOffset;
unsigned counter;
bool marked;
markContext = &gDvm.gcHeap->markContext;
vmDataOffset = gDvm.offJavaLangRefReference_vmData;
referentOffset = gDvm.offJavaLangRefReference_referent;
counter = 0;
prev = next = NULL;
ref = *list;
while (ref != NULL) {
referent = dvmGetFieldObject(ref, referentOffset);
next = dvmGetFieldObject(ref, vmDataOffset);
assert(referent != NULL);
marked = isMarked(referent, markContext);
if (!marked && ((++counter) & 1)) {
/* Referent is white and biased toward saving, mark it. */
assert(referent != NULL);
markObject(referent, markContext);
marked = true;
}
if (marked) {
/* Referent is black, unlink it. */
if (prev != NULL) {
dvmSetFieldObject(ref, vmDataOffset, NULL);
dvmSetFieldObject(prev, vmDataOffset, next);
}
} else {
/* Referent is white, skip over it. */
prev = ref;
}
ref = next;
}
/*
* Restart the mark with the newly black references added to the
* root set.
*/
processMarkStack(markContext);
}
/*
* Walks the reference list and clears references with an unmarked
* (white) referents. Cleared references registered to a reference
* queue are scheduled for appending by the heap worker thread.
*/
void dvmClearWhiteRefs(Object **list)
{
GcMarkContext *markContext;
Object *ref, *referent;
size_t referentOffset, vmDataOffset;
bool doSignal;
markContext = &gDvm.gcHeap->markContext;
vmDataOffset = gDvm.offJavaLangRefReference_vmData;
referentOffset = gDvm.offJavaLangRefReference_referent;
doSignal = false;
while (*list != NULL) {
ref = *list;
referent = dvmGetFieldObject(ref, referentOffset);
*list = dvmGetFieldObject(ref, vmDataOffset);
assert(referent != NULL);
if (!isMarked(referent, markContext)) {
/* Referent is "white", clear it. */
clearReference(ref);
if (isEnqueuable(ref)) {
enqueueReference(ref);
doSignal = true;
}
}
}
/*
* If we cleared a reference with a reference queue we must notify
* the heap worker to append the reference.
*/
if (doSignal) {
dvmSignalHeapWorker(false);
}
assert(*list == NULL);
}
/* Find unreachable objects that need to be finalized,
* and schedule them for finalization.
*/
void dvmHeapScheduleFinalizations()
{
HeapRefTable newPendingRefs;
LargeHeapRefTable *finRefs = gDvm.gcHeap->finalizableRefs;
Object **ref;
Object **lastRef;
size_t totalPendCount;
GcMarkContext *markContext = &gDvm.gcHeap->markContext;
/*
* All reachable objects have been marked.
* Any unmarked finalizable objects need to be finalized.
*/
/* Create a table that the new pending refs will
* be added to.
*/
if (!dvmHeapInitHeapRefTable(&newPendingRefs, 128)) {
//TODO: mark all finalizable refs and hope that
// we can schedule them next time. Watch out,
// because we may be expecting to free up space
// by calling finalizers.
LOGE_GC("dvmHeapScheduleFinalizations(): no room for "
"pending finalizations\n");
dvmAbort();
}
/* Walk through finalizableRefs and move any unmarked references
* to the list of new pending refs.
*/
totalPendCount = 0;
while (finRefs != NULL) {
Object **gapRef;
size_t newPendCount = 0;
gapRef = ref = finRefs->refs.table;
lastRef = finRefs->refs.nextEntry;
while (ref < lastRef) {
if (!isMarked(*ref, markContext)) {
if (!dvmHeapAddToHeapRefTable(&newPendingRefs, *ref)) {
//TODO: add the current table and allocate
// a new, smaller one.
LOGE_GC("dvmHeapScheduleFinalizations(): "
"no room for any more pending finalizations: %zd\n",
dvmHeapNumHeapRefTableEntries(&newPendingRefs));
dvmAbort();
}
newPendCount++;
} else {
/* This ref is marked, so will remain on finalizableRefs.
*/
if (newPendCount > 0) {
/* Copy it up to fill the holes.
*/
*gapRef++ = *ref;
} else {
/* No holes yet; don't bother copying.
*/
gapRef++;
}
}
ref++;
}
finRefs->refs.nextEntry = gapRef;
//TODO: if the table is empty when we're done, free it.
totalPendCount += newPendCount;
finRefs = finRefs->next;
}
LOGD_GC("dvmHeapScheduleFinalizations(): %zd finalizers triggered.\n",
totalPendCount);
if (totalPendCount == 0) {
/* No objects required finalization.
* Free the empty temporary table.
*/
dvmClearReferenceTable(&newPendingRefs);
return;
}
/* Add the new pending refs to the main list.
*/
if (!dvmHeapAddTableToLargeTable(&gDvm.gcHeap->pendingFinalizationRefs,
&newPendingRefs))
{
LOGE_GC("dvmHeapScheduleFinalizations(): can't insert new "
"pending finalizations\n");
dvmAbort();
}
//TODO: try compacting the main list with a memcpy loop
/* Mark the refs we just moved; we don't want them or their
* children to get swept yet.
