blob: 3ebee72783b104c0436c687bfe650d178b90d4b7 [file] [log] [blame]
# Copyright 2013 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processing utility functions."""
import copy
import io
import logging
import math
import os
import random
import sys
import unittest
import capture_request_utils
import cv2
import error_util
import numpy
from PIL import Image
# The matrix is from JFIF spec
DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([[1.000, 0.000, 1.402],
[1.000, -0.344, -0.714],
[1.000, 1.772, 0.000]])
DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128])
MAX_LUT_SIZE = 65536
DEFAULT_GAMMA_LUT = numpy.array([
math.floor((MAX_LUT_SIZE-1) * math.pow(i/(MAX_LUT_SIZE-1), 1/2.2) + 0.5)
for i in range(MAX_LUT_SIZE)])
NUM_TRIES = 2
NUM_FRAMES = 4
TEST_IMG_DIR = os.path.join(os.environ['CAMERA_ITS_TOP'], 'test_images')
def assert_props_is_not_none(props):
if not props:
raise AssertionError('props is None')
def convert_capture_to_rgb_image(cap,
props=None,
apply_ccm_raw_to_rgb=True):
"""Convert a captured image object to a RGB image.
Args:
cap: A capture object as returned by its_session_utils.do_capture.
props: (Optional) camera properties object (of static values);
required for processing raw images.
apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix.
Returns:
RGB float-3 image array, with pixel values in [0.0, 1.0].
"""
w = cap['width']
h = cap['height']
if cap['format'] == 'raw10':
assert_props_is_not_none(props)
cap = unpack_raw10_capture(cap)
if cap['format'] == 'raw12':
assert_props_is_not_none(props)
cap = unpack_raw12_capture(cap)
if cap['format'] == 'yuv':
y = cap['data'][0: w * h]
u = cap['data'][w * h: w * h * 5//4]
v = cap['data'][w * h * 5//4: w * h * 6//4]
return convert_yuv420_planar_to_rgb_image(y, u, v, w, h)
elif cap['format'] == 'jpeg':
return decompress_jpeg_to_rgb_image(cap['data'])
elif cap['format'] == 'raw' or cap['format'] == 'rawStats':
assert_props_is_not_none(props)
r, gr, gb, b = convert_capture_to_planes(cap, props)
return convert_raw_to_rgb_image(
r, gr, gb, b, props, cap['metadata'], apply_ccm_raw_to_rgb)
elif cap['format'] == 'y8':
y = cap['data'][0: w * h]
return convert_y8_to_rgb_image(y, w, h)
else:
raise error_util.CameraItsError('Invalid format %s' % (cap['format']))
def unpack_raw10_capture(cap):
"""Unpack a raw-10 capture to a raw-16 capture.
Args:
cap: A raw-10 capture object.
Returns:
New capture object with raw-16 data.
"""
# Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding
# the MSBs of the pixels, and the 5th byte holding 4x2b LSBs.
w, h = cap['width'], cap['height']
if w % 4 != 0:
raise error_util.CameraItsError('Invalid raw-10 buffer width')
cap = copy.deepcopy(cap)
cap['data'] = unpack_raw10_image(cap['data'].reshape(h, w * 5 // 4))
cap['format'] = 'raw'
return cap
def unpack_raw10_image(img):
"""Unpack a raw-10 image to a raw-16 image.
Output image will have the 10 LSBs filled in each 16b word, and the 6 MSBs
will be set to zero.
Args:
img: A raw-10 image, as a uint8 numpy array.
Returns:
Image as a uint16 numpy array, with all row padding stripped.
