blob: 48c95a37b52543bd91d8e9859d10b27fc415b279 [file] [log] [blame]
# Copyright 2018 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CameraITS test for tonemap curve with sensor test pattern."""
import logging
import os
from mobly import test_runner
import numpy as np
import its_base_test
import camera_properties_utils
import capture_request_utils
import image_processing_utils
import its_session_utils
NAME = os.path.basename(__file__).split('.')[0]
COLOR_BAR_PATTERN = 2 # Note scene0/test_test_patterns must PASS
COLOR_BARS = ['WHITE', 'YELLOW', 'CYAN', 'GREEN', 'MAGENTA', 'RED',
'BLUE', 'BLACK']
N_BARS = len(COLOR_BARS)
COLOR_CHECKER = {'BLACK': [0, 0, 0], 'RED': [1, 0, 0], 'GREEN': [0, 1, 0],
'BLUE': [0, 0, 1], 'MAGENTA': [1, 0, 1], 'CYAN': [0, 1, 1],
'YELLOW': [1, 1, 0], 'WHITE': [1, 1, 1]}
DELTA = 0.0005 # crop on edge of color bars
RAW_TOL = 0.001 # 1 DN in [0:1] (1/(1023-64)
RGB_VAR_TOL = 0.0039 # 1/255
RGB_MEAN_TOL = 0.1
TONEMAP_MAX = 0.5
YUV_H = 480
YUV_W = 640
# Normalized co-ordinates for the color bar patch.
Y_NORM = 0.0
W_NORM = 1.0 / N_BARS - 2 * DELTA
H_NORM = 1.0
# Linear tonemap with maximum of 0.5
LINEAR_TONEMAP = sum([[i/63.0, i/126.0] for i in range(64)], [])
def get_yuv_patch_coordinates(num, w_orig, w_crop):
"""Returns the normalized x co-ordinate for the title.
Args:
num: int; position on color in the color bar.
w_orig: float; original RAW image W
w_crop: float; cropped RAW image W
Returns:
normalized x, w values for color patch.
"""
if w_crop == w_orig: # uncropped image
x_norm = num / N_BARS + DELTA
w_norm = 1 / N_BARS - 2 * DELTA
logging.debug('x_norm: %.5f, w_norm: %.5f', x_norm, w_norm)
elif w_crop < w_orig: # adject patch width to match vertical RAW crop
w_delta_edge = (w_orig - w_crop) / 2
w_bar_orig = w_orig / N_BARS
if num == 0: # left-most bar
x_norm = DELTA
w_norm = (w_bar_orig - w_delta_edge) / w_crop - 2 * DELTA
elif num == N_BARS: # right-most bar
x_norm = (w_bar_orig*num - w_delta_edge)/w_crop + DELTA
w_norm = (w_bar_orig - w_delta_edge) / w_crop - 2 * DELTA
else: # middle bars
x_norm = (w_bar_orig * num - w_delta_edge) / w_crop + DELTA
w_norm = w_bar_orig / w_crop - 2 * DELTA
logging.debug('x_norm: %.5f, w_norm: %.5f (crop-corrected)', x_norm, w_norm)
else:
raise AssertionError('Cropped image is larger than original!')
return x_norm, w_norm
def get_x_norm(num):
"""Returns the normalized x co-ordinate for the title.
Args:
num: int; position on color in the color bar.
Returns:
normalized x co-ordinate.
"""
return float(num) / N_BARS + DELTA
def check_raw_pattern(img_raw):
"""Checks for RAW capture matches color bar pattern.
Args:
img_raw: RAW image
"""
logging.debug('Checking RAW/PATTERN match')
color_match = []
for n in range(N_BARS):
x_norm = get_x_norm(n)
raw_patch = image_processing_utils.get_image_patch(img_raw, x_norm, Y_NORM,
W_NORM, H_NORM)
raw_means = image_processing_utils.compute_image_means(raw_patch)
logging.debug('patch: %d, x_norm: %.3f, RAW means: %s',
n, x_norm, str(raw_means))
for color in COLOR_BARS:
if np.allclose(COLOR_CHECKER[color], raw_means, atol=RAW_TOL):
color_match.append(color)
logging.debug('%s match', color)
break
else:
logging.debug('No match w/ %s: %s, ATOL: %.3f',
color, str(COLOR_CHECKER[color]), RAW_TOL)
if set(color_match) != set(COLOR_BARS):
raise AssertionError('RAW COLOR_BARS test pattern does not have all colors')
def check_yuv_vs_raw(img_raw, img_yuv, name, debug):
"""Checks for YUV vs RAW match in 8 patches.
Check for correct values and color consistency
Args:
img_raw: RAW image
img_yuv: YUV image
name: string for test name with path
debug: boolean to log additional information
"""
logging.debug('Checking YUV/RAW match')
raw_w = img_raw.shape[1]
raw_h = img_raw.shape[0]
raw_aspect_ratio = raw_w/raw_h
yuv_aspect_ratio = YUV_W/YUV_H
logging.debug('raw_img: W, H, AR: %d, %d, %.3f',
raw_w, raw_h, raw_aspect_ratio)
# Crop RAW to match YUV 4:3 format
raw_w_cropped = raw_w
if raw_aspect_ratio > yuv_aspect_ratio: # vertical crop sensor
logging.debug('Cropping RAW to match YUV aspect ratio.')
