blob: 89cdae54c4983cf42b96e85f14c9998b9d2aa47e [file] [log] [blame]
# Copyright 2020 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Verify zoom ratio scales circle sizes correctly."""
import logging
import math
import os.path
from mobly import test_runner
import numpy as np
import cv2
import its_base_test
import camera_properties_utils
import capture_request_utils
import image_processing_utils
import its_session_utils
import opencv_processing_utils
CIRCLE_COLOR = 0 # [0: black, 255: white]
CIRCLE_AR_RTOL = 0.15 # contour width vs height (aspect ratio)
CIRCLISH_RTOL = 0.05 # contour area vs ideal circle area pi*((w+h)/4)**2
LINE_COLOR = (255, 0, 0) # red
LINE_THICKNESS = 5
MIN_AREA_RATIO = 0.00015 # based on 2000/(4000x3000) pixels
MIN_CIRCLE_PTS = 25
MIN_FOCUS_DIST_TOL = 0.80 # allow charts a little closer than min
NAME = os.path.splitext(os.path.basename(__file__))[0]
NUM_STEPS = 10
OFFSET_RTOL = 0.15
OFFSET_RTOL_MIN_FD = 0.30
RADIUS_RTOL = 0.10
RADIUS_RTOL_MIN_FD = 0.15
ZOOM_MAX_THRESH = 10.0
ZOOM_MIN_THRESH = 2.0
def get_test_tols_and_cap_size(cam, props, chart_distance, debug):
"""Determine the tolerance per camera based on test rig and camera params.
Cameras are pre-filtered to only include supportable cameras.
Supportable cameras are: YUV(RGB)
Args:
cam: camera object
props: dict; physical camera properties dictionary
chart_distance: float; distance to chart in cm
debug: boolean; log additional data
Returns:
dict of TOLs with camera focal length as key
largest common size across all cameras
"""
ids = camera_properties_utils.logical_multi_camera_physical_ids(props)
physical_props = {}
physical_ids = []
for i in ids:
physical_props[i] = cam.get_camera_properties_by_id(i)
# find YUV capable physical cameras
if camera_properties_utils.backward_compatible(physical_props[i]):
physical_ids.append(i)
# find physical camera focal lengths that work well with rig
chart_distance_m = abs(chart_distance)/100 # convert CM to M
test_tols = {}
test_yuv_sizes = []
for i in physical_ids:
min_fd = physical_props[i]['android.lens.info.minimumFocusDistance']
focal_l = physical_props[i]['android.lens.info.availableFocalLengths'][0]
logging.debug('cam[%s] min_fd: %.3f (diopters), fl: %.2f',
i, min_fd, focal_l)
yuv_sizes = capture_request_utils.get_available_output_sizes(
'yuv', physical_props[i])
test_yuv_sizes.append(yuv_sizes)
if debug:
logging.debug('cam[%s] yuv sizes: %s', i, str(yuv_sizes))
# determine if minimum focus distance is less than rig depth
if (math.isclose(min_fd, 0.0, rel_tol=1E-6) or # fixed focus
1.0/min_fd < chart_distance_m*MIN_FOCUS_DIST_TOL):
test_tols[focal_l] = (RADIUS_RTOL, OFFSET_RTOL)
else:
test_tols[focal_l] = (RADIUS_RTOL_MIN_FD, OFFSET_RTOL_MIN_FD)
logging.debug('loosening RTOL for cam[%s]: '
'min focus distance too large.', i)
# find intersection of formats for max common format
common_sizes = list(set.intersection(*[set(list) for list in test_yuv_sizes]))
if debug:
logging.debug('common_fmt: %s', max(common_sizes))
return test_tols, max(common_sizes)
def distance(x, y):
return math.sqrt(x**2 + y**2)
def circle_cropped(circle, size):
"""Determine if a circle is cropped by edge of img.
Args:
circle: list [x, y, radius] of circle
size: tuple (x, y) of size of img
Returns:
Boolean True if selected circle is cropped
"""
cropped = False
circle_x, circle_y = circle[0], circle[1]
circle_r = circle[2]
x_min, x_max = circle_x - circle_r, circle_x + circle_r
y_min, y_max = circle_y - circle_r, circle_y + circle_r
if x_min < 0 or y_min < 0 or x_max > size[0] or y_max > size[1]:
cropped = True
return cropped
def find_center_circle(img, img_name, color, min_area, debug):
"""Find the circle closest to the center of the image.
