blob: 918d95560d6b7b597c88891818963a0d257acecb [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Dalvik.h"
#include "CompilerInternals.h"
#include "Dataflow.h"
#include "Loop.h"
#define DEBUG_LOOP(X)
/*
* Given the current simple natural loops, the phi node placement can be
* determined in the following fashion:
* entry (B0)
* +---v v
* | loop body (B1)
* | v
* | loop back (B2)
* +---+ v
* exit (B3)
*
* 1) Add live-ins of B1 to B0 as defs
* 2) The intersect of defs(B0)/defs(B1) and defs(B2)/def(B0) are the variables
* that need PHI nodes in B1.
*/
static void handlePhiPlacement(CompilationUnit *cUnit)
{
BasicBlock *entry = cUnit->blockList[0];
BasicBlock *loopBody = cUnit->blockList[1];
BasicBlock *loopBranch = cUnit->blockList[2];
dvmCopyBitVector(entry->dataFlowInfo->defV,
loopBody->dataFlowInfo->liveInV);
BitVector *phiV = dvmCompilerAllocBitVector(cUnit->method->registersSize,
false);
dvmIntersectBitVectors(phiV, entry->dataFlowInfo->defV,
loopBody->dataFlowInfo->defV);
dvmIntersectBitVectors(phiV, entry->dataFlowInfo->defV,
loopBranch->dataFlowInfo->defV);
/* Insert the PHI MIRs */
int i;
for (i = 0; i < cUnit->method->registersSize; i++) {
if (!dvmIsBitSet(phiV, i)) {
continue;
}
MIR *phi = dvmCompilerNew(sizeof(MIR), true);
phi->dalvikInsn.opCode = kMirOpPhi;
phi->dalvikInsn.vA = i;
dvmCompilerPrependMIR(loopBody, phi);
}
}
static void fillPhiNodeContents(CompilationUnit *cUnit)
{
BasicBlock *entry = cUnit->blockList[0];
BasicBlock *loopBody = cUnit->blockList[1];
BasicBlock *loopBranch = cUnit->blockList[2];
MIR *mir;
for (mir = loopBody->firstMIRInsn; mir; mir = mir->next) {
if (mir->dalvikInsn.opCode != kMirOpPhi) break;
int dalvikReg = mir->dalvikInsn.vA;
mir->ssaRep->numUses = 2;
mir->ssaRep->uses = dvmCompilerNew(sizeof(int) * 2, false);
mir->ssaRep->uses[0] =
DECODE_REG(entry->dataFlowInfo->dalvikToSSAMap[dalvikReg]);
mir->ssaRep->uses[1] =
DECODE_REG(loopBranch->dataFlowInfo->dalvikToSSAMap[dalvikReg]);
}
}
#if 0
/* Debugging routines */
static void dumpConstants(CompilationUnit *cUnit)
{
int i;
for (i = 0; i < cUnit->numSSARegs; i++) {
if (dvmIsBitSet(cUnit->isConstantV, i)) {
int subNReg = dvmConvertSSARegToDalvik(cUnit, i);
LOGE("s%d(v%d_%d) has %d", i,
DECODE_REG(subNReg), DECODE_SUB(subNReg),
cUnit->constantValues[i]);
}
}
}
static void dumpIVList(CompilationUnit *cUnit)
{
unsigned int i;
GrowableList *ivList = cUnit->loopAnalysis->ivList;
int *ssaToDalvikMap = (int *) cUnit->ssaToDalvikMap->elemList;
for (i = 0; i < ivList->numUsed; i++) {
InductionVariableInfo *ivInfo = ivList->elemList[i];
/* Basic IV */
if (ivInfo->ssaReg == ivInfo->basicSSAReg) {
LOGE("BIV %d: s%d(v%d) + %d", i,
ivInfo->ssaReg,
ssaToDalvikMap[ivInfo->ssaReg] & 0xffff,
ivInfo->inc);
/* Dependent IV */
} else {
LOGE("DIV %d: s%d(v%d) = %d * s%d(v%d) + %d", i,
ivInfo->ssaReg,
ssaToDalvikMap[ivInfo->ssaReg] & 0xffff,
ivInfo->m,
ivInfo->basicSSAReg,
ssaToDalvikMap[ivInfo->basicSSAReg] & 0xffff,
