blob: 131cb55f2a96dfd03eae826f2ac5f819378eafbf [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.media.cts;
import android.media.cts.R;
import android.app.Instrumentation;
import android.content.res.AssetFileDescriptor;
import android.content.res.Resources;
import android.cts.util.CtsAndroidTestCase;
import android.media.cts.DecoderTest.AudioParameter;
import android.media.MediaCodec;
import android.media.MediaCodecInfo;
import android.media.MediaCodecInfo.CodecCapabilities;
import android.media.MediaExtractor;
import android.media.MediaFormat;
import android.support.test.InstrumentationRegistry;
import android.util.Log;
import static org.junit.Assert.*;
import org.junit.Before;
import org.junit.Rule;
import org.junit.Test;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.List;
public class DecoderTestAacDrc {
private static final String TAG = "DecoderTestAacDrc";
private Resources mResources;
@Before
public void setUp() throws Exception {
final Instrumentation inst = InstrumentationRegistry.getInstrumentation();
assertNotNull(inst);
mResources = inst.getContext().getResources();
}
/**
* Verify correct decoding of MPEG-4 AAC with output level normalization to -23dBFS.
*/
@Test
public void testDecodeAacDrcLevelM4a() throws Exception {
AudioParameter decParams = new AudioParameter();
// full boost, full cut, target ref level: -23dBFS, heavy compression: no
DrcParams drcParams = new DrcParams(127, 127, 92, 0);
short[] decSamples = decodeToMemory(decParams, R.raw.sine_2ch_48khz_aot5_drclevel_mp4,
-1, null, drcParams);
DecoderTest decTester = new DecoderTest();
decTester.checkEnergy(decSamples, decParams, 2, 0.70f);
}
/**
* Verify correct decoding of MPEG-4 AAC with Dynamic Range Control (DRC) metadata.
* Fully apply light compression DRC (default settings).
*/
@Test
public void testDecodeAacDrcFullM4a() throws Exception {
AudioParameter decParams = new AudioParameter();
short[] decSamples = decodeToMemory(decParams, R.raw.sine_2ch_48khz_aot5_drcfull_mp4,
-1, null, null);
DecoderTest decTester = new DecoderTest();
decTester.checkEnergy(decSamples, decParams, 2, 0.80f);
}
/**
* Verify correct decoding of MPEG-4 AAC with Dynamic Range Control (DRC) metadata.
* Apply only half of the light compression DRC and normalize to -20dBFS output level.
*/
@Test
public void testDecodeAacDrcHalfM4a() throws Exception {
AudioParameter decParams = new AudioParameter();
// half boost, half cut, target ref level: -20dBFS, heavy compression: no
DrcParams drcParams = new DrcParams(63, 63, 80, 0);
short[] decSamples = decodeToMemory(decParams, R.raw.sine_2ch_48khz_aot2_drchalf_mp4,
-1, null, drcParams);
DecoderTest decTester = new DecoderTest();
decTester.checkEnergy(decSamples, decParams, 2, 0.80f);
}
/**
* Verify correct decoding of MPEG-4 AAC with Dynamic Range Control (DRC) metadata.
* Disable light compression DRC to test if MediaFormat keys reach the decoder.
*/
@Test
public void testDecodeAacDrcOffM4a() throws Exception {
AudioParameter decParams = new AudioParameter();
// no boost, no cut, target ref level: -16dBFS, heavy compression: no
DrcParams drcParams = new DrcParams(0, 0, 64, 0); // normalize to -16dBFS
short[] decSamples = decodeToMemory(decParams, R.raw.sine_2ch_48khz_aot5_drcoff_mp4,
-1, null, drcParams);
DecoderTest decTester = new DecoderTest();
decTester.checkEnergy(decSamples, decParams, 2, 0.80f);
}
/**
* Verify correct decoding of MPEG-4 AAC with Dynamic Range Control (DRC) metadata.
