blob: d3df883428276a750b67a7f6ebd98b206dd28a4a [file] [log] [blame]
# Copyright 2018 The Android Open Source Project
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
"""Verify multi-camera alignment using internal parameters."""
import logging
import math
import os.path
import cv2
from mobly import test_runner
import numpy as np
import its_base_test
import camera_properties_utils
import capture_request_utils
import image_processing_utils
import its_session_utils
import opencv_processing_utils
_ALIGN_TOL_MM = 5.0 # mm
_ALIGN_TOL = 0.01 # multiplied by sensor diagonal to convert to pixels
_CIRCLE_COLOR = 0 # [0: black, 255: white]
_CIRCLE_MIN_AREA = 0.005 # multiplied by image size
_CIRCLE_RTOL = 0.1 # 10%
_CM_TO_M = 1E-2
_FMT_CODE_RAW = 0x20
_FMT_CODE_YUV = 0x23
_M_TO_MM = 1E3
_MM_TO_UM = 1E3
_NAME = os.path.splitext(os.path.basename(__file__))[0]
_TRANS_MATRIX_REF = np.array([0, 0, 0]) # translation matrix for ref cam is 000
def convert_cap_and_prep_img(cap, props, fmt, img_name, debug):
"""Convert the capture to an RGB image and prep image.
cap: capture element
props: dict of capture properties
fmt: capture format ('raw' or 'yuv')
img_name: name to save image as
debug: boolean for debug mode
img uint8 numpy array
img = image_processing_utils.convert_capture_to_rgb_image(cap, props=props)
# save images if debug
if debug:
image_processing_utils.write_image(img, img_name)
# convert [0, 1] image to [0, 255] and cast as uint8
img = image_processing_utils.convert_image_to_uint8(img)
# scale to match calibration data if RAW
if fmt == 'raw':
img = cv2.resize(img, None, fx=2, fy=2)
return img
def calc_pixel_size(props):
ar = props['']
sensor_size = props['']
pixel_size_w = sensor_size['width'] / ar['width']
pixel_size_h = sensor_size['height'] / ar['height']
logging.debug('pixel size(um): %.2f x %.2f',
pixel_size_w * _MM_TO_UM, pixel_size_h * _MM_TO_UM)
return (pixel_size_w + pixel_size_h) / 2 * _MM_TO_UM
def select_ids_to_test(ids, props, chart_distance):
"""Determine the best 2 cameras to test for the rig used.
Cameras are pre-filtered to only include supportable cameras.
Supportable cameras are: YUV(RGB), RAW(Bayer)
ids: unicode string; physical camera ids
props: dict; physical camera properties dictionary
chart_distance: float; distance to chart in meters
test_ids to be tested
chart_distance = abs(chart_distance)*100 # convert M to CM
test_ids = []
for i in ids:
sensor_size = props[i]['']
focal_l = props[i][''][0]
diag = math.sqrt(sensor_size['height'] ** 2 + sensor_size['width'] ** 2)
fov = round(2 * math.degrees(math.atan(diag / (2 * focal_l))), 2)
logging.debug('Camera: %s, FoV: %.2f, chart_distance: %.1fcm', i, fov,
# determine best combo with rig used or recommend different rig
if (opencv_processing_utils.FOV_THRESH_TELE < fov <
test_ids.append(i) # RFoV camera
elif fov < opencv_processing_utils.FOV_THRESH_TELE40:
logging.debug('Skipping camera. Not appropriate multi-camera testing.')
continue # super-TELE camera
elif (fov <= opencv_processing_utils.FOV_THRESH_TELE and
test_ids.append(i) # TELE camera in RFoV rig
elif (fov >= opencv_processing_utils.FOV_THRESH_UW and
test_ids.append(i) # WFoV camera in WFoV rig
logging.debug('Skipping camera. Not appropriate for test rig.')
if len(test_ids) < 2:
raise AssertionError('Error: started with 2+ cameras, reduced to <2 based '
f'on FoVs. Wrong test rig? test_ids: {test_ids}')
return test_ids[0:2]
def determine_valid_out_surfaces(cam, props, fmt, cap_camera_ids, sizes):
"""Determine a valid output surfaces for captures.