Finds all contours in the image. Rejects those too small and not enough
points to qualify as a circle. The remaining contours must have center
point of color=color and are sorted based on distance from the center
of the image. The contour closest to the center of the image is returned.
Note: hierarchy is not used as the hierarchy for black circles changes
as the zoom level changes.
Args:
img: numpy img array with pixel values in [0,255].
img_name: str file name for saved image
color: int 0 --> black, 255 --> white
min_area: int minimum area of circles to screen out
debug: bool to save extra data
Returns:
circle: [center_x, center_y, radius]
"""
# gray scale & otsu threshold to binarize the image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, img_bw = cv2.threshold(
np.uint8(gray), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# use OpenCV to find contours (connected components)
contours = opencv_processing_utils.find_all_contours(255-img_bw)
# check contours and find the best circle candidates
circles = []
img_ctr = [gray.shape[1] // 2, gray.shape[0] // 2]
for contour in contours:
area = cv2.contourArea(contour)
if area > min_area and len(contour) >= MIN_CIRCLE_PTS:
shape = opencv_processing_utils.component_shape(contour)
radius = (shape['width'] + shape['height']) / 4
colour = img_bw[shape['cty']][shape['ctx']]
circlish = round((math.pi * radius**2) / area, 4)
if (colour == color and
(1 - CIRCLISH_RTOL <= circlish <= 1 + CIRCLISH_RTOL) and
math.isclose(shape['width'], shape['height'],
rel_tol=CIRCLE_AR_RTOL)):
circles.append([shape['ctx'], shape['cty'], radius, circlish, area])
if not circles:
raise AssertionError('No circle was detected. Please take pictures '
'according to instructions carefully!')
if debug:
logging.debug('circles [x, y, r, pi*r**2/area, area]: %s', str(circles))
# find circle closest to center
circles.sort(key=lambda x: distance(x[0] - img_ctr[0], x[1] - img_ctr[1]))
circle = circles[0]
# mark image center
size = gray.shape
m_x, m_y = size[1] // 2, size[0] // 2
marker_size = LINE_THICKNESS * 10
cv2.drawMarker(img, (m_x, m_y), LINE_COLOR, markerType=cv2.MARKER_CROSS,
markerSize=marker_size, thickness=LINE_THICKNESS)
# add circle to saved image
center_i = (int(round(circle[0], 0)), int(round(circle[1], 0)))
radius_i = int(round(circle[2], 0))
cv2.circle(img, center_i, radius_i, LINE_COLOR, LINE_THICKNESS)
image_processing_utils.write_image(img / 255.0, img_name)
return [circle[0], circle[1], circle[2]]
class ZoomTest(its_base_test.ItsBaseTest):
"""Test the camera zoom behavior.
"""
def test_zoom(self):
test_data = {}
with its_session_utils.ItsSession(
device_id=self.dut.serial,
camera_id=self.camera_id,
hidden_physical_id=self.hidden_physical_id) as cam:
props = cam.get_camera_properties()
props = cam.override_with_hidden_physical_camera_props(props)
camera_properties_utils.skip_unless(
camera_properties_utils.zoom_ratio_range(props))
# Load chart for scene
its_session_utils.load_scene(
cam, props, self.scene, self.tablet, self.chart_distance)
z_range = props['android.control.zoomRatioRange']
logging.debug('testing zoomRatioRange: %s', str(z_range))
debug = self.debug_mode
z_min, z_max = float(z_range[0]), float(z_range[1])
camera_properties_utils.skip_unless(z_max >= z_min * ZOOM_MIN_THRESH)
z_list = np.arange(z_min, z_max, float(z_max - z_min) / (NUM_STEPS - 1))
z_list = np.append(z_list, z_max)
# set TOLs based on camera and test rig params
if camera_properties_utils.logical_multi_camera(props):
test_tols, size = get_test_tols_and_cap_size(
cam, props, self.chart_distance, debug)
else:
fl = props['android.lens.info.availableFocalLengths'][0]
test_tols = {fl: (RADIUS_RTOL, OFFSET_RTOL)}
yuv_size = capture_request_utils.get_largest_yuv_format(props)
size = [yuv_size['width'], yuv_size['height']]
logging.debug('capture size: %s', str(size))
logging.debug('test TOLs: %s', str(test_tols))
# do captures over zoom range and find circles with cv2
cam.do_3a()
req = capture_request_utils.auto_capture_request()
for i, z in enumerate(z_list):
logging.debug('zoom ratio: %.2f', z)
req['android.control.zoomRatio'] = z
cap = cam.do_capture(
req, {'format': 'yuv', 'width': size[0], 'height': size[1]})
img = image_processing_utils.convert_capture_to_rgb_image(
cap, props=props)
img_name = '%s_%s.jpg' % (os.path.join(self.log_path,
NAME), round(z, 2))
image_processing_utils.write_image(img, img_name)
# determine radius tolerance of capture
cap_fl = cap['metadata']['android.lens.focalLength']
radius_tol, offset_tol = test_tols[cap_fl]
# convert to [0, 255] images with unsigned integer
img *= 255
img = img.astype(np.uint8)
# Find the center circle in img
try:
circle = find_center_circle(
img, img_name, CIRCLE_COLOR,
min_area=MIN_AREA_RATIO * size[0] * size[1] * z * z,
debug=debug)
if circle_cropped(circle, size):
logging.debug('zoom %.2f is too large! Skip further captures', z)
break
except AssertionError:
if z/z_list[0] >= ZOOM_MAX_THRESH:
break
else:
raise AssertionError(
f'No circle was detected for zoom ratio <= {ZOOM_MAX_THRESH}. '
'Please take pictures according to instructions carefully!')
test_data[i] = {'z': z, 'circle': circle, 'r_tol': radius_tol,
'o_tol': offset_tol, 'fl': cap_fl}
# assert some range is tested before circles get too big
zoom_max_thresh = ZOOM_MAX_THRESH
z_max_ratio = z_max / z_min
if z_max_ratio < ZOOM_MAX_THRESH:
zoom_max_thresh = z_max_ratio
test_data_max_z = (test_data[max(test_data.keys())]['z'] /
test_data[min(test_data.keys())]['z'])
logging.debug('test zoom ratio max: %.2f', test_data_max_z)
if test_data_max_z < zoom_max_thresh:
raise AssertionError(f'Max zoom ratio tested: {test_data_max_z:.4f}, '
f'range advertised min: {z_min}, max: {z_max} '
f'THRESH: {zoom_max_thresh}')
# initialize relative size w/ zoom[0] for diff zoom ratio checks
radius_0 = float(test_data[0]['circle'][2])
z_0 = float(test_data[0]['z'])
for i, data in test_data.items():
logging.debug('Zoom: %.2f, fl: %.2f', data['z'], data['fl'])
offset_abs = [(data['circle'][0] - size[0] // 2),
(data['circle'][1] - size[1] // 2)]
logging.debug('Circle r: %.1f, center offset x, y: %d, %d',
data['circle'][2], offset_abs[0], offset_abs[1])
z_ratio = data['z'] / z_0
# check relative size against zoom[0]
radius_ratio = data['circle'][2] / radius_0
logging.debug('r ratio req: %.3f, measured: %.3f', z_ratio, radius_ratio)
if not math.isclose(z_ratio, radius_ratio, rel_tol=data['r_tol']):
raise AssertionError(f'zoom: {z_ratio:.2f}, radius ratio: '
f"{radius_ratio:.2f}, RTOL: {data['r_tol']}")
# check relative offset against init vals w/ no focal length change
if i == 0 or test_data[i-1]['fl'] != data['fl']: # set init values
z_init = float(data['z'])
offset_init = [(data['circle'][0] - size[0] // 2),
(data['circle'][1] - size[1] // 2)]
else: # check
z_ratio = data['z'] / z_init
offset_rel = (distance(offset_abs[0], offset_abs[1]) / z_ratio /
distance(offset_init[0], offset_init[1]))
logging.debug('offset_rel: %.3f', offset_rel)
if not math.isclose(offset_rel, 1.0, rel_tol=data['o_tol']):
raise AssertionError(f"zoom: {data['z']:.2f}, offset(rel to 1): "
f"{offset_rel:.4f}, RTOL: {data['o_tol']}")
if __name__ == '__main__':
test_runner.main()