ivInfo->c);
}
}
}
static void dumpHoistedChecks(CompilationUnit *cUnit)
{
LoopAnalysis *loopAnalysis = cUnit->loopAnalysis;
unsigned int i;
for (i = 0; i < loopAnalysis->arrayAccessInfo->numUsed; i++) {
ArrayAccessInfo *arrayAccessInfo =
GET_ELEM_N(loopAnalysis->arrayAccessInfo,
ArrayAccessInfo*, i);
int arrayReg = DECODE_REG(
dvmConvertSSARegToDalvik(cUnit, arrayAccessInfo->arrayReg));
int idxReg = DECODE_REG(
dvmConvertSSARegToDalvik(cUnit, arrayAccessInfo->ivReg));
LOGE("Array access %d", i);
LOGE(" arrayReg %d", arrayReg);
LOGE(" idxReg %d", idxReg);
LOGE(" endReg %d", loopAnalysis->endConditionReg);
LOGE(" maxC %d", arrayAccessInfo->maxC);
LOGE(" minC %d", arrayAccessInfo->minC);
LOGE(" opcode %d", loopAnalysis->loopBranchOpcode);
}
}
#endif
/*
* A loop is considered optimizable if:
* 1) It has one basic induction variable
* 2) The loop back branch compares the BIV with a constant
* 3) If it is a count-up loop, the condition is GE/GT, or LE/LT/LEZ/LTZ for
* a count-down loop.
*
* Return false if the loop is not optimizable.
*/
static bool isLoopOptimizable(CompilationUnit *cUnit)
{
unsigned int i;
BasicBlock *loopBranch = cUnit->blockList[2];
LoopAnalysis *loopAnalysis = cUnit->loopAnalysis;
if (loopAnalysis->numBasicIV != 1) return false;
for (i = 0; i < loopAnalysis->ivList->numUsed; i++) {
InductionVariableInfo *ivInfo;
ivInfo = GET_ELEM_N(loopAnalysis->ivList, InductionVariableInfo*, i);
/* Count up or down loop? */
if (ivInfo->ssaReg == ivInfo->basicSSAReg) {
/* Infinite loop */
if (ivInfo->inc == 0) {
return false;
}
loopAnalysis->isCountUpLoop = ivInfo->inc > 0;
break;
}
}
MIR *branch = loopBranch->lastMIRInsn;
OpCode opCode = branch->dalvikInsn.opCode;
/*
* If the instruction is not accessing the IV as the first operand, return
* false.
*/
if (branch->ssaRep->numUses == 0 || branch->ssaRep->numDefs != 0) {
return false;
}
/*
* If the first operand of the comparison is not the basic induction
* variable, return false.
*/
if (branch->ssaRep->uses[0] != loopAnalysis->ssaBIV) {
return false;
}
if (loopAnalysis->isCountUpLoop) {
/*
* If the condition op is not > or >=, this is not an optimization
* candidate.
*/
if (opCode != OP_IF_GT && opCode != OP_IF_GE) {
return false;
}
/*
* If the comparison is not between the BIV and a loop invariant,
* return false. endReg is loop invariant if one of the following is
* true:
* - It is not defined in the loop (ie DECODE_SUB returns 0)
* - It is reloaded with a constant
*/
int endReg = dvmConvertSSARegToDalvik(cUnit, branch->ssaRep->uses[1]);
if (DECODE_SUB(endReg) != 0 &&
!dvmIsBitSet(cUnit->isConstantV, branch->ssaRep->uses[1])) {
return false;
}
loopAnalysis->endConditionReg = DECODE_REG(endReg);
} else {
/*
* If the condition op is not < or <=, this is not an optimization
* candidate.
*/
if (opCode == OP_IF_LT || opCode == OP_IF_LE) {
/*
* If the comparison is not between the BIV and a loop invariant,
* return false.
