blob: b43067cf00c51ea6ac5c2222fde1102ce5479ff0 [file] [log] [blame]
# Copyright 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Verifies manual burst capture consistency."""
import logging
import os.path
from matplotlib import pylab
import matplotlib.pyplot
from mobly import test_runner
import numpy as np
import its_base_test
import camera_properties_utils
import capture_request_utils
import image_processing_utils
import its_session_utils
import target_exposure_utils
API_LEVEL_30 = 30
BURST_LEN = 50
COLORS = ['R', 'G', 'B']
NAME = os.path.splitext(os.path.basename(__file__))[0]
NUM_BURSTS = 5
PATCH_H = 0.1 # center 10%
PATCH_W = 0.1
PATCH_X = 0.5 - PATCH_W/2
PATCH_Y = 0.5 - PATCH_H/2
SPREAD_THRESH = 0.03
SPREAD_THRESH_API_LEVEL_30 = 0.02
NUM_FRAMES = BURST_LEN * NUM_BURSTS
class BurstSamenessManualTest(its_base_test.ItsBaseTest):
"""Take long bursts of images and check that they're all identical.
Assumes a static scene. Can be used to idenfity if there are sporadic
frames that are processed differently or have artifacts. Uses manual
capture settings.
"""
def test_burst_sameness_manual(self):
logging.debug('Starting %s', NAME)
with its_session_utils.ItsSession(
device_id=self.dut.serial,
camera_id=self.camera_id,
hidden_physical_id=self.hidden_physical_id) as cam:
props = cam.get_camera_properties()
props = cam.override_with_hidden_physical_camera_props(props)
log_path = self.log_path
# check SKIP conditions
camera_properties_utils.skip_unless(
camera_properties_utils.compute_target_exposure(props) and
camera_properties_utils.per_frame_control(props))
# Load chart for scene
its_session_utils.load_scene(
cam, props, self.scene, self.tablet, self.chart_distance)
# Capture at the smallest resolution
_, fmt = capture_request_utils.get_fastest_manual_capture_settings(props)
e, s = target_exposure_utils.get_target_exposure_combos(
log_path, cam)['minSensitivity']
req = capture_request_utils.manual_capture_request(s, e)
w, h = fmt['width'], fmt['height']
# Capture bursts of YUV shots.
# Get the mean values of a center patch for each.
# Also build a 4D array, imgs, which is an array of all RGB images.
r_means = []
g_means = []
b_means = []
imgs = np.empty([NUM_FRAMES, h, w, 3])
for j in range(NUM_BURSTS):
caps = cam.do_capture([req]*BURST_LEN, [fmt])
for i, cap in enumerate(caps):
n = j*BURST_LEN + i
imgs[n] = image_processing_utils.convert_capture_to_rgb_image(cap)
patch = image_processing_utils.get_image_patch(
imgs[n], PATCH_X, PATCH_Y, PATCH_W, PATCH_H)
means = image_processing_utils.compute_image_means(patch)
r_means.append(means[0])
g_means.append(means[1])
b_means.append(means[2])
# Save first frame for setup debug
image_processing_utils.write_image(
imgs[0], '%s_frame000.jpg' % os.path.join(log_path, NAME))
# Save all frames if debug
if self.debug_mode:
logging.debug('Dumping all images')
for i in range(1, NUM_FRAMES):
image_processing_utils.write_image(
imgs[i], '%s_frame%03d.jpg'%(os.path.join(log_path, NAME), i))
# Plot RGB means vs frames
frames = range(NUM_FRAMES)
pylab.figure(NAME)
pylab.title(NAME)
pylab.plot(frames, r_means, '-ro')
pylab.plot(frames, g_means, '-go')
pylab.plot(frames, b_means, '-bo')
pylab.ylim([0, 1])
pylab.xlabel('frame number')
pylab.ylabel('RGB avg [0, 1]')
matplotlib.pyplot.savefig(
'%s_plot_means.png' % os.path.join(log_path, NAME))
# determine spread_thresh
spread_thresh = SPREAD_THRESH
if its_session_utils.get_first_api_level(self.dut.serial) >= API_LEVEL_30:
spread_thresh = SPREAD_THRESH_API_LEVEL_30
# PASS/FAIL based on center patch similarity.
for plane, means in enumerate([r_means, g_means, b_means]):
spread = max(means) - min(means)
msg = '%s spread: %.5f, spread_thresh: %.2f' % (
COLORS[plane], spread, spread_thresh)
logging.debug('%s', msg)
assert spread < spread_thresh, msg
if __name__ == '__main__':
test_runner.main()