cam: obj; camera object
props: dict; props for the physical cameras
fmt: str; capture format ('yuv' or 'raw')
cap_camera_ids: list; camera capture ids
sizes: dict; valid physical sizes for the cap_camera_ids
valid out_surfaces
valid_stream_combo = False
# try simultaneous capture
w, h = capture_request_utils.get_available_output_sizes('yuv', props)[0]
out_surfaces = [{'format': 'yuv', 'width': w, 'height': h},
{'format': fmt, 'physicalCamera': cap_camera_ids[0],
'width': sizes[cap_camera_ids[0]][0],
'height': sizes[cap_camera_ids[0]][1]},
{'format': fmt, 'physicalCamera': cap_camera_ids[1],
'width': sizes[cap_camera_ids[1]][0],
'height': sizes[cap_camera_ids[1]][1]},]
valid_stream_combo = cam.is_stream_combination_supported(out_surfaces)
# try each camera individually
if not valid_stream_combo:
out_surfaces = []
for cap_id in cap_camera_ids:
out_surface = {'format': fmt, 'physicalCamera': cap_id,
'width': sizes[cap_id][0],
'height': sizes[cap_id][1]}
valid_stream_combo = cam.is_stream_combination_supported(out_surface)
if valid_stream_combo:
return out_surfaces
def take_images(cam, caps, props, fmt, cap_camera_ids, out_surfaces,
name_with_log_path, debug):
"""Do image captures.
cam: obj; camera object
caps: dict; capture results indexed by (fmt, id)
props: dict; props for the physical cameras
fmt: str; capture format ('yuv' or 'raw')
cap_camera_ids: list; camera capture ids
out_surfaces: list; valid output surfaces for caps
name_with_log_path: str; file name with location to save files
debug: bool; determine if debug mode or not.
caps: dict; capture information indexed by (fmt, cap_id)
logging.debug('out_surfaces: %s', str(out_surfaces))
if len(out_surfaces) == 3: # do simultaneous capture
# Do 3A without getting the values
cam.do_3a(lock_ae=True, lock_awb=True)
req = capture_request_utils.auto_capture_request(props=props, do_af=True)
_, caps[(fmt,
cap_camera_ids[0])], caps[(fmt,
cap_camera_ids[1])] = cam.do_capture(
req, out_surfaces)
else: # step through cameras individually
for i, out_surface in enumerate(out_surfaces):
# Do 3A without getting the values
cam.do_3a(lock_ae=True, lock_awb=True)
req = capture_request_utils.auto_capture_request(props=props, do_af=True)
caps[(fmt, cap_camera_ids[i])] = cam.do_capture(req, out_surface)
# save images if debug
if debug:
for i in [0, 1]:
img = image_processing_utils.convert_capture_to_rgb_image(
caps[(fmt, cap_camera_ids[i])], props=props[cap_camera_ids[i]])
img, f'{name_with_log_path}_{fmt}_{cap_camera_ids[i]}.jpg')
return caps
def undo_zoom(cap, circle):
"""Correct coordinates and size of circle for zoom.
Assume that the maximum physical YUV image size is close to active array size.
cap: camera capture element
circle: dict of circle values
unzoomed circle dict
yuv_w = cap['width']
yuv_h = cap['height']
logging.debug('cap size: %d x %d', yuv_w, yuv_h)
cr = cap['metadata']['android.scaler.cropRegion']
cr_w = cr['right'] - cr['left']
cr_h = cr['bottom'] - cr['top']
# Offset due to aspect ratio difference of crop region and yuv
# - fit yuv box inside of differently shaped cr box
yuv_aspect = yuv_w / yuv_h
relative_aspect = yuv_aspect / (cr_w/cr_h)
if relative_aspect > 1:
zoom_ratio = yuv_w / cr_w
yuv_x = 0
yuv_y = (cr_h - cr_w / yuv_aspect) / 2
zoom_ratio = yuv_h / cr_h
yuv_x = (cr_w - cr_h * yuv_aspect) / 2
yuv_y = 0
circle['x'] = cr['left'] + yuv_x + circle['x'] / zoom_ratio
circle['y'] = cr['top'] + yuv_y + circle['y'] / zoom_ratio
circle['r'] = circle['r'] / zoom_ratio
logging.debug(' Calculated zoom ratio: %.3f', zoom_ratio)
logging.debug(' Corrected circle X: %.2f', circle['x'])
logging.debug(' Corrected circle Y: %.2f', circle['y'])
logging.debug(' Corrected circle radius: %.2f', circle['r'])
return circle
def convert_to_world_coordinates(x, y, r, t, k, z_w):
"""Convert x,y coordinates to world coordinates.