"""
if img.shape[1] % 5 != 0:
raise error_util.CameraItsError('Invalid raw-10 buffer width')
w = img.shape[1] * 4 // 5
h = img.shape[0]
# Cut out the 4x8b MSBs and shift to bits [9:2] in 16b words.
msbs = numpy.delete(img, numpy.s_[4::5], 1)
msbs = msbs.astype(numpy.uint16)
msbs = numpy.left_shift(msbs, 2)
msbs = msbs.reshape(h, w)
# Cut out the 4x2b LSBs and put each in bits [1:0] of their own 8b words.
lsbs = img[::, 4::5].reshape(h, w // 4)
lsbs = numpy.right_shift(
numpy.packbits(numpy.unpackbits(lsbs).reshape(h, w // 4, 4, 2), 3), 6)
# Pair the LSB bits group to 0th pixel instead of 3rd pixel
lsbs = lsbs.reshape(h, w // 4, 4)[:, :, ::-1]
lsbs = lsbs.reshape(h, w)
# Fuse the MSBs and LSBs back together
img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w)
return img16
def unpack_raw12_capture(cap):
"""Unpack a raw-12 capture to a raw-16 capture.
Args:
cap: A raw-12 capture object.
Returns:
New capture object with raw-16 data.
"""
# Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding
# the MSBs of the pixels, and the 5th byte holding 4x2b LSBs.
w, h = cap['width'], cap['height']
if w % 2 != 0:
raise error_util.CameraItsError('Invalid raw-12 buffer width')
cap = copy.deepcopy(cap)
cap['data'] = unpack_raw12_image(cap['data'].reshape(h, w * 3 // 2))
cap['format'] = 'raw'
return cap
def unpack_raw12_image(img):
"""Unpack a raw-12 image to a raw-16 image.
Output image will have the 12 LSBs filled in each 16b word, and the 4 MSBs
will be set to zero.
Args:
img: A raw-12 image, as a uint8 numpy array.
Returns:
Image as a uint16 numpy array, with all row padding stripped.
"""
if img.shape[1] % 3 != 0:
raise error_util.CameraItsError('Invalid raw-12 buffer width')
w = img.shape[1] * 2 // 3
h = img.shape[0]
# Cut out the 2x8b MSBs and shift to bits [11:4] in 16b words.
msbs = numpy.delete(img, numpy.s_[2::3], 1)
msbs = msbs.astype(numpy.uint16)
msbs = numpy.left_shift(msbs, 4)
msbs = msbs.reshape(h, w)
# Cut out the 2x4b LSBs and put each in bits [3:0] of their own 8b words.
lsbs = img[::, 2::3].reshape(h, w // 2)
lsbs = numpy.right_shift(
numpy.packbits(numpy.unpackbits(lsbs).reshape(h, w // 2, 2, 4), 3), 4)
# Pair the LSB bits group to pixel 0 instead of pixel 1
lsbs = lsbs.reshape(h, w // 2, 2)[:, :, ::-1]
lsbs = lsbs.reshape(h, w)
# Fuse the MSBs and LSBs back together
img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w)
return img16
def convert_yuv420_planar_to_rgb_image(y_plane, u_plane, v_plane,
w, h,
ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
yuv_off=DEFAULT_YUV_OFFSETS):
"""Convert a YUV420 8-bit planar image to an RGB image.
Args:
y_plane: The packed 8-bit Y plane.
u_plane: The packed 8-bit U plane.
v_plane: The packed 8-bit V plane.
w: The width of the image.
h: The height of the image.
ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
yuv_off: (Optional) offsets to subtract from each of Y,U,V values.
Returns:
RGB float-3 image array, with pixel values in [0.0, 1.0].
"""
y = numpy.subtract(y_plane, yuv_off[0])
u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8)
v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8)
u = u.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0)
v = v.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0)
yuv = numpy.dstack([y, u.reshape(w * h), v.reshape(w * h)])
flt = numpy.empty([h, w, 3], dtype=numpy.float32)
flt.reshape(w * h * 3)[:] = yuv.reshape(h * w * 3)[:]
flt = numpy.dot(flt.reshape(w * h, 3), ccm_yuv_to_rgb.T).clip(0, 255)
rgb = numpy.empty([h, w, 3], dtype=numpy.uint8)
rgb.reshape(w * h * 3)[:] = flt.reshape(w * h * 3)[:]
return rgb.astype(numpy.float32) / 255.0
def decompress_jpeg_to_rgb_image(jpeg_buffer):
"""Decompress a JPEG-compressed image, returning as an RGB image.
Args:
jpeg_buffer: The JPEG stream.