* Apply heavy compression gains and normalize to -16dBFS output level.
*/
@Test
public void testDecodeAacDrcHeavyM4a() throws Exception {
AudioParameter decParams = new AudioParameter();
// full boost, full cut, target ref level: -16dBFS, heavy compression: yes
DrcParams drcParams = new DrcParams(127, 127, 64, 1);
short[] decSamples = decodeToMemory(decParams, R.raw.sine_2ch_48khz_aot2_drcheavy_mp4,
-1, null, drcParams);
DecoderTest decTester = new DecoderTest();
decTester.checkEnergy(decSamples, decParams, 2, 0.80f);
}
/**
* Test signal limiting (without clipping) of MPEG-4 AAC decoder with the help of DRC metadata.
* Uses a two channel 248 Hz sine tone at 48 kHz sampling rate for input.
*/
@Test
public void testDecodeAacDrcClipM4a() throws Exception {
AudioParameter decParams = new AudioParameter();
short[] decSamples = decodeToMemory(decParams, R.raw.sine_2ch_48khz_aot5_drcclip_mp4,
-1, null, null);
checkClipping(decSamples, decParams, 248.0f /* Hz */);
}
/**
* Internal utilities
*/
/**
* The test routine performs a THD+N (Total Harmonic Distortion + Noise) analysis on a given
* audio signal (decSamples). The THD+N value is defined here as harmonic distortion (+ noise)
* RMS over full signal RMS.
*
* After the energy measurement of the unprocessed signal the routine creates and applies a
* notch filter at the given frequency (sineFrequency). Afterwards the signal energy is
* measured again. Then the THD+N value is calculated as the ratio of the filtered and the full
* signal energy.
*
* The test passes if the THD+N value is lower than -60 dB. Otherwise it fails.
*
* @param decSamples the decoded audio samples to be tested
* @param decParams the audio parameters of the given audio samples (decSamples)
* @param sineFrequency frequency of the test signal tone used for testing
* @throws RuntimeException
*/
private void checkClipping(short[] decSamples, AudioParameter decParams, float sineFrequency)
throws RuntimeException
{
final double threshold_clipping = -60.0; // dB
final int numChannels = decParams.getNumChannels();
final int startSample = 2 * 2048 * numChannels; // exclude signal on- & offset to
final int stopSample = decSamples.length - startSample; // ... measure only the stationary
// ... sine tone
// get full energy of signal (all channels)
double nrgFull = getEnergy(decSamples, startSample, stopSample);
// create notch filter to suppress sine-tone at 248 Hz
Biquad filter = new Biquad(sineFrequency, decParams.getSamplingRate());
for (int channel = 0; channel < numChannels; channel++) {
// apply notch-filter on buffer for each channel to filter out the sine tone.
// only the harmonics (and noise) remain. */
filter.apply(decSamples, channel, numChannels);
}
// get energy of harmonic distortion (signal without sine-tone)
double nrgHd = getEnergy(decSamples, startSample, stopSample);
// Total Harmonic Distortion + Noise, defined here as harmonic distortion (+ noise) RMS
// over full signal RMS, given in dB
double THDplusN = 10 * Math.log10(nrgHd / nrgFull);
assertTrue("signal has clipping samples", THDplusN <= threshold_clipping);
}
/**
* Measure the energy of a given signal over all channels within a given signal range.