Conversion equation is:
A = [[x*r[2][0] - dot(k_row0, r_col0), x*r_[2][1] - dot(k_row0, r_col1)],
[y*r[2][0] - dot(k_row1, r_col0), y*r_[2][1] - dot(k_row1, r_col1)]]
b = [[z_w*dot(k_row0, r_col2) + dot(k_row0, t) - x*(r[2][2]*z_w + t[2])],
[z_w*dot(k_row1, r_col2) + dot(k_row1, t) - y*(r[2][2]*z_w + t[2])]]
[[x_w], [y_w]] = inv(A) * b
x: x location in pixel space
y: y location in pixel space
r: rotation matrix
t: translation matrix
k: intrinsic matrix
z_w: z distance in world space
x_w: x in meters in world space
y_w: y in meters in world space
c_1 = r[2, 2] * z_w + t[2]
k_x1 =[0, :], r[:, 0])
k_x2 =[0, :], r[:, 1])
k_x3 = z_w *[0, :], r[:, 2]) +[0, :], t)
k_y1 =[1, :], r[:, 0])
k_y2 =[1, :], r[:, 1])
k_y3 = z_w *[1, :], r[:, 2]) +[1, :], t)
a = np.array([[x*r[2][0]-k_x1, x*r[2][1]-k_x2],
[y*r[2][0]-k_y1, y*r[2][1]-k_y2]])
b = np.array([[k_x3-x*c_1], [k_y3-y*c_1]])
return (float(x) for x in, b))
def convert_to_image_coordinates(p_w, r, t, k):
p_c =, p_w) + t
p_h =, p_c)
return p_h[0] / p_h[2], p_h[1] / p_h[2]
def define_reference_camera(pose_reference, cam_reference):
"""Determine the reference camera.
pose_reference: 0 for cameras, 1 for gyro
cam_reference: dict with key of physical camera and value True/False
i_ref: physical id of reference camera
i_2nd: physical id of secondary camera
if pose_reference == _REFERENCE_GYRO:
logging.debug('pose_reference is GYRO')
keys = list(cam_reference.keys())
i_ref = keys[0] # pick first camera as ref
i_2nd = keys[1]
logging.debug('pose_reference is CAMERA')
i_refs = [k for (k, v) in cam_reference.items() if v]
i_ref = i_refs[0]
if len(i_refs) > 1:
logging.debug('Warning: more than 1 reference camera. Check translation '
'matrices. cam_reference: %s', str(cam_reference))
i_2nd = i_refs[1] # use second camera since both at same location
i_2nd = next(k for (k, v) in cam_reference.items() if not v)
return i_ref, i_2nd
class MultiCameraAlignmentTest(its_base_test.ItsBaseTest):
"""Test the multi camera system parameters related to camera spacing.
Using the multi-camera physical cameras, take a picture of scene4
(a black circle and surrounding square on a white background) with
one of the physical cameras. Then find the circle center and radius. Using
the parameters:
android.lens.distortion (if available)
project the circle center to the world coordinates for each camera.
Compare the difference between the two cameras' circle centers in
world coordinates.
Reproject the world coordinates back to pixel coordinates and compare
against originals as a correctness check.
Compare the circle sizes if the focal lengths of the cameras are
different using
def test_multi_camera_alignment(self):
# capture images
with its_session_utils.ItsSession(
hidden_physical_id=self.hidden_physical_id) as cam:
props = cam.get_camera_properties()
name_with_log_path = os.path.join(self.log_path, _NAME)
chart_distance = self.chart_distance * _CM_TO_M
# check media performance class
should_run = (camera_properties_utils.read_3a(props) and
camera_properties_utils.per_frame_control(props) and
camera_properties_utils.logical_multi_camera(props) and
media_performance_class = its_session_utils.get_media_performance_class(
cameras_facing_same_direction = cam.get_facing_to_ids().get(
props['android.lens.facing'], [])
has_multiple_same_facing_cameras = len(cameras_facing_same_direction) > 1
if (media_performance_class >= _TEST_REQUIRED_MPC and
not should_run and
cam.is_primary_camera() and
has_multiple_same_facing_cameras and
props['android.lens.facing'] == _LENS_FACING_BACK):
logging.error('Found multiple camera IDs %s facing in the same '
'direction as primary camera %s.',
cameras_facing_same_direction, self.camera_id)
_TEST_REQUIRED_MPC, _NAME, media_performance_class)
# check SKIP conditions
# load chart for scene
cam, props, self.scene, self.tablet, self.chart_distance)
debug = self.debug_mode
pose_reference = props['android.lens.poseReference']
