blob: d78dfc4e57e608ca13ae4075dcd64228cbc0e1ce [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
#include <gtest/gtest.h>
#include <math.h>
#include "Matrix.h"
class MatrixTest: public testing::Test {
public:
};
void checkValues(const float* arr1, const float* arr2, const int size) {
for (int i = 0; i < size; i++) {
ASSERT_FLOAT_EQ(arr1[i], arr2[i]);
}
}
TEST(MatrixTest, matrixEqualityTest) {
// Create two identity matrixes.
Matrix m1;
Matrix m2;
// Change some random values.
m1.mData[4] = 9;
m2.mData[4] = 9;
// Check they are the same.
ASSERT_TRUE(m1.equals(m2));
Matrix* clone = new Matrix(m1);
ASSERT_TRUE(clone != NULL);
ASSERT_TRUE(m1.equals(*clone));
delete clone;
}
TEST(MatrixTest, matrixIdentityTest) {
// Create an identity matrix.
Matrix m;
float expected[] = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f};
// Check values
checkValues(m.mData, expected, Matrix::MATRIX_SIZE);
}
TEST(MatrixTest, matrixLoadWithTest) {
// Create a matrix.
Matrix m1;
float* d1 = m1.mData;
float data[Matrix::MATRIX_SIZE];
// Fill with rubbish
for (int i = 0; i < Matrix::MATRIX_SIZE; i++) {
d1[i] = i;
data[i] = i;
}
// Create another matrix
Matrix m2;
// Load second matrix with first
m2.loadWith(m1);
// Check values
checkValues(m2.mData, data, Matrix::MATRIX_SIZE);
}
TEST(MatrixTest, matrixTranslateTest) {
Matrix m1;
m1.translate(10, 5, 6);
Matrix* m2 = Matrix::newTranslate(10, 5, 6);
ASSERT_TRUE(m2 != NULL);
ASSERT_TRUE(m1.equals(*m2));
delete m2;
}
TEST(MatrixTest, matrixScaleTest) {
Matrix m1;
m1.scale(10, 5, 6);
Matrix* m2 = Matrix::newScale(10, 5, 6);
ASSERT_TRUE(m2 != NULL);
ASSERT_TRUE(m1.equals(*m2));
delete m2;
}
TEST(MatrixTest, matrixRotateTest) {
Matrix m1;
m1.rotate(180, 1, 0, 1);
Matrix* m2 = Matrix::newRotate(180, 1, 0, 1);
ASSERT_TRUE(m2 != NULL);
ASSERT_TRUE(m1.equals(*m2));
delete m2;
}
TEST(MatrixTest, matrixMultiplyTest) {
// Create three identity matrixes.
Matrix m1;
Matrix m2;
Matrix m3;
float* d1 = m1.mData;
float* d2 = m2.mData;
m3.multiply(m1, m2);
// Multiplication of identity matrixes should give identity
ASSERT_TRUE(m3.equals(m1));
// Fill with ascending numbers
for (int i = 0; i < Matrix::MATRIX_SIZE; i++) {
d1[i] = i;
d2[i] = i;
}
m3.multiply(m1, m2);
// Check against expected
float expected[] = {
56, 62, 68, 74,
152, 174, 196, 218,
248, 286, 324, 362,
344, 398, 452, 506};
checkValues(m3.mData, expected, Matrix::MATRIX_SIZE);
}
TEST(MatrixTest, matrixNewLookAtTest) {
// Position the eye in front of the origin.
float eyeX = 0.0f;
float eyeY = 0.0f;
float eyeZ = 6.0f;
// We are looking at the origin
float centerX = 0.0f;
float centerY = 0.0f;
float centerZ = 0.0f;
// Set our up vector. This is where our head would be pointing were we holding the camera.
float upX = 0.0f;
float upY = 1.0f;
float upZ = 0.0f;
// Set the view matrix. This matrix can be said to represent the camera position.
Matrix* m = Matrix::newLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ,
upX, upY, upZ);
ASSERT_TRUE(m != NULL);
float expected[] = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, -6.0f, 1.0f};
// Check values
checkValues(m->mData, expected, Matrix::MATRIX_SIZE);
delete m;
}
TEST(MatrixTest, matrixNewFrustumTest) {
float ratio = (float) 800 / 600;
float left = -ratio;
float right = ratio;
float bottom = -1.0f;
float top = 1.0f;
float near = 1.0f;
float far = 8.0f;
Matrix* m = Matrix::newFrustum(left, right, bottom, top, near, far);
ASSERT_TRUE(m != NULL);
float expected[] = {
0.75f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 9.0f / -7.0f, -1.0f,
0.0f, 0.0f, 16.0f / -7.0f, 0.0f};
// Check values
checkValues(m->mData, expected, Matrix::MATRIX_SIZE);
delete m;
}
TEST(MatrixTest, matrixNewTranslateTest) {
Matrix* m = Matrix::newTranslate(5, 6, 8);
ASSERT_TRUE(m != NULL);
float expected[] = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
5.0f, 6.0f, 8.0f, 1.0f};
// Check values
checkValues(m->mData, expected, Matrix::MATRIX_SIZE);
delete m;
}
TEST(MatrixTest, matrixNewScaleTest) {
Matrix* m = Matrix::newScale(3, 7, 2);
ASSERT_TRUE(m != NULL);
float expected[] = {
3.0f, 0.0f, 0.0f, 0.0f,
0.0f, 7.0f, 0.0f, 0.0f,
0.0f, 0.0f, 2.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f};
// Check values
checkValues(m->mData, expected, Matrix::MATRIX_SIZE);
delete m;
}
TEST(MatrixTest, matrixNewRotateTest) {
Matrix* m = Matrix::newRotate(45.0f, 0.0f, 1.0f, 0.0f);
ASSERT_TRUE(m != NULL);
float radians = 45.0f * (M_PI / 180.0f);
float sin = sinf(radians);
float cos = cosf(radians);
float expected[] = {
cos, 0.0f, -sin, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
sin, 0.0f, cos, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f};
// Check values
checkValues(m->mData, expected, Matrix::MATRIX_SIZE);
delete m;
}
TEST(MatrixTest, matrixMultiplyVectorTest) {
float in[] = {2, 4, 6, 8};
float out[4];
Matrix m;
float* d = m.mData;
// Fill with rubbish
for (int i = 0; i < Matrix::MATRIX_SIZE; i++) {
d[i] = i;
}
float expected[] = {40, 120, 200, 280};
Matrix::multiplyVector(out, m, in);
checkValues(out, expected, 4);
}