*/
int endReg = dvmConvertSSARegToDalvik(cUnit,
branch->ssaRep->uses[1]);
if (DECODE_SUB(endReg) != 0) {
return false;
}
loopAnalysis->endConditionReg = DECODE_REG(endReg);
} else if (opCode != OP_IF_LTZ && opCode != OP_IF_LEZ) {
return false;
}
}
loopAnalysis->loopBranchOpcode = opCode;
return true;
}
/*
* Record the upper and lower bound information for range checks for each
* induction variable. If array A is accessed by index "i+5", the upper and
* lower bound will be len(A)-5 and -5, respectively.
*/
static void updateRangeCheckInfo(CompilationUnit *cUnit, int arrayReg,
int idxReg)
{
InductionVariableInfo *ivInfo;
LoopAnalysis *loopAnalysis = cUnit->loopAnalysis;
unsigned int i, j;
for (i = 0; i < loopAnalysis->ivList->numUsed; i++) {
ivInfo = GET_ELEM_N(loopAnalysis->ivList, InductionVariableInfo*, i);
if (ivInfo->ssaReg == idxReg) {
ArrayAccessInfo *arrayAccessInfo = NULL;
for (j = 0; j < loopAnalysis->arrayAccessInfo->numUsed; j++) {
ArrayAccessInfo *existingArrayAccessInfo =
GET_ELEM_N(loopAnalysis->arrayAccessInfo,
ArrayAccessInfo*,
j);
if (existingArrayAccessInfo->arrayReg == arrayReg) {
if (ivInfo->c > existingArrayAccessInfo->maxC) {
existingArrayAccessInfo->maxC = ivInfo->c;
}
if (ivInfo->c < existingArrayAccessInfo->minC) {
existingArrayAccessInfo->minC = ivInfo->c;
}
arrayAccessInfo = existingArrayAccessInfo;
break;
}
}
if (arrayAccessInfo == NULL) {
arrayAccessInfo =
dvmCompilerNew(sizeof(ArrayAccessInfo), false);
arrayAccessInfo->ivReg = ivInfo->basicSSAReg;
arrayAccessInfo->arrayReg = arrayReg;
arrayAccessInfo->maxC = (ivInfo->c > 0) ? ivInfo->c : 0;
arrayAccessInfo->minC = (ivInfo->c < 0) ? ivInfo->c : 0;
dvmInsertGrowableList(loopAnalysis->arrayAccessInfo,
arrayAccessInfo);
}
break;
}
}
}
/* Returns true if the loop body cannot throw any exceptions */
static bool doLoopBodyCodeMotion(CompilationUnit *cUnit)
{
BasicBlock *loopBody = cUnit->blockList[1];
MIR *mir;
bool loopBodyCanThrow = false;
for (mir = loopBody->firstMIRInsn; mir; mir = mir->next) {
DecodedInstruction *dInsn = &mir->dalvikInsn;
int dfAttributes =
dvmCompilerDataFlowAttributes[mir->dalvikInsn.opCode];
/* Skip extended MIR instructions */
if (dInsn->opCode > 255) continue;
int instrFlags = dexGetInstrFlags(gDvm.instrFlags, dInsn->opCode);
/* Instruction is clean */
if ((instrFlags & kInstrCanThrow) == 0) continue;
/*
* Currently we can only optimize away null and range checks. Punt on
* instructions that can throw due to other exceptions.
*/
if (!(dfAttributes & DF_HAS_NR_CHECKS)) {
loopBodyCanThrow = true;
continue;
}
/*
* This comparison is redundant now, but we will have more than one
* group of flags to check soon.
*/
if (dfAttributes & DF_HAS_NR_CHECKS) {
/*
* Check if the null check is applied on a loop invariant register?
* If the register's SSA id is less than the number of Dalvik
* registers, then it is loop invariant.