* @param signal audio signal samples
* @param start start offset of the measuring range
* @param stop stop sample which is the last sample of the measuring range
* @return the signal energy in the given range
*/
private double getEnergy(short[] signal, int start, int stop) {
double nrg = 0.0;
for (int sample = start; sample < stop; sample++) {
double v = signal[sample];
nrg += v * v;
}
return nrg;
}
// Notch filter implementation
private class Biquad {
// filter coefficients for biquad filter (2nd order IIR filter)
float[] a;
float[] b;
// filter states
float[] state_ff;
float[] state_fb;
protected float alpha = 0.95f;
public Biquad(float f_notch, float f_s) {
// Create filter coefficients of notch filter which suppresses a sine tone with f_notch
// Hz at sampling frequency f_s. Zeros placed at unit circle at f_notch, poles placed
// nearby the unit circle at f_notch.
state_ff = new float[2];
state_fb = new float[2];
state_ff[0] = state_ff[1] = state_fb[0] = state_fb[1] = 0.0f;
a = new float[3];
b = new float[3];
double omega = 2.0 * Math.PI * f_notch / f_s;
a[0] = b[0] = b[2] = 1.0f;
a[1] = -2.0f * alpha * (float)Math.cos(omega);
a[2] = alpha * alpha;
b[1] = -2.0f * (float)Math.cos(omega);
}
public void apply(short[] signal, int offset, int stride) {
// reset states
state_ff[0] = state_ff[1] = 0.0f;
state_fb[0] = state_fb[1] = 0.0f;
// process 2nd order IIR filter in Direct Form I
float x_0, x_1, x_2, y_0, y_1, y_2;
x_2 = state_ff[0]; // x[n-2]
x_1 = state_ff[1]; // x[n-1]
y_2 = state_fb[0]; // y[n-2]
y_1 = state_fb[1]; // y[n-1]
for (int sample = offset; sample < signal.length; sample += stride) {
x_0 = signal[sample];
y_0 = b[0] * x_0 + b[1] * x_1 + b[2] * x_2
- a[1] * y_1 - a[2] * y_2;
x_2 = x_1;
x_1 = x_0;
y_2 = y_1;
y_1 = y_0;
signal[sample] = (short)y_0;
}
state_ff[0] = x_2; // next x[n-2]
state_ff[1] = x_1; // next x[n-1]
state_fb[0] = y_2; // next y[n-2]
state_fb[1] = y_1; // next y[n-1]
}
}
/**
* Class handling all MPEG-4 Dynamic Range Control (DRC) parameter relevant for testing
*/
private class DrcParams {
int boost; // scaling of boosting gains
int cut; // scaling of compressing gains
int decoderTargetLevel; // desired target output level (for normalization)
int heavy; // en-/disable heavy compression
public DrcParams() {
this.boost = 127; // no scaling
this.cut = 127; // no scaling
this.decoderTargetLevel = 64; // -16.0 dBFs
this.heavy = 1; // enabled
}
public DrcParams(int boost, int cut, int decoderTargetLevel, int heavy) {
this.boost = boost;
this.cut = cut;
this.decoderTargetLevel = decoderTargetLevel;
this.heavy = heavy;
}
}
// TODO: code is the same as in DecoderTest, differences are:
// - addition of application of DRC parameters
// - no need/use of resetMode, configMode
// Split method so code can be shared
private short[] decodeToMemory(AudioParameter audioParams, int testinput,
int eossample, List<Long> timestamps, DrcParams drcParams)
throws IOException
{
String localTag = TAG + "#decodeToMemory";
short [] decoded = new short[0];
int decodedIdx = 0;
AssetFileDescriptor testFd = mResources.openRawResourceFd(testinput);
MediaExtractor extractor;
MediaCodec codec;
ByteBuffer[] codecInputBuffers;
ByteBuffer[] codecOutputBuffers;
extractor = new MediaExtractor();
extractor.setDataSource(testFd.getFileDescriptor(), testFd.getStartOffset(),
testFd.getLength());
testFd.close();
assertEquals("wrong number of tracks", 1, extractor.getTrackCount());