# Convert chart_distance for lens facing back
if props['android.lens.facing'] == _LENS_FACING_BACK:
# API spec defines +z is pointing out from screen
logging.debug('lens facing BACK')
chart_distance *= -1
# find physical camera IDs
ids = camera_properties_utils.logical_multi_camera_physical_ids(props)
physical_props = {}
physical_ids = []
physical_raw_ids = []
for i in ids:
physical_props[i] = cam.get_camera_properties_by_id(i)
if physical_props[i][
'android.lens.poseReference'] == _REFERENCE_UNDEFINED:
# find YUV+RGB capable physical cameras
if (camera_properties_utils.backward_compatible(physical_props[i]) and
not camera_properties_utils.mono_camera(physical_props[i])):
# find RAW+RGB capable physical cameras
if (camera_properties_utils.backward_compatible(physical_props[i]) and
not camera_properties_utils.mono_camera(physical_props[i]) and
# determine formats and select cameras
fmts = ['yuv']
if len(physical_raw_ids) >= 2:
fmts.insert(0, 'raw') # add RAW to analysis if enough cameras
logging.debug('Selecting RAW+RGB supported cameras')
physical_raw_ids = select_ids_to_test(physical_raw_ids, physical_props,
logging.debug('Selecting YUV+RGB cameras')
camera_properties_utils.skip_unless(len(physical_ids) >= 2)
physical_ids = select_ids_to_test(physical_ids, physical_props,
# do captures for valid formats
caps = {}
for i, fmt in enumerate(fmts):
physical_sizes = {}
capture_cam_ids = physical_ids
fmt_code = _FMT_CODE_YUV
if fmt == 'raw':
capture_cam_ids = physical_raw_ids
fmt_code = _FMT_CODE_RAW
for physical_id in capture_cam_ids:
configs = physical_props[physical_id][
fmt_configs = [cfg for cfg in configs if cfg['format'] == fmt_code]
out_configs = [cfg for cfg in fmt_configs if not cfg['input']]
out_sizes = [(cfg['width'], cfg['height']) for cfg in out_configs]
physical_sizes[physical_id] = max(out_sizes, key=lambda item: item[1])
out_surfaces = determine_valid_out_surfaces(
cam, props, fmt, capture_cam_ids, physical_sizes)
caps = take_images(cam, caps, physical_props, fmt, capture_cam_ids,
out_surfaces, name_with_log_path, debug)
# process images for correctness
for j, fmt in enumerate(fmts):
size = {}
k = {}
cam_reference = {}
r = {}
t = {}
circle = {}
fl = {}
sensor_diag = {}
pixel_sizes = {}
capture_cam_ids = physical_ids
if fmt == 'raw':
capture_cam_ids = physical_raw_ids
logging.debug('Format: %s', str(fmt))
for i in capture_cam_ids:
# convert cap and prep image
img_name = f'{name_with_log_path}_{fmt}_{i}.jpg'
img = convert_cap_and_prep_img(
caps[(fmt, i)], physical_props[i], fmt, img_name, debug)
size[i] = (caps[fmt, i]['width'], caps[fmt, i]['height'])
# load parameters for each physical camera
if j == 0:
logging.debug('Camera %s', i)
k[i] = camera_properties_utils.get_intrinsic_calibration(
physical_props[i], j == 0)
r[i] = camera_properties_utils.get_rotation_matrix(
physical_props[i], j == 0)
t[i] = camera_properties_utils.get_translation_matrix(
physical_props[i], j == 0)
# API spec defines poseTranslation as the world coordinate p_w_cam of
# optics center. When applying [R|t] to go from world coordinates to
# camera coordinates, we need -R*p_w_cam of the coordinate reported in
# metadata.
# ie. for a camera with optical center at world coordinate (5, 4, 3)
# and identity rotation, to convert a world coordinate into the
# camera's coordinate, we need a translation vector of [-5, -4, -3]
# so that: [I|[-5, -4, -3]^T] * [5, 4, 3]^T = [0,0,0]^T
t[i] = -1.0 *[i], t[i])
if debug and j == 1:
logging.debug('t: %s', str(t[i]))
logging.debug('r: %s', str(r[i]))
if (t[i] == _TRANS_MATRIX_REF).all():
cam_reference[i] = True
cam_reference[i] = False
# Correct lens distortion to image (if available) and save before/after
if (camera_properties_utils.distortion_correction(physical_props[i]) and
camera_properties_utils.intrinsic_calibration(physical_props[i]) and
fmt == 'raw'):
cv2_distort = camera_properties_utils.get_distortion_matrix(
if cv2_distort is None:
raise AssertionError(f'Camera {i} has no distortion matrix!')