*/
int refIdx;
switch (dfAttributes & DF_HAS_NR_CHECKS) {
case DF_NULL_N_RANGE_CHECK_0:
refIdx = 0;
break;
case DF_NULL_N_RANGE_CHECK_1:
refIdx = 1;
break;
case DF_NULL_N_RANGE_CHECK_2:
refIdx = 2;
break;
default:
refIdx = 0;
LOGE("Jit: bad case in doLoopBodyCodeMotion");
dvmCompilerAbort(cUnit);
}
int useIdx = refIdx + 1;
int subNRegArray =
dvmConvertSSARegToDalvik(cUnit, mir->ssaRep->uses[refIdx]);
int arraySub = DECODE_SUB(subNRegArray);
/*
* If the register is never updated in the loop (ie subscript == 0),
* it is an optimization candidate.
*/
if (arraySub != 0) {
loopBodyCanThrow = true;
continue;
}
/*
* Then check if the range check can be hoisted out of the loop if
* it is basic or dependent induction variable.
*/
if (dvmIsBitSet(cUnit->loopAnalysis->isIndVarV,
mir->ssaRep->uses[useIdx])) {
mir->OptimizationFlags |=
MIR_IGNORE_RANGE_CHECK | MIR_IGNORE_NULL_CHECK;
updateRangeCheckInfo(cUnit, mir->ssaRep->uses[refIdx],
mir->ssaRep->uses[useIdx]);
}
}
}
return !loopBodyCanThrow;
}
static void genHoistedChecks(CompilationUnit *cUnit)
{
unsigned int i;
BasicBlock *entry = cUnit->blockList[0];
LoopAnalysis *loopAnalysis = cUnit->loopAnalysis;
int globalMaxC = 0;
int globalMinC = 0;
/* Should be loop invariant */
int idxReg = 0;
for (i = 0; i < loopAnalysis->arrayAccessInfo->numUsed; i++) {
ArrayAccessInfo *arrayAccessInfo =
GET_ELEM_N(loopAnalysis->arrayAccessInfo,
ArrayAccessInfo*, i);
int arrayReg = DECODE_REG(
dvmConvertSSARegToDalvik(cUnit, arrayAccessInfo->arrayReg));
idxReg = DECODE_REG(
dvmConvertSSARegToDalvik(cUnit, arrayAccessInfo->ivReg));
MIR *rangeCheckMIR = dvmCompilerNew(sizeof(MIR), true);
rangeCheckMIR->dalvikInsn.opCode = (loopAnalysis->isCountUpLoop) ?
kMirOpNullNRangeUpCheck : kMirOpNullNRangeDownCheck;
rangeCheckMIR->dalvikInsn.vA = arrayReg;
rangeCheckMIR->dalvikInsn.vB = idxReg;
rangeCheckMIR->dalvikInsn.vC = loopAnalysis->endConditionReg;
rangeCheckMIR->dalvikInsn.arg[0] = arrayAccessInfo->maxC;
rangeCheckMIR->dalvikInsn.arg[1] = arrayAccessInfo->minC;
rangeCheckMIR->dalvikInsn.arg[2] = loopAnalysis->loopBranchOpcode;
dvmCompilerAppendMIR(entry, rangeCheckMIR);
if (arrayAccessInfo->maxC > globalMaxC) {
globalMaxC = arrayAccessInfo->maxC;
}
if (arrayAccessInfo->minC < globalMinC) {
globalMinC = arrayAccessInfo->minC;
}
}
if (loopAnalysis->arrayAccessInfo->numUsed != 0) {
if (loopAnalysis->isCountUpLoop) {
MIR *boundCheckMIR = dvmCompilerNew(sizeof(MIR), true);
boundCheckMIR->dalvikInsn.opCode = kMirOpLowerBound;
boundCheckMIR->dalvikInsn.vA = idxReg;
boundCheckMIR->dalvikInsn.vB = globalMinC;
dvmCompilerAppendMIR(entry, boundCheckMIR);
} else {
if (loopAnalysis->loopBranchOpcode == OP_IF_LT ||
loopAnalysis->loopBranchOpcode == OP_IF_LE) {
MIR *boundCheckMIR = dvmCompilerNew(sizeof(MIR), true);
boundCheckMIR->dalvikInsn.opCode = kMirOpLowerBound;
boundCheckMIR->dalvikInsn.vA = loopAnalysis->endConditionReg;
boundCheckMIR->dalvikInsn.vB = globalMinC;
/*
* If the end condition is ">" in the source, the check in the
* Dalvik bytecode is OP_IF_LE. In this case add 1 back to the
* constant field to reflect the fact that the smallest index
* value is "endValue + constant + 1".