Returns:
A numpy array for the RGB image, with pixels in [0,1].
"""
img = Image.open(io.BytesIO(jpeg_buffer))
w = img.size[0]
h = img.size[1]
return numpy.array(img).reshape(h, w, 3) / 255.0
def convert_image_to_numpy_array(image_path):
"""
Converts an image at the path image_path to numpy array and returns the array.
Args:
image_path: file path
Returns:
numpy array
"""
if not os.path.exists(image_path):
raise assertionError(f'{image_path} does not exist.')
image = Image.open(image_path)
return numpy.array(image)
def convert_capture_to_planes(cap, props=None):
"""Convert a captured image object to separate image planes.
Decompose an image into multiple images, corresponding to different planes.
For YUV420 captures ("yuv"):
Returns Y,U,V planes, where the Y plane is full-res and the U,V planes
are each 1/2 x 1/2 of the full res.
For Bayer captures ("raw", "raw10", "raw12", or "rawStats"):
Returns planes in the order R,Gr,Gb,B, regardless of the Bayer pattern
layout. For full-res raw images ("raw", "raw10", "raw12"), each plane
is 1/2 x 1/2 of the full res. For "rawStats" images, the mean image
is returned.
For JPEG captures ("jpeg"):
Returns R,G,B full-res planes.
Args:
cap: A capture object as returned by its_session_utils.do_capture.
props: (Optional) camera properties object (of static values);
required for processing raw images.
Returns:
A tuple of float numpy arrays (one per plane), consisting of pixel values
in the range [0.0, 1.0].
"""
w = cap['width']
h = cap['height']
if cap['format'] == 'raw10':
assert_props_is_not_none(props)
cap = unpack_raw10_capture(cap)
if cap['format'] == 'raw12':
assert_props_is_not_none(props)
cap = unpack_raw12_capture(cap)
if cap['format'] == 'yuv':
y = cap['data'][0:w * h]
u = cap['data'][w * h:w * h * 5 // 4]
v = cap['data'][w * h * 5 // 4:w * h * 6 // 4]
return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1),
(u.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1),
(v.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1))
elif cap['format'] == 'jpeg':
rgb = decompress_jpeg_to_rgb_image(cap['data']).reshape(w * h * 3)
return (rgb[::3].reshape(h, w, 1), rgb[1::3].reshape(h, w, 1),
rgb[2::3].reshape(h, w, 1))
elif cap['format'] == 'raw':
assert_props_is_not_none(props)
white_level = float(props['android.sensor.info.whiteLevel'])
img = numpy.ndarray(
shape=(h * w,), dtype='<u2', buffer=cap['data'][0:w * h * 2])
img = img.astype(numpy.float32).reshape(h, w) / white_level
# Crop the raw image to the active array region.
if (props.get('android.sensor.info.preCorrectionActiveArraySize') is
not None and
props.get('android.sensor.info.pixelArraySize') is not None):
# Note that the Rect class is defined such that the left,top values
# are "inside" while the right,bottom values are "outside"; that is,
# it's inclusive of the top,left sides only. So, the width is
# computed as right-left, rather than right-left+1, etc.
wfull = props['android.sensor.info.pixelArraySize']['width']
hfull = props['android.sensor.info.pixelArraySize']['height']
xcrop = props['android.sensor.info.preCorrectionActiveArraySize']['left']
ycrop = props['android.sensor.info.preCorrectionActiveArraySize']['top']
wcrop = props['android.sensor.info.preCorrectionActiveArraySize'][
'right'] - xcrop
hcrop = props['android.sensor.info.preCorrectionActiveArraySize'][
'bottom'] - ycrop
if not wfull >= wcrop >= 0:
raise AssertionError(f'wcrop: {wcrop} not in wfull: {wfull}')
if not hfull >= hcrop >= 0:
raise AssertionError(f'hcrop: {hcrop} not in hfull: {hfull}')
if not wfull - wcrop >= xcrop >= 0:
raise AssertionError(f'xcrop: {xcrop} not in wfull-crop: {wfull-wcrop}')
if not hfull - hcrop >= ycrop >= 0:
raise AssertionError(f'ycrop: {ycrop} not in hfull-crop: {hfull-hcrop}')
if w == wfull and h == hfull:
# Crop needed; extract the center region.
img = img[ycrop:ycrop + hcrop, xcrop:xcrop + wcrop]
w = wcrop
h = hcrop
elif w == wcrop and h == hcrop:
logging.debug('Image is already cropped.No cropping needed.')
