blob: 6c5b0103ec53beb21bef21a9af420ad69488250e [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This file is included by Codegen-armv5te-vfp.c, and implements architecture
* variant-specific code.
*/
#define USE_IN_CACHE_HANDLER 1
/*
* Determine the initial instruction set to be used for this trace.
* Later components may decide to change this.
*/
JitInstructionSetType dvmCompilerInstructionSet(CompilationUnit *cUnit)
{
return DALVIK_JIT_THUMB;
}
/*
* Jump to the out-of-line handler in ARM mode to finish executing the
* remaining of more complex instructions.
*/
static void genDispatchToHandler(CompilationUnit *cUnit, TemplateOpCode opCode)
{
#if USE_IN_CACHE_HANDLER
/*
* NOTE - In practice BLX only needs one operand, but since the assembler
* may abort itself and retry due to other out-of-range conditions we
* cannot really use operand[0] to store the absolute target address since
* it may get clobbered by the final relative offset. Therefore,
* we fake BLX_1 is a two operand instruction and the absolute target
* address is stored in operand[1].
*/
newLIR2(cUnit, THUMB_BLX_1,
(int) gDvmJit.codeCache + templateEntryOffsets[opCode],
(int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
newLIR2(cUnit, THUMB_BLX_2,
(int) gDvmJit.codeCache + templateEntryOffsets[opCode],
(int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
#else
/*
* In case we want to access the statically compiled handlers for
* debugging purposes, define USE_IN_CACHE_HANDLER to 0
*/
void *templatePtr;
#define JIT_TEMPLATE(X) extern void dvmCompiler_TEMPLATE_##X();
#include "../../../template/armv5te-vfp/TemplateOpList.h"
#undef JIT_TEMPLATE
switch (opCode) {
#define JIT_TEMPLATE(X) \
case TEMPLATE_##X: { templatePtr = dvmCompiler_TEMPLATE_##X; break; }
#include "../../../template/armv5te-vfp/TemplateOpList.h"
#undef JIT_TEMPLATE
default: templatePtr = NULL;
}
loadConstant(cUnit, r7, (int) templatePtr);
newLIR1(cUnit, THUMB_BLX_R, r7);
#endif
}
/* Architecture-specific initializations and checks go here */
bool dvmCompilerArchInit(void)
{
/* First, declare dvmCompiler_TEMPLATE_XXX for each template */
#define JIT_TEMPLATE(X) extern void dvmCompiler_TEMPLATE_##X();
#include "../../../template/armv5te-vfp/TemplateOpList.h"
#undef JIT_TEMPLATE
int i = 0;
extern void dvmCompilerTemplateStart(void);
/*
* Then, populate the templateEntryOffsets array with the offsets from the
* the dvmCompilerTemplateStart symbol for each template.
*/
#define JIT_TEMPLATE(X) templateEntryOffsets[i++] = \
(intptr_t) dvmCompiler_TEMPLATE_##X - (intptr_t) dvmCompilerTemplateStart;
#include "../../../template/armv5te-vfp/TemplateOpList.h"
#undef JIT_TEMPLATE
/* Codegen-specific assumptions */
assert(offsetof(ClassObject, vtable) < 128 &&
(offsetof(ClassObject, vtable) & 0x3) == 0);
assert(offsetof(ArrayObject, length) < 128 &&
(offsetof(ArrayObject, length) & 0x3) == 0);
assert(offsetof(ArrayObject, contents) < 256);
/* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
assert(sizeof(StackSaveArea) < 236);
/*
* EA is calculated by doing "Rn + imm5 << 2", and there are 5 entry points
* that codegen may access, make sure that the offset from the top of the
* struct is less than 108.
*/
assert(offsetof(InterpState, jitToInterpEntries) < 108);
return true;
}
static bool genInlineSqrt(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
OpCode opCode = mir->dalvikInsn.opCode;
int vSrc = mir->dalvikInsn.vA;
loadValueAddress(cUnit, vSrc, r2);
genDispatchToHandler(cUnit, TEMPLATE_SQRT_DOUBLE_VFP);
newLIR3(cUnit, THUMB_STR_RRI5, r0, rGLUE, offset >> 2);
newLIR3(cUnit, THUMB_STR_RRI5, r1, rGLUE, (offset >> 2) + 1);
return false;
}
static bool genInlineCos(CompilationUnit *cUnit, MIR *mir)
{
return false;
}
static bool genInlineSin(CompilationUnit *cUnit, MIR *mir)
{
return false;
}
static bool genArithOpFloat(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2)
{
TemplateOpCode opCode;
/*
* Don't attempt to optimize register usage since these opcodes call out to
* the handlers.
