blob: 8b3ef860178410ca713e85737b496464553a20b9 [file] [log] [blame]
# Copyright 2016 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path
import its.caps
import its.device
import its.image
import its.objects
import its.target
import matplotlib
from matplotlib import pylab
NAME = os.path.basename(__file__).split('.')[0]
RATIO_THRESHOLD = 0.1 # Each raw image
# Waive the check if raw pixel value is below this level (signal too small
# that small black level error converts to huge error in percentage)
RAW_PIXEL_VAL_THRESHOLD = 0.03
def main():
"""Check post RAW sensitivity boost.
Capture a set of raw/yuv images with different
sensitivity/post RAW sensitivity boost combination
and check if the output pixel mean matches request settings
"""
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
its.caps.skip_unless(its.caps.raw_output(props) and
its.caps.post_raw_sensitivity_boost(props) and
its.caps.compute_target_exposure(props) and
its.caps.per_frame_control(props) and
not its.caps.mono_camera(props))
w, h = its.objects.get_available_output_sizes(
'yuv', props, (1920, 1080))[0]
if its.caps.raw16(props):
raw_format = 'raw'
elif its.caps.raw10(props):
raw_format = 'raw10'
elif its.caps.raw12(props):
raw_format = 'raw12'
else: # should not reach here
raise its.error.Error('Cannot find available RAW output format')
out_surfaces = [{'format': raw_format},
{'format': 'yuv', 'width': w, 'height': h}]
sens_min, sens_max = props['android.sensor.info.sensitivityRange']
sens_boost_min, sens_boost_max = \
props['android.control.postRawSensitivityBoostRange']
e_target, s_target = \
its.target.get_target_exposure_combos(cam)['midSensitivity']
reqs = []
settings = []
s_boost = sens_boost_min
while s_boost <= sens_boost_max:
s_raw = int(round(s_target * 100.0 / s_boost))
if s_raw < sens_min or s_raw > sens_max:
break
req = its.objects.manual_capture_request(s_raw, e_target)
req['android.control.postRawSensitivityBoost'] = s_boost
reqs.append(req)
settings.append((s_raw, s_boost))
if s_boost == sens_boost_max:
break
s_boost *= 2
# Always try to test maximum sensitivity boost value
if s_boost > sens_boost_max:
s_boost = sens_boost_max
caps = cam.do_capture(reqs, out_surfaces)
raw_rgb_means = []
yuv_rgb_means = []
raw_caps, yuv_caps = caps
if not isinstance(raw_caps, list):
raw_caps = [raw_caps]
if not isinstance(yuv_caps, list):
yuv_caps = [yuv_caps]
for i in xrange(len(reqs)):
(s, s_boost) = settings[i]
raw_cap = raw_caps[i]
yuv_cap = yuv_caps[i]
raw_rgb = its.image.convert_capture_to_rgb_image(
raw_cap, props=props)
yuv_rgb = its.image.convert_capture_to_rgb_image(yuv_cap)
raw_tile = its.image.get_image_patch(raw_rgb, 0.45, 0.45, 0.1, 0.1)
yuv_tile = its.image.get_image_patch(yuv_rgb, 0.45, 0.45, 0.1, 0.1)
raw_rgb_means.append(its.image.compute_image_means(raw_tile))
yuv_rgb_means.append(its.image.compute_image_means(yuv_tile))
its.image.write_image(raw_tile, '%s_raw_s=%04d_boost=%04d.jpg' % (
NAME, s, s_boost))
its.image.write_image(yuv_tile, '%s_yuv_s=%04d_boost=%04d.jpg' % (
NAME, s, s_boost))
print 's=%d, s_boost=%d: raw_means %s, yuv_means %s'%(
s, s_boost, raw_rgb_means[-1], yuv_rgb_means[-1])
xs = range(len(reqs))
pylab.plot(xs, [rgb[0] for rgb in raw_rgb_means], '-ro')
pylab.plot(xs, [rgb[1] for rgb in raw_rgb_means], '-go')
pylab.plot(xs, [rgb[2] for rgb in raw_rgb_means], '-bo')
pylab.ylim([0, 1])
name = '%s_raw_plot_means' % NAME
pylab.title(name)
pylab.xlabel('requests')
pylab.ylabel('RGB means')
matplotlib.pyplot.savefig('%s.png' % name)
pylab.clf()
pylab.plot(xs, [rgb[0] for rgb in yuv_rgb_means], '-ro')
pylab.plot(xs, [rgb[1] for rgb in yuv_rgb_means], '-go')
pylab.plot(xs, [rgb[2] for rgb in yuv_rgb_means], '-bo')
pylab.ylim([0, 1])
name = '%s_yuv_plot_means' % NAME
pylab.title(name)
pylab.xlabel('requests')
pylab.ylabel('RGB means')
matplotlib.pyplot.savefig('%s.png' % name)
rgb_str = ['R', 'G', 'B']
# Test that raw means is about 2x brighter than next step
for step in range(1, len(reqs)):
(s_prev, _) = settings[step - 1]
(s, s_boost) = settings[step]
expect_raw_ratio = s_prev / float(s)
raw_thres_min = expect_raw_ratio * (1 - RATIO_THRESHOLD)
raw_thres_max = expect_raw_ratio * (1 + RATIO_THRESHOLD)
for rgb in range(3):
ratio = raw_rgb_means[step - 1][rgb] / raw_rgb_means[step][rgb]
print 'Step (%d,%d) %s channel: %f, %f, ratio %f,' % (
step-1, step, rgb_str[rgb],
raw_rgb_means[step - 1][rgb],
raw_rgb_means[step][rgb], ratio),
print 'threshold_min %f, threshold_max %f' % (
raw_thres_min, raw_thres_max)
if raw_rgb_means[step][rgb] <= RAW_PIXEL_VAL_THRESHOLD:
continue
assert raw_thres_min < ratio < raw_thres_max
# Test that each yuv step is about the same bright as their mean
yuv_thres_min = 1 - RATIO_THRESHOLD
yuv_thres_max = 1 + RATIO_THRESHOLD
for rgb in range(3):
vals = [val[rgb] for val in yuv_rgb_means]
for step in range(len(reqs)):
if raw_rgb_means[step][rgb] <= RAW_PIXEL_VAL_THRESHOLD:
vals = vals[:step]
mean = sum(vals) / len(vals)
print '%s channel vals %s mean %f'%(rgb_str[rgb], vals, mean)
for step in range(len(vals)):
ratio = vals[step] / mean
assert yuv_thres_min < ratio < yuv_thres_max
if __name__ == '__main__':
main()