# pylint: disable=pointless-statement
None
else:
raise error_util.CameraItsError('Invalid image size metadata')
# Separate the image planes.
imgs = [
img[::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1),
img[::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1),
img[1::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1),
img[1::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1)
]
idxs = get_canonical_cfa_order(props)
return [imgs[i] for i in idxs]
elif cap['format'] == 'rawStats':
assert_props_is_not_none(props)
white_level = float(props['android.sensor.info.whiteLevel'])
# pylint: disable=unused-variable
mean_image, var_image = unpack_rawstats_capture(cap)
idxs = get_canonical_cfa_order(props)
return [mean_image[:, :, i] / white_level for i in idxs]
else:
raise error_util.CameraItsError('Invalid format %s' % (cap['format']))
def downscale_image(img, f):
"""Shrink an image by a given integer factor.
This function computes output pixel values by averaging over rectangular
regions of the input image; it doesn't skip or sample pixels, and all input
image pixels are evenly weighted.
If the downscaling factor doesn't cleanly divide the width and/or height,
then the remaining pixels on the right or bottom edge are discarded prior
to the downscaling.
Args:
img: The input image as an ndarray.
f: The downscaling factor, which should be an integer.
Returns:
The new (downscaled) image, as an ndarray.
"""
h, w, chans = img.shape
f = int(f)
assert f >= 1
h = (h//f)*f
w = (w//f)*f
img = img[0:h:, 0:w:, ::]
chs = []
for i in range(chans):
ch = img.reshape(h*w*chans)[i::chans].reshape(h, w)
ch = ch.reshape(h, w//f, f).mean(2).reshape(h, w//f)
ch = ch.T.reshape(w//f, h//f, f).mean(2).T.reshape(h//f, w//f)
chs.append(ch.reshape(h*w//(f*f)))
img = numpy.vstack(chs).T.reshape(h//f, w//f, chans)
return img
def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane, props,
cap_res, apply_ccm_raw_to_rgb=True):
"""Convert a Bayer raw-16 image to an RGB image.
Includes some extremely rudimentary demosaicking and color processing
operations; the output of this function shouldn't be used for any image
quality analysis.
Args:
r_plane:
gr_plane:
gb_plane:
b_plane: Numpy arrays for each color plane
in the Bayer image, with pixels in the [0.0, 1.0] range.
props: Camera properties object.
cap_res: Capture result (metadata) object.
apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix.
Returns:
RGB float-3 image array, with pixel values in [0.0, 1.0]
"""
# Values required for the RAW to RGB conversion.
assert_props_is_not_none(props)
white_level = float(props['android.sensor.info.whiteLevel'])
black_levels = props['android.sensor.blackLevelPattern']
gains = cap_res['android.colorCorrection.gains']
ccm = cap_res['android.colorCorrection.transform']
# Reorder black levels and gains to R,Gr,Gb,B, to match the order
# of the planes.
black_levels = [get_black_level(i, props, cap_res) for i in range(4)]
gains = get_gains_in_canonical_order(props, gains)
# Convert CCM from rational to float, as numpy arrays.
ccm = numpy.array(capture_request_utils.rational_to_float(ccm)).reshape(3, 3)
# Need to scale the image back to the full [0,1] range after subtracting
# the black level from each pixel.
scale = white_level / (white_level - max(black_levels))
# Three-channel black levels, normalized to [0,1] by white_level.
black_levels = numpy.array(
[b / white_level for b in [black_levels[i] for i in [0, 1, 3]]])
# Three-channel gains.
gains = numpy.array([gains[i] for i in [0, 1, 3]])
h, w = r_plane.shape[:2]
img = numpy.dstack([r_plane, (gr_plane + gb_plane) / 2.0, b_plane])
img = (((img.reshape(h, w, 3) - black_levels) * scale) * gains).clip(0.0, 1.0)
if apply_ccm_raw_to_rgb:
img = numpy.dot(
img.reshape(w * h, 3), ccm.T).reshape(h, w, 3).clip(0.0, 1.0)
return img
def convert_y8_to_rgb_image(y_plane, w, h):
"""Convert a Y 8-bit image to an RGB image.
