blob: 26d7461b8bfe2f9c8ed45c982ac79ecc3761b813 [file] [log] [blame]
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package compliance
import (
"fmt"
"io"
"io/fs"
"sort"
"strings"
"testing"
)
const (
// AOSP starts a test metadata file for Android Apache-2.0 licensing.
AOSP = `` +
`package_name: "Android"
license_kinds: "SPDX-license-identifier-Apache-2.0"
license_conditions: "notice"
`
// GPL starts a test metadata file for GPL 2.0 licensing.
GPL = `` +
`package_name: "Free Software"
license_kinds: "SPDX-license-identifier-GPL-2.0"
license_conditions: "restricted"
`
// Classpath starts a test metadata file for GPL 2.0 with classpath exception licensing.
Classpath = `` +
`package_name: "Free Software"
license_kinds: "SPDX-license-identifier-GPL-2.0-with-classpath-exception"
license_conditions: "restricted"
`
// DependentModule starts a test metadata file for a module in the same package as `Classpath`.
DependentModule = `` +
`package_name: "Free Software"
license_kinds: "SPDX-license-identifier-MIT"
license_conditions: "notice"
`
// LGPL starts a test metadata file for a module with LGPL 2.0 licensing.
LGPL = `` +
`package_name: "Free Library"
license_kinds: "SPDX-license-identifier-LGPL-2.0"
license_conditions: "restricted"
`
// MPL starts a test metadata file for a module with MPL 2.0 reciprical licensing.
MPL = `` +
`package_name: "Reciprocal"
license_kinds: "SPDX-license-