blob: 9b4afe0db7c82fc9e56096075a5a16a6d51103b5 [file] [log] [blame]
# Copyright 2018 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Verifies exposure times on RAW images."""
import logging
import os.path
import matplotlib
from matplotlib import pylab
from mobly import test_runner
import numpy as np
import its_base_test
import camera_properties_utils
import capture_request_utils
import image_processing_utils
import its_session_utils
BLK_LVL_RTOL = 0.1
BURST_LEN = 10 # break captures into burst of BURST_LEN requests
COLORS = ['R', 'Gr', 'Gb', 'B']
EXP_LONG_THRESH = 1E6 # 1ms
EXP_MULT_SHORT = pow(2, 1.0/3) # Test 3 steps per 2x exposure
EXP_MULT_LONG = pow(10, 1.0/3) # Test 3 steps per 10x exposure
IMG_DELTA_THRESH = 0.99 # Each shot must be > 0.99*previous
IMG_SAT_RTOL = 0.01 # 1%
IMG_STATS_GRID = 9 # find used to find the center 11.11%
NAME = os.path.splitext(os.path.basename(__file__))[0]
NS_TO_MS_FACTOR = 1.0E-6
NUM_COLORS = len(COLORS)
NUM_ISO_STEPS = 5
def create_test_exposure_list(e_min, e_max):
"""Create the list of exposure values to test."""
e_list = []
mult = 1.0
while e_min*mult < e_max:
e_list.append(int(e_min*mult))
if e_min*mult < EXP_LONG_THRESH:
mult *= EXP_MULT_SHORT
else:
mult *= EXP_MULT_LONG
if e_list[-1] < e_max*IMG_DELTA_THRESH:
e_list.append(int(e_max))
return e_list
def define_raw_stats_fmt(props):
"""Define format with active array width and height."""
aax = props['android.sensor.info.preCorrectionActiveArraySize']['left']
aay = props['android.sensor.info.preCorrectionActiveArraySize']['top']
aaw = props['android.sensor.info.preCorrectionActiveArraySize']['right']-aax
aah = props['android.sensor.info.preCorrectionActiveArraySize']['bottom']-aay
return {'format': 'rawStats',
'gridWidth': aaw // IMG_STATS_GRID,
'gridHeight': aah // IMG_STATS_GRID}
def create_plot(exps, means, sens, log_path):
"""Create plots R, Gr, Gb, B vs exposures.
Args:
exps: array of exposure times in ms
means: array of means for RAW captures
sens: int value for ISO gain
log_path: path to write plot file
Returns:
None
"""
# means[0] is black level value
r = [m[0] for m in means[1:]]
gr = [m[1] for m in means[1:]]
gb = [m[2] for m in means[1:]]
b = [m[3] for m in means[1:]]
pylab.figure('%s_%s' % (NAME, sens))
pylab.plot(exps, r, 'r.-')
pylab.plot(exps, b, 'b.-')
pylab.plot(exps, gr, 'g.-')
pylab.plot(exps, gb, 'k.-')
pylab.xscale('log')
pylab.yscale('log')
pylab.title('%s ISO=%d' % (NAME, sens))
pylab.xlabel('Exposure time (ms)')
pylab.ylabel('Center patch pixel mean')
matplotlib.pyplot.savefig(
'%s_s=%d.png' % (os.path.join(log_path, NAME), sens))
pylab.clf()
def assert_increasing_means(means, exps, sens, black_levels, white_level):
"""Assert that each image increases unless over/undersaturated.
Args:
means: COLORS means for set of images
exps: exposure times in ms
sens: ISO gain value
black_levels: COLORS black_level values
white_level: full scale value
Returns:
None
"""
allow_under_saturated = True
for i in range(1, len(means)):
prev_mean = means[i-1]
mean = means[i]
if np.isclose(max(mean), white_level, rtol=IMG_SAT_RTOL):
logging.debug('Saturated: white_level %f, max_mean %f',
white_level, max(mean))
break
if allow_under_saturated and np.allclose(
mean, black_levels, rtol=BLK_LVL_RTOL):
# All channel means are close to black level
continue
allow_under_saturated = False
# Check pixel means are increasing (with small tolerance)
for ch, color in enumerate(COLORS):
e_msg = 'ISO=%d, %s, exp %3fms mean: %.2f, %s mean: %.2f, TOL=%.f%%' % (
sens, color, exps[i-1], mean[ch],
'black level' if i == 1 else 'exp_time %.3fms'%exps[i-2],
prev_mean[ch], IMG_DELTA_THRESH*100)
if mean[ch] <= prev_mean[ch] * IMG_DELTA_THRESH:
raise AssertionError(e_msg)
class RawExposureTest(its_base_test.ItsBaseTest):
"""Capture RAW images with increasing exp time and measure pixel values."""
def test_raw_exposure(self):
logging.debug('Starting %s', NAME)
with its_session_utils.ItsSession(
device_id=self.dut.serial,
camera_id=self.camera_id,
hidden_physical_id=self.hidden_physical_id) as cam:
props = cam.get_camera_properties()
props = cam.override_with_hidden_physical_camera_props(props)
camera_properties_utils.skip_unless(
camera_properties_utils.raw16(props) and
camera_properties_utils.manual_sensor(props) and
camera_properties_utils.per_frame_control(props) and
not camera_properties_utils.mono_camera(props))
log_path = self.log_path
# Load chart for scene
its_session_utils.load_scene(
cam, props, self.scene, self.tablet, self.chart_distance)
# Create list of exposures
e_min, e_max = props['android.sensor.info.exposureTimeRange']
e_test = create_test_exposure_list(e_min, e_max)
e_test_ms = [e*NS_TO_MS_FACTOR for e in e_test]
# Capture with rawStats to reduce capture times
fmt = define_raw_stats_fmt(props)
# Create sensitivity range from min to max analog sensitivity
sens_min, _ = props['android.sensor.info.sensitivityRange']
sens_max = props['android.sensor.maxAnalogSensitivity']
sens_step = (sens_max - sens_min) // NUM_ISO_STEPS
white_level = float(props['android.sensor.info.whiteLevel'])
black_levels = [image_processing_utils.get_black_level(
i, props) for i in range(NUM_COLORS)]
# Do captures with exposure list over sensitivity range
for s in range(sens_min, sens_max, sens_step):
# Break caps into bursts and do captures
burst_len = BURST_LEN
caps = []
reqs = [capture_request_utils.manual_capture_request(
s, e, 0) for e in e_test]
# Eliminate burst len==1. Error because returns [[]], not [{}, ...]
while len(reqs) % burst_len == 1:
burst_len -= 1
# Break caps into bursts
for i in range(len(reqs) // burst_len):
caps += cam.do_capture(reqs[i*burst_len:(i+1)*burst_len], fmt)
last_n = len(reqs) % burst_len
if last_n:
caps += cam.do_capture(reqs[-last_n:], fmt)
# Extract means for each capture
means = []
means.append(black_levels)
for i, cap in enumerate(caps):
mean_image, _ = image_processing_utils.unpack_rawstats_capture(cap)
mean = mean_image[IMG_STATS_GRID // 2, IMG_STATS_GRID // 2]
logging.debug('ISO=%d, exp_time=%.3fms, mean=%s',
s, (e_test[i] * NS_TO_MS_FACTOR), str(mean))
means.append(mean)
# Create plot
create_plot(e_test_ms, means, s, log_path)
# Each shot mean should be brighter (except under/overexposed scene)
assert_increasing_means(means, e_test_ms, s, black_levels, white_level)
if __name__ == '__main__':
test_runner.main()