Args:
y_plane: The packed 8-bit Y plane.
w: The width of the image.
h: The height of the image.
Returns:
RGB float-3 image array, with pixel values in [0.0, 1.0].
"""
y3 = numpy.dstack([y_plane, y_plane, y_plane])
rgb = numpy.empty([h, w, 3], dtype=numpy.uint8)
rgb.reshape(w * h * 3)[:] = y3.reshape(w * h * 3)[:]
return rgb.astype(numpy.float32) / 255.0
def write_image(img, fname, apply_gamma=False):
"""Save a float-3 numpy array image to a file.
Supported formats: PNG, JPEG, and others; see PIL docs for more.
Image can be 3-channel, which is interpreted as RGB, or can be 1-channel,
which is greyscale.
Can optionally specify that the image should be gamma-encoded prior to
writing it out; this should be done if the image contains linear pixel
values, to make the image look "normal".
Args:
img: Numpy image array data.
fname: Path of file to save to; the extension specifies the format.
apply_gamma: (Optional) apply gamma to the image prior to writing it.
"""
if apply_gamma:
img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT)
(h, w, chans) = img.shape
if chans == 3:
Image.fromarray((img * 255.0).astype(numpy.uint8), 'RGB').save(fname)
elif chans == 1:
img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h, w, 3)
Image.fromarray(img3, 'RGB').save(fname)
else:
raise error_util.CameraItsError('Unsupported image type')
def read_image(fname):
"""Read image function to match write_image() above."""
return Image.open(fname)
def apply_lut_to_image(img, lut):
"""Applies a LUT to every pixel in a float image array.
Internally converts to a 16b integer image, since the LUT can work with up
to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also
have fewer than 65536 entries, however it must be sized as a power of 2
(and for smaller luts, the scale must match the bitdepth).
For a 16b lut of 65536 entries, the operation performed is:
lut[r * 65535] / 65535 -> r'
lut[g * 65535] / 65535 -> g'
lut[b * 65535] / 65535 -> b'
For a 10b lut of 1024 entries, the operation becomes:
lut[r * 1023] / 1023 -> r'
lut[g * 1023] / 1023 -> g'
lut[b * 1023] / 1023 -> b'
Args:
img: Numpy float image array, with pixel values in [0,1].
lut: Numpy table encoding a LUT, mapping 16b integer values.
Returns:
Float image array after applying LUT to each pixel.
"""
n = len(lut)
if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0:
raise error_util.CameraItsError('Invalid arg LUT size: %d' % (n))
m = float(n - 1)
return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32)
def get_gains_in_canonical_order(props, gains):
"""Reorders the gains tuple to the canonical R,Gr,Gb,B order.
Args:
props: Camera properties object.
gains: List of 4 values, in R,G_even,G_odd,B order.
Returns:
List of gains values, in R,Gr,Gb,B order.
"""
cfa_pat = props['android.sensor.info.colorFilterArrangement']
if cfa_pat in [0, 1]:
# RGGB or GRBG, so G_even is Gr
return gains
elif cfa_pat in [2, 3]:
# GBRG or BGGR, so G_even is Gb
return [gains[0], gains[2], gains[1], gains[3]]
else:
raise error_util.CameraItsError('Not supported')
def get_black_level(chan, props, cap_res=None):
"""Return the black level to use for a given capture.
Uses a dynamic value from the capture result if available, else falls back
to the static global value in the camera characteristics.
Args:
chan: The channel index, in canonical order (R, Gr, Gb, B).
props: The camera properties object.
cap_res: A capture result object.
Returns:
The black level value for the specified channel.