*/
switch (mir->dalvikInsn.opCode) {
case OP_ADD_FLOAT_2ADDR:
case OP_ADD_FLOAT:
opCode = TEMPLATE_ADD_FLOAT_VFP;
break;
case OP_SUB_FLOAT_2ADDR:
case OP_SUB_FLOAT:
opCode = TEMPLATE_SUB_FLOAT_VFP;
break;
case OP_DIV_FLOAT_2ADDR:
case OP_DIV_FLOAT:
opCode = TEMPLATE_DIV_FLOAT_VFP;
break;
case OP_MUL_FLOAT_2ADDR:
case OP_MUL_FLOAT:
opCode = TEMPLATE_MUL_FLOAT_VFP;
break;
case OP_REM_FLOAT_2ADDR:
case OP_REM_FLOAT:
case OP_NEG_FLOAT: {
return genArithOpFloatPortable(cUnit, mir, vDest,
vSrc1, vSrc2);
}
default:
return true;
}
loadValueAddress(cUnit, vDest, r0);
loadValueAddress(cUnit, vSrc1, r1);
loadValueAddress(cUnit, vSrc2, r2);
genDispatchToHandler(cUnit, opCode);
return false;
}
static bool genArithOpDouble(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2)
{
TemplateOpCode opCode;
/*
* Don't attempt to optimize register usage since these opcodes call out to
* the handlers.
*/
switch (mir->dalvikInsn.opCode) {
case OP_ADD_DOUBLE_2ADDR:
case OP_ADD_DOUBLE:
opCode = TEMPLATE_ADD_DOUBLE_VFP;
break;
case OP_SUB_DOUBLE_2ADDR:
case OP_SUB_DOUBLE:
opCode = TEMPLATE_SUB_DOUBLE_VFP;
break;
case OP_DIV_DOUBLE_2ADDR:
case OP_DIV_DOUBLE:
opCode = TEMPLATE_DIV_DOUBLE_VFP;
break;
case OP_MUL_DOUBLE_2ADDR:
case OP_MUL_DOUBLE:
opCode = TEMPLATE_MUL_DOUBLE_VFP;
break;
case OP_REM_DOUBLE_2ADDR:
case OP_REM_DOUBLE:
case OP_NEG_DOUBLE: {
return genArithOpDoublePortable(cUnit, mir, vDest,
vSrc1, vSrc2);
}
default:
return true;
}
loadValueAddress(cUnit, vDest, r0);
loadValueAddress(cUnit, vSrc1, r1);
loadValueAddress(cUnit, vSrc2, r2);
genDispatchToHandler(cUnit, opCode);
return false;
}
static bool genConversion(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vSrc1Dest = mir->dalvikInsn.vA;
int vSrc2 = mir->dalvikInsn.vB;
TemplateOpCode template;
switch (opCode) {
case OP_INT_TO_FLOAT:
template = TEMPLATE_INT_TO_FLOAT_VFP;
break;
case OP_FLOAT_TO_INT:
template = TEMPLATE_FLOAT_TO_INT_VFP;
break;
case OP_DOUBLE_TO_FLOAT:
template = TEMPLATE_DOUBLE_TO_FLOAT_VFP;
break;
case OP_FLOAT_TO_DOUBLE:
template = TEMPLATE_FLOAT_TO_DOUBLE_VFP;
break;
case OP_INT_TO_DOUBLE:
template = TEMPLATE_INT_TO_DOUBLE_VFP;
break;
case OP_DOUBLE_TO_INT:
template = TEMPLATE_DOUBLE_TO_INT_VFP;
break;
case OP_FLOAT_TO_LONG:
case OP_LONG_TO_FLOAT:
case OP_DOUBLE_TO_LONG:
case OP_LONG_TO_DOUBLE:
return genConversionPortable(cUnit, mir);
default:
return true;
}
loadValueAddress(cUnit, vSrc1Dest, r0);
loadValueAddress(cUnit, vSrc2, r1);
genDispatchToHandler(cUnit, template);
return false;
}
static bool genCmpX(CompilationUnit *cUnit, MIR *mir, int vDest, int vSrc1,
int vSrc2)
{
TemplateOpCode template;
/*
* Don't attempt to optimize register usage since these opcodes call out to
* the handlers.
*/
switch(mir->dalvikInsn.opCode) {
case OP_CMPL_FLOAT:
template = TEMPLATE_CMPL_FLOAT_VFP;
break;
case OP_CMPG_FLOAT:
template = TEMPLATE_CMPG_FLOAT_VFP;
break;
case OP_CMPL_DOUBLE:
template = TEMPLATE_CMPL_DOUBLE_VFP;
break;
case OP_CMPG_DOUBLE:
template = TEMPLATE_CMPG_DOUBLE_VFP;
break;
default:
return true;
}
loadValueAddress(cUnit, vSrc1, r0);
loadValueAddress(cUnit, vSrc2, r1);
genDispatchToHandler(cUnit, template);
storeValue(cUnit, r0, vDest, r1);
return false;
}