if not np.any(cv2_distort):
logging.warning('Camera %s has distortion matrix of all zeroes', i)
img/255, f'{name_with_log_path}_{fmt}_{i}.jpg')
img = cv2.undistort(img, k[i], cv2_distort)
img/255, f'{name_with_log_path}_{fmt}_correct_{i}.jpg')
# Find the circles in grayscale image
circle[i] = opencv_processing_utils.find_circle(
img, f'{name_with_log_path}_{fmt}_gray_{i}.jpg',
logging.debug('Circle radius %s: %.2f', format(i), circle[i]['r'])
# Undo zoom to image (if applicable).
if fmt == 'yuv':
circle[i] = undo_zoom(caps[(fmt, i)], circle[i])
# Find focal length, pixel & sensor size
fl[i] = physical_props[i][''][0]
pixel_sizes[i] = calc_pixel_size(physical_props[i])
sensor_diag[i] = math.sqrt(size[i][0] ** 2 + size[i][1] ** 2)
i_ref, i_2nd = define_reference_camera(pose_reference, cam_reference)
logging.debug('reference camera: %s, secondary camera: %s', i_ref, i_2nd)
# Convert circle centers to real world coordinates
x_w = {}
y_w = {}
for i in [i_ref, i_2nd]:
x_w[i], y_w[i] = convert_to_world_coordinates(
circle[i]['x'], circle[i]['y'], r[i], t[i], k[i], chart_distance)
# Back convert to image coordinates for correctness check
x_p = {}
y_p = {}
x_p[i_2nd], y_p[i_2nd] = convert_to_image_coordinates(
[x_w[i_ref], y_w[i_ref], chart_distance], r[i_2nd], t[i_2nd],
x_p[i_ref], y_p[i_ref] = convert_to_image_coordinates(
[x_w[i_2nd], y_w[i_2nd], chart_distance], r[i_ref], t[i_ref],
# Summarize results
for i in [i_ref, i_2nd]:
logging.debug(' Camera: %s', i)
logging.debug(' x, y (pixels): %.1f, %.1f', circle[i]['x'],
logging.debug(' x_w, y_w (mm): %.2f, %.2f', x_w[i] * 1.0E3,
y_w[i] * 1.0E3)
logging.debug(' x_p, y_p (pixels): %.1f, %.1f', x_p[i], y_p[i])
# Check center locations
err_mm = np.linalg.norm(np.array([x_w[i_ref], y_w[i_ref]]) -
np.array([x_w[i_2nd], y_w[i_2nd]])) * _M_TO_MM
logging.debug('Center location err (mm): %.2f', err_mm)
if err_mm > _ALIGN_TOL_MM:
raise AssertionError(
f'Centers {i_ref} <-> {i_2nd} too different! '
f'val={err_mm:.2f}, ATOL={_ALIGN_TOL_MM} mm')
# Check projections back into pixel space
for i in [i_ref, i_2nd]:
err = np.linalg.norm(np.array([circle[i]['x'], circle[i]['y']]) -
np.array([x_p[i], y_p[i]]).reshape(1, -1))
logging.debug('Camera %s projection error (pixels): %.1f', i, err)
tol = _ALIGN_TOL * sensor_diag[i]
if err >= tol:
raise AssertionError(f'Camera {i} project location too different! '
f'diff={err:.2f}, ATOL={tol:.2f} pixels')
# Check focal length and circle size if more than 1 focal length
if len(fl) > 1:
logging.debug('Circle radii (pixels); ref: %.1f, 2nd: %.1f',
circle[i_ref]['r'], circle[i_2nd]['r'])
logging.debug('Focal lengths (diopters); ref: %.2f, 2nd: %.2f',
fl[i_ref], fl[i_2nd])
logging.debug('Pixel size (um); ref: %.2f, 2nd: %.2f',
pixel_sizes[i_ref], pixel_sizes[i_2nd])
if not math.isclose(circle[i_ref]['r']*pixel_sizes[i_ref]/fl[i_ref],
raise AssertionError(
f'Circle size scales improperly! RTOL: {_CIRCLE_RTOL} '
'Metric: radius*pixel_size/focal_length should be equal.')
if __name__ == '__main__':