blob: f510acab45ac0c751060a1937d530cc3ac92bc44 [file] [log] [blame]
# Copyright 2020 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path
import its.caps
import its.device
import its.image
import its.objects
CONTINUOUS_PICTURE_MODE = 4
CONVERGED_3A = [2, 2, 2] # [AE, AF, AWB]
# AE_STATES: {0: INACTIVE, 1: SEARCHING, 2: CONVERGED, 3: LOCKED,
# 4: FLASH_REQ, 5: PRECAPTURE}
# AF_STATES: {0: INACTIVE, 1: PASSIVE_SCAN, 2: PASSIVE_FOCUSED,
# 3: ACTIVE_SCAN, 4: FOCUS_LOCKED, 5: NOT_FOCUSED_LOCKED,
# 6: PASSIVE_UNFOCUSED}
# AWB_STATES: {0: INACTIVE, 1: SEARCHING, 2: CONVERGED, 3: LOCKED}
NAME = os.path.basename(__file__).split('.')[0]
NUM_FRAMES = 50
W, H = 640, 480
def capture_frames(cam, debug):
"""Capture frames."""
cap_data_list = []
req = its.objects.auto_capture_request()
req['android.control.afMode'] = CONTINUOUS_PICTURE_MODE
fmt = {'format': 'yuv', 'width': W, 'height': H}
caps = cam.do_capture([req]*NUM_FRAMES, fmt)
# extract frame metadata and frame
for i, cap in enumerate(caps):
cap_data = {}
md = cap['metadata']
exp = md['android.sensor.exposureTime']
iso = md['android.sensor.sensitivity']
fd = md['android.lens.focalLength']
ae_state = md['android.control.aeState']
af_state = md['android.control.afState']
awb_state = md['android.control.awbState']
fd_str = 'infinity'
if fd != 0.0:
fd_str = str(round(1.0E2/fd, 2)) + 'cm'
img = its.image.convert_capture_to_rgb_image(cap)
tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
g = its.image.compute_image_means(tile)[1]
print '%d, iso: %d, exp: %.2fms, fd: %s, avg: %.3f' % (
i, iso, exp*1E-6, fd_str, g),
print '[ae,af,awb]: [%d,%d,%d]' % (ae_state, af_state, awb_state)
cap_data['exp'] = exp
cap_data['iso'] = iso
cap_data['fd'] = fd
cap_data['3a_state'] = [ae_state, af_state, awb_state]
cap_data['avg'] = g
cap_data_list.append(cap_data)
if debug:
its.image.write_image(img, '%s_%d.jpg' % (NAME, i))
return cap_data_list
def main():
"""Test 3A converges in CONTINUOUS_PICTURE mode.
Set camera into CONTINUOUS_PICTURE mode and do NUM_FRAMES capture.
By the end of NUM_FRAMES capture, 3A should be in converged state.
"""
# check for skip conditions and do 3a up front
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
props = cam.override_with_hidden_physical_camera_props(props)
its.caps.skip_unless(its.caps.continuous_picture(props) and
its.caps.read_3a(props))
debug = its.caps.debug_mode()
cam.do_3a()
# ensure 3a settles in CONTINUOUS_PICTURE mode with no scene change
cap_data = capture_frames(cam, debug)
final_3a = cap_data[NUM_FRAMES-1]['3a_state']
msg = '\n Last frame [ae, af, awb] state: [%d, %d, %d]' % (
final_3a[0], final_3a[1], final_3a[2])
msg += '\n Converged states:' + str(CONVERGED_3A)
assert final_3a == CONVERGED_3A, msg
if __name__ == '__main__':
main()