"""
if (cap_res is not None and
'android.sensor.dynamicBlackLevel' in cap_res and
cap_res['android.sensor.dynamicBlackLevel'] is not None):
black_levels = cap_res['android.sensor.dynamicBlackLevel']
else:
black_levels = props['android.sensor.blackLevelPattern']
idxs = get_canonical_cfa_order(props)
ordered_black_levels = [black_levels[i] for i in idxs]
return ordered_black_levels[chan]
def get_canonical_cfa_order(props):
"""Returns a mapping to the standard order R,Gr,Gb,B.
Returns a mapping from the Bayer 2x2 top-left grid in the CFA to the standard
order R,Gr,Gb,B.
Args:
props: Camera properties object.
Returns:
List of 4 integers, corresponding to the positions in the 2x2 top-
left Bayer grid of R,Gr,Gb,B, where the 2x2 grid is labeled as
0,1,2,3 in row major order.
"""
# Note that raw streams aren't croppable, so the cropRegion doesn't need
# to be considered when determining the top-left pixel color.
cfa_pat = props['android.sensor.info.colorFilterArrangement']
if cfa_pat == 0:
# RGGB
return [0, 1, 2, 3]
elif cfa_pat == 1:
# GRBG
return [1, 0, 3, 2]
elif cfa_pat == 2:
# GBRG
return [2, 3, 0, 1]
elif cfa_pat == 3:
# BGGR
return [3, 2, 1, 0]
else:
raise error_util.CameraItsError('Not supported')
def unpack_rawstats_capture(cap):
"""Unpack a rawStats capture to the mean and variance images.
Args:
cap: A capture object as returned by its_session_utils.do_capture.
Returns:
Tuple (mean_image var_image) of float-4 images, with non-normalized
pixel values computed from the RAW16 images on the device
"""
if cap['format'] != 'rawStats':
raise AssertionError(f"Unpack fmt != rawStats: {cap['format']}")
w = cap['width']
h = cap['height']
img = numpy.ndarray(shape=(2 * h * w * 4,), dtype='<f', buffer=cap['data'])
analysis_image = img.reshape((2, h, w, 4))
mean_image = analysis_image[0, :, :, :].reshape(h, w, 4)
var_image = analysis_image[1, :, :, :].reshape(h, w, 4)
return mean_image, var_image
def get_image_patch(img, xnorm, ynorm, wnorm, hnorm):
"""Get a patch (tile) of an image.
Args:
img: Numpy float image array, with pixel values in [0,1].
xnorm:
ynorm:
wnorm:
hnorm: Normalized (in [0,1]) coords for the tile.
Returns:
Numpy float image array of the patch.
"""
hfull = img.shape[0]
wfull = img.shape[1]
xtile = int(math.ceil(xnorm * wfull))
ytile = int(math.ceil(ynorm * hfull))
wtile = int(math.floor(wnorm * wfull))
htile = int(math.floor(hnorm * hfull))
if len(img.shape) == 2:
return img[ytile:ytile + htile, xtile:xtile + wtile].copy()
else:
return img[ytile:ytile + htile, xtile:xtile + wtile, :].copy()
def compute_image_means(img):
"""Calculate the mean of each color channel in the image.
Args:
img: Numpy float image array, with pixel values in [0,1].
Returns:
A list of mean values, one per color channel in the image.
"""
means = []
chans = img.shape[2]
for i in range(chans):
means.append(numpy.mean(img[:, :, i], dtype=numpy.float64))
return means
def compute_image_variances(img):
"""Calculate the variance of each color channel in the image.
Args:
img: Numpy float image array, with pixel values in [0,1].
Returns:
A list of variance values, one per color channel in the image.
"""
variances = []
chans = img.shape[2]
for i in range(chans):
variances.append(numpy.var(img[:, :, i], dtype=numpy.float64))
return variances
def compute_image_sharpness(img):
"""Calculate the sharpness of input image.
Args:
img: numpy float RGB/luma image array, with pixel values in [0,1].
Returns:
Sharpness estimation value based on the average of gradient magnitude.
Larger value means the image is sharper.