*/
if (loopAnalysis->loopBranchOpcode == OP_IF_LE) {
boundCheckMIR->dalvikInsn.vB++;
}
dvmCompilerAppendMIR(entry, boundCheckMIR);
} else if (loopAnalysis->loopBranchOpcode == OP_IF_LTZ) {
/* Array index will fall below 0 */
if (globalMinC < 0) {
MIR *boundCheckMIR = dvmCompilerNew(sizeof(MIR), true);
boundCheckMIR->dalvikInsn.opCode = kMirOpPunt;
dvmCompilerAppendMIR(entry, boundCheckMIR);
}
} else if (loopAnalysis->loopBranchOpcode == OP_IF_LEZ) {
/* Array index will fall below 0 */
if (globalMinC < -1) {
MIR *boundCheckMIR = dvmCompilerNew(sizeof(MIR), true);
boundCheckMIR->dalvikInsn.opCode = kMirOpPunt;
dvmCompilerAppendMIR(entry, boundCheckMIR);
}
} else {
LOGE("Jit: bad case in genHoistedChecks");
dvmCompilerAbort(cUnit);
}
}
}
}
/*
* Main entry point to do loop optimization.
* Return false if sanity checks for loop formation/optimization failed.
*/
bool dvmCompilerLoopOpt(CompilationUnit *cUnit)
{
LoopAnalysis *loopAnalysis = dvmCompilerNew(sizeof(LoopAnalysis), true);
assert(cUnit->blockList[0]->blockType == kTraceEntryBlock);
assert(cUnit->blockList[2]->blockType == kDalvikByteCode);
assert(cUnit->blockList[3]->blockType == kTraceExitBlock);
cUnit->loopAnalysis = loopAnalysis;
/*
* Find live-in variables to the loop body so that we can fake their
* definitions in the entry block.
*/
dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerFindLiveIn);
/* Insert phi nodes to the loop body */
handlePhiPlacement(cUnit);
dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerDoSSAConversion);
fillPhiNodeContents(cUnit);
/* Constant propagation */
cUnit->isConstantV = dvmAllocBitVector(cUnit->numSSARegs, false);
cUnit->constantValues = dvmCompilerNew(sizeof(int) * cUnit->numSSARegs,
true);
dvmCompilerDataFlowAnalysisDispatcher(cUnit,
dvmCompilerDoConstantPropagation);
DEBUG_LOOP(dumpConstants(cUnit);)
/* Find induction variables - basic and dependent */
loopAnalysis->ivList = dvmCompilerNew(sizeof(GrowableList), true);
dvmInitGrowableList(loopAnalysis->ivList, 4);
loopAnalysis->isIndVarV = dvmAllocBitVector(cUnit->numSSARegs, false);
dvmCompilerDataFlowAnalysisDispatcher(cUnit,
dvmCompilerFindInductionVariables);
DEBUG_LOOP(dumpIVList(cUnit);)
/* If the loop turns out to be non-optimizable, return early */
if (!isLoopOptimizable(cUnit))
return false;
loopAnalysis->arrayAccessInfo = dvmCompilerNew(sizeof(GrowableList), true);
dvmInitGrowableList(loopAnalysis->arrayAccessInfo, 4);
loopAnalysis->bodyIsClean = doLoopBodyCodeMotion(cUnit);
DEBUG_LOOP(dumpHoistedChecks(cUnit);)
/*
* Convert the array access information into extended MIR code in the loop
* header.
*/
genHoistedChecks(cUnit);
return true;
}