w_norm_raw = yuv_aspect_ratio / raw_aspect_ratio
x_norm_raw = (1 - w_norm_raw) / 2
img_raw = image_processing_utils.get_image_patch(
img_raw, x_norm_raw, 0, w_norm_raw, 1)
raw_w_cropped = img_raw.shape[1]
logging.debug('New RAW W, H: %d, %d', raw_w_cropped, img_raw.shape[0])
image_processing_utils.write_image(
img_raw, f'{name}_raw_cropped_COLOR_BARS.jpg', True)
# Compare YUV and RAW color patches
color_match_errs = []
color_variance_errs = []
for n in range(N_BARS):
x_norm, w_norm = get_yuv_patch_coordinates(n, raw_w, raw_w_cropped)
logging.debug('x_norm: %.3f', x_norm)
raw_patch = image_processing_utils.get_image_patch(img_raw, x_norm, Y_NORM,
w_norm, H_NORM)
yuv_patch = image_processing_utils.get_image_patch(img_yuv, x_norm, Y_NORM,
w_norm, H_NORM)
if debug:
image_processing_utils.write_image(
raw_patch, f'{name}_raw_patch_{n}.jpg', True)
image_processing_utils.write_image(
yuv_patch, f'{name}_yuv_patch_{n}.jpg', True)
raw_means = np.array(image_processing_utils.compute_image_means(raw_patch))
raw_vars = np.array(
image_processing_utils.compute_image_variances(raw_patch))
yuv_means = np.array(image_processing_utils.compute_image_means(yuv_patch))
yuv_means /= TONEMAP_MAX # Normalize to tonemap max
yuv_vars = np.array(
image_processing_utils.compute_image_variances(yuv_patch))
if not np.allclose(raw_means, yuv_means, atol=RGB_MEAN_TOL):
color_match_errs.append(
'means RAW: %s, RGB(norm): %s, ATOL: %.2f' %
(str(raw_means), str(np.round(yuv_means, 3)), RGB_MEAN_TOL))
if not np.allclose(raw_vars, yuv_vars, atol=RGB_VAR_TOL):
color_variance_errs.append('variances RAW: %s, RGB: %s, ATOL: %.4f' %
(str(raw_vars), str(yuv_vars), RGB_VAR_TOL))
# Print all errors before assertion
if color_match_errs:
for err in color_match_errs:
logging.debug(err)
for err in color_variance_errs:
logging.error(err)
raise AssertionError('Color match errors. See test_log.DEBUG')
if color_variance_errs:
for err in color_variance_errs:
logging.error(err)
raise AssertionError('Color variance errors. See test_log.DEBUG')
def test_tonemap_curve_impl(name, cam, props, debug):
"""Test tonemap curve with sensor test pattern.
Args:
name: Path to save the captured image.
cam: An open device session.
props: Properties of cam.
debug: boolean for debug mode
"""
avail_patterns = props['android.sensor.availableTestPatternModes']
logging.debug('Available Patterns: %s', avail_patterns)
sens_min, _ = props['android.sensor.info.sensitivityRange']
min_exposure = min(props['android.sensor.info.exposureTimeRange'])
# RAW image
req_raw = capture_request_utils.manual_capture_request(
int(sens_min), min_exposure)
req_raw['android.sensor.testPatternMode'] = COLOR_BAR_PATTERN
fmt_raw = {'format': 'raw'}
cap_raw = cam.do_capture(req_raw, fmt_raw)
img_raw = image_processing_utils.convert_capture_to_rgb_image(
cap_raw, props=props)
# Save RAW pattern
image_processing_utils.write_image(
img_raw, f'{name}_raw_COLOR_BARS.jpg', True)
# Check pattern for correctness
check_raw_pattern(img_raw)
# YUV image
req_yuv = capture_request_utils.manual_capture_request(
int(sens_min), min_exposure)
req_yuv['android.sensor.testPatternMode'] = COLOR_BAR_PATTERN
req_yuv['android.distortionCorrection.mode'] = 0
req_yuv['android.tonemap.mode'] = 0
req_yuv['android.tonemap.curve'] = {
'red': LINEAR_TONEMAP,
'green': LINEAR_TONEMAP,
'blue': LINEAR_TONEMAP
}
fmt_yuv = {'format': 'yuv', 'width': YUV_W, 'height': YUV_H}
cap_yuv = cam.do_capture(req_yuv, fmt_yuv)
img_yuv = image_processing_utils.convert_capture_to_rgb_image(cap_yuv, True)
# Save YUV pattern
image_processing_utils.write_image(
img_yuv, f'{name}_yuv_COLOR_BARS.jpg', True)
# Check pattern for correctness
check_yuv_vs_raw(img_raw, img_yuv, name, debug)
class TonemapCurveTest(its_base_test.ItsBaseTest):
"""Test conversion of test pattern from RAW to YUV with linear tonemap.
Test makes use of android.sensor.testPatternMode 2 (COLOR_BARS).
"""
def test_tonemap_curve(self):
logging.debug('Starting %s', NAME)
name = os.path.join(self.log_path, NAME)
with its_session_utils.ItsSession(
device_id=self.dut.serial,
camera_id=self.camera_id,
hidden_physical_id=self.hidden_physical_id) as cam:
props = cam.get_camera_properties()
camera_properties_utils.skip_unless(
camera_properties_utils.raw16(props) and
camera_properties_utils.manual_sensor(props) and
camera_properties_utils.per_frame_control(props) and
camera_properties_utils.manual_post_proc(props) and
camera_properties_utils.color_bars_test_pattern(props))
test_tonemap_curve_impl(name, cam, props, self.debug_mode)
if __name__ == '__main__':
test_runner.main()