"""
chans = img.shape[2]
if chans != 1 and chans != 3:
raise AssertionError(f'Not RGB or MONO image! depth: {chans}')
if chans == 1:
luma = img[:, :, 0]
else:
luma = convert_rgb_to_grayscale(img)
gy, gx = numpy.gradient(luma)
return numpy.average(numpy.sqrt(gy*gy + gx*gx))
def compute_image_max_gradients(img):
"""Calculate the maximum gradient of each color channel in the image.
Args:
img: Numpy float image array, with pixel values in [0,1].
Returns:
A list of gradient max values, one per color channel in the image.
"""
grads = []
chans = img.shape[2]
for i in range(chans):
grads.append(numpy.amax(numpy.gradient(img[:, :, i])))
return grads
def compute_image_snrs(img):
"""Calculate the SNR (dB) of each color channel in the image.
Args:
img: Numpy float image array, with pixel values in [0,1].
Returns:
A list of SNR values in dB, one per color channel in the image.
"""
means = compute_image_means(img)
variances = compute_image_variances(img)
std_devs = [math.sqrt(v) for v in variances]
snrs = [20 * math.log10(m/s) for m, s in zip(means, std_devs)]
return snrs
def convert_rgb_to_grayscale(img):
"""Convert and 3-D array RGB image to grayscale image.
Args:
img: numpy float RGB/luma image array, with pixel values in [0,1].
Returns:
2-D grayscale image
"""
chans = img.shape[2]
if chans != 3:
raise AssertionError(f'Not an RGB image! Depth: {chans}')
return 0.299*img[:, :, 0] + 0.587*img[:, :, 1] + 0.114*img[:, :, 2]
def normalize_img(img):
"""Normalize the image values to between 0 and 1.
Args:
img: 2-D numpy array of image values
Returns:
Normalized image
"""
return (img - numpy.amin(img))/(numpy.amax(img) - numpy.amin(img))
def rotate_img_per_argv(img):
"""Rotate an image 180 degrees if "rotate" is in argv.
Args:
img: 2-D numpy array of image values
Returns:
Rotated image
"""
img_out = img
if 'rotate180' in sys.argv:
img_out = numpy.fliplr(numpy.flipud(img_out))
return img_out
def stationary_lens_cap(cam, req, fmt):
"""Take up to NUM_TRYS caps and save the 1st one with lens stationary.
Args:
cam: open device session
req: capture request
fmt: format for capture
Returns:
capture
"""
tries = 0
done = False
reqs = [req] * NUM_FRAMES
while not done:
logging.debug('Waiting for lens to move to correct location.')
cap = cam.do_capture(reqs, fmt)
done = (cap[NUM_FRAMES - 1]['metadata']['android.lens.state'] == 0)
logging.debug('status: %s', done)
tries += 1
if tries == NUM_TRIES:
raise error_util.CameraItsError('Cannot settle lens after %d tries!' %
tries)
return cap[NUM_FRAMES - 1]
def compute_image_rms_difference_1d(rgb_x, rgb_y):
"""Calculate the RMS difference between 2 RBG images as 1D arrays.
Args:
rgb_x: image array
rgb_y: image array
Returns:
rms_diff
"""
len_rgb_x = len(rgb_x)
len_rgb_y = len(rgb_y)
if len_rgb_y != len_rgb_x:
raise AssertionError('RGB images have different number of planes! '
f'x: {len_rgb_x}, y: {len_rgb_y}')
return math.sqrt(sum([pow(rgb_x[i] - rgb_y[i], 2.0)
for i in range(len_rgb_x)]) / len_rgb_x)
def compute_image_rms_difference_3d(rgb_x, rgb_y):
"""Calculate the RMS difference between 2 RBG images as 3D arrays.