*/
ref = newPendingRefs.table;
lastRef = newPendingRefs.nextEntry;
assert(ref < lastRef);
HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_FINALIZING, 0);
while (ref < lastRef) {
assert(*ref != NULL);
markObject(*ref, markContext);
ref++;
}
HPROF_CLEAR_GC_SCAN_STATE();
processMarkStack(markContext);
dvmSignalHeapWorker(false);
}
void dvmHeapFinishMarkStep()
{
GcMarkContext *markContext;
markContext = &gDvm.gcHeap->markContext;
/* The sweep step freed every object that appeared in the
* HeapSource bitmaps that didn't appear in the mark bitmaps.
* The new state of the HeapSource is exactly the final
* mark bitmaps, so swap them in.
*/
dvmHeapSourceSwapBitmaps();
/* Clean up everything else associated with the marking process.
*/
destroyMarkStack(&markContext->stack);
markContext->finger = NULL;
}
static bool
sweepBitmapCallback(size_t numPtrs, void **ptrs, const void *finger, void *arg)
{
const ClassObject *const classJavaLangClass = gDvm.classJavaLangClass;
const bool overwriteFree = gDvm.overwriteFree;
size_t i;
void **origPtrs = ptrs;
for (i = 0; i < numPtrs; i++) {
Object *obj;
obj = (Object *)*ptrs++;
/* NOTE: Dereferencing clazz is dangerous. If obj was the last
* one to reference its class object, the class object could be
* on the sweep list, and could already have been swept, leaving
* us with a stale pointer.
*/
LOGV_SWEEP("FREE: 0x%08x %s\n", (uint)obj, obj->clazz->name);
/* This assumes that java.lang.Class will never go away.
* If it can, and we were the last reference to it, it
* could have already been swept. However, even in that case,
* gDvm.classJavaLangClass should still have a useful
* value.
*/
if (obj->clazz == classJavaLangClass) {
LOGV_SWEEP("---------------> %s\n", ((ClassObject *)obj)->name);
/* dvmFreeClassInnards() may have already been called,
* but it's safe to call on the same ClassObject twice.
*/
dvmFreeClassInnards((ClassObject *)obj);
}
/* Overwrite the to-be-freed object to make stale references
* more obvious.
*/
if (overwriteFree) {
int objlen;
ClassObject *clazz = obj->clazz;
objlen = dvmHeapSourceChunkSize(obj);
memset(obj, 0xa5, objlen);
obj->clazz = (ClassObject *)((uintptr_t)clazz ^ 0xffffffff);
}
}
// TODO: dvmHeapSourceFreeList has a loop, just like the above
// does. Consider collapsing the two loops to save overhead.
dvmHeapSourceFreeList(numPtrs, origPtrs);
return true;
}
/* Returns true if the given object is unmarked. Ignores the low bits
* of the pointer because the intern table may set them.
*/
static int isUnmarkedObject(void *object)
{
return !isMarked((void *)((uintptr_t)object & ~(HB_OBJECT_ALIGNMENT-1)),
&gDvm.gcHeap->markContext);
}
/* Walk through the list of objects that haven't been
* marked and free them.
*/
void
dvmHeapSweepUnmarkedObjects(GcMode mode, int *numFreed, size_t *sizeFreed)
{
HeapBitmap markBits[HEAP_SOURCE_MAX_HEAP_COUNT];
HeapBitmap liveBits[HEAP_SOURCE_MAX_HEAP_COUNT];
size_t origObjectsAllocated;
size_t origBytesAllocated;
size_t numBitmaps, numSweepBitmaps;
size_t i;
/* All reachable objects have been marked.
* Detach any unreachable interned strings before
* we sweep.
*/
dvmGcDetachDeadInternedStrings(isUnmarkedObject);
/* Free any known objects that are not marked.
*/
origObjectsAllocated = dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED, NULL, 0);
origBytesAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
dvmSweepMonitorList(&gDvm.monitorList, isUnmarkedObject);
numBitmaps = dvmHeapSourceGetNumHeaps();
dvmHeapSourceGetObjectBitmaps(liveBits, markBits, numBitmaps);
if (mode == GC_PARTIAL) {
numSweepBitmaps = 1;
assert((uintptr_t)gDvm.gcHeap->markContext.immuneLimit == liveBits[0].base);
} else {
numSweepBitmaps = numBitmaps;
}
for (i = 0; i < numSweepBitmaps; i++) {
dvmHeapBitmapXorWalk(&markBits[i], &liveBits[i],
sweepBitmapCallback, NULL);
}
*numFreed = origObjectsAllocated -
dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED, NULL, 0);
*sizeFreed = origBytesAllocated -
dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
#ifdef WITH_PROFILER
if (gDvm.allocProf.enabled) {
gDvm.allocProf.freeCount += *numFreed;
gDvm.allocProf.freeSize += *sizeFreed;
}
#endif
}