MediaFormat format = extractor.getTrackFormat(0);
String mime = format.getString(MediaFormat.KEY_MIME);
assertTrue("not an audio file", mime.startsWith("audio/"));
MediaFormat configFormat = format;
codec = MediaCodec.createDecoderByType(mime);
// set DRC parameters
if (drcParams != null) {
configFormat.setInteger(MediaFormat.KEY_AAC_DRC_BOOST_FACTOR, drcParams.boost);
configFormat.setInteger(MediaFormat.KEY_AAC_DRC_ATTENUATION_FACTOR, drcParams.cut);
configFormat.setInteger(MediaFormat.KEY_AAC_DRC_TARGET_REFERENCE_LEVEL,
drcParams.decoderTargetLevel);
configFormat.setInteger(MediaFormat.KEY_AAC_DRC_HEAVY_COMPRESSION, drcParams.heavy);
}
Log.v(localTag, "configuring with " + configFormat);
codec.configure(configFormat, null /* surface */, null /* crypto */, 0 /* flags */);
codec.start();
codecInputBuffers = codec.getInputBuffers();
codecOutputBuffers = codec.getOutputBuffers();
extractor.selectTrack(0);
// start decoding
final long kTimeOutUs = 5000;
MediaCodec.BufferInfo info = new MediaCodec.BufferInfo();
boolean sawInputEOS = false;
boolean sawOutputEOS = false;
int noOutputCounter = 0;
int samplecounter = 0;
while (!sawOutputEOS && noOutputCounter < 50) {
noOutputCounter++;
if (!sawInputEOS) {
int inputBufIndex = codec.dequeueInputBuffer(kTimeOutUs);
if (inputBufIndex >= 0) {
ByteBuffer dstBuf = codecInputBuffers[inputBufIndex];
int sampleSize =
extractor.readSampleData(dstBuf, 0 /* offset */);
long presentationTimeUs = 0;
if (sampleSize < 0 && eossample > 0) {
fail("test is broken: never reached eos sample");
}
if (sampleSize < 0) {
Log.d(TAG, "saw input EOS.");
sawInputEOS = true;
sampleSize = 0;
} else {
if (samplecounter == eossample) {
sawInputEOS = true;
}
samplecounter++;
presentationTimeUs = extractor.getSampleTime();
}
codec.queueInputBuffer(
inputBufIndex,
0 /* offset */,
sampleSize,
presentationTimeUs,
sawInputEOS ? MediaCodec.BUFFER_FLAG_END_OF_STREAM : 0);
if (!sawInputEOS) {
extractor.advance();
}
}
}
int res = codec.dequeueOutputBuffer(info, kTimeOutUs);
if (res >= 0) {
//Log.d(TAG, "got frame, size " + info.size + "/" + info.presentationTimeUs);
if (info.size > 0) {
noOutputCounter = 0;
if (timestamps != null) {
timestamps.add(info.presentationTimeUs);
}
}
int outputBufIndex = res;
ByteBuffer buf = codecOutputBuffers[outputBufIndex];
if (decodedIdx + (info.size / 2) >= decoded.length) {
decoded = Arrays.copyOf(decoded, decodedIdx + (info.size / 2));
}
buf.position(info.offset);
for (int i = 0; i < info.size; i += 2) {
decoded[decodedIdx++] = buf.getShort();
}
codec.releaseOutputBuffer(outputBufIndex, false /* render */);
if ((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) {
Log.d(TAG, "saw output EOS.");
sawOutputEOS = true;
}
} else if (res == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
codecOutputBuffers = codec.getOutputBuffers();
Log.d(TAG, "output buffers have changed.");
} else if (res == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
MediaFormat oformat = codec.getOutputFormat();
audioParams.setNumChannels(oformat.getInteger(MediaFormat.KEY_CHANNEL_COUNT));
audioParams.setSamplingRate(oformat.getInteger(MediaFormat.KEY_SAMPLE_RATE));
Log.d(TAG, "output format has changed to " + oformat);
} else {
Log.d(TAG, "dequeueOutputBuffer returned " + res);
}
}
if (noOutputCounter >= 50) {
fail("decoder stopped outputing data");
}
codec.stop();
codec.release();
return decoded;
}
}