Args:
rgb_x: image array in the form of w * h * channels
rgb_y: image array in the form of w * h * channels
Returns:
rms_diff
"""
shape_rgb_x = numpy.shape(rgb_x)
shape_rgb_y = numpy.shape(rgb_y)
if shape_rgb_y != shape_rgb_x:
raise AssertionError('RGB images have different number of planes! '
f'x: {shape_rgb_x}, y: {shape_rgb_y}')
if len(shape_rgb_x) != 3:
raise AssertionError(f'RGB images dimension {len(shape_rgb_x)} is not 3!')
mean_square_sum = 0.0
for i in range(shape_rgb_x[0]):
for j in range(shape_rgb_x[1]):
for k in range(shape_rgb_x[2]):
mean_square_sum += pow(rgb_x[i][j][k] - rgb_y[i][j][k], 2.0);
return math.sqrt(mean_square_sum / (shape_rgb_x[0] * shape_rgb_x[1] * shape_rgb_x[2]))
class ImageProcessingUtilsTest(unittest.TestCase):
"""Unit tests for this module."""
_SQRT_2 = numpy.sqrt(2)
_YUV_FULL_SCALE = 1023
def test_unpack_raw10_image(self):
"""Unit test for unpack_raw10_image.
RAW10 bit packing format
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Byte 0: P0[9] P0[8] P0[7] P0[6] P0[5] P0[4] P0[3] P0[2]
Byte 1: P1[9] P1[8] P1[7] P1[6] P1[5] P1[4] P1[3] P1[2]
Byte 2: P2[9] P2[8] P2[7] P2[6] P2[5] P2[4] P2[3] P2[2]
Byte 3: P3[9] P3[8] P3[7] P3[6] P3[5] P3[4] P3[3] P3[2]
Byte 4: P3[1] P3[0] P2[1] P2[0] P1[1] P1[0] P0[1] P0[0]
"""
# Test using a random 4x4 10-bit image
img_w, img_h = 4, 4
check_list = random.sample(range(0, 1024), img_h*img_w)
img_check = numpy.array(check_list).reshape(img_h, img_w)
# Pack bits
for row_start in range(0, len(check_list), img_w):
msbs = []
lsbs = ''
for pixel in range(img_w):
val = numpy.binary_repr(check_list[row_start+pixel], 10)
msbs.append(int(val[:8], base=2))
lsbs = val[8:] + lsbs
packed = msbs
packed.append(int(lsbs, base=2))
chunk_raw10 = numpy.array(packed, dtype='uint8').reshape(1, 5)
if row_start == 0:
img_raw10 = chunk_raw10
else:
img_raw10 = numpy.vstack((img_raw10, chunk_raw10))
# Unpack and check against original
self.assertTrue(numpy.array_equal(unpack_raw10_image(img_raw10),
img_check))
def test_compute_image_sharpness(self):
"""Unit test for compute_img_sharpness.
Tests by using PNG of ISO12233 chart and blurring intentionally.
'sharpness' should drop off by sqrt(2) for 2x blur of image.
We do one level of initial blur as PNG image is not perfect.
"""
blur_levels = [2, 4, 8]
chart_file = os.path.join(TEST_IMG_DIR, 'ISO12233.png')
chart = cv2.imread(chart_file, cv2.IMREAD_ANYDEPTH)
white_level = numpy.amax(chart).astype(float)
sharpness = {}
for blur in blur_levels:
chart_blurred = cv2.blur(chart, (blur, blur))
chart_blurred = chart_blurred[:, :, numpy.newaxis]
sharpness[blur] = self._YUV_FULL_SCALE * compute_image_sharpness(
chart_blurred / white_level)
for i in range(len(blur_levels)-1):
self.assertTrue(numpy.isclose(
sharpness[blur_levels[i]]/sharpness[blur_levels[i+1]], self._SQRT_2,
atol=0.1))
def test_apply_lut_to_image(self):
"""Unit test for apply_lut_to_image.
Test by using a canned set of values on a 1x1 pixel image.
The look-up table should double the value of the index: lut[x] = x*2
"""
ref_image = [0.1, 0.2, 0.3]
lut_max = 65536
lut = numpy.array([i*2 for i in range(lut_max)])
x = numpy.array(ref_image).reshape(1, 1, 3)
y = apply_lut_to_image(x, lut).reshape(3).tolist()
y_ref = [i*2 for i in ref_image]
self.assertTrue(numpy.allclose(y, y_ref, atol=1/lut_max))
if __name__ == '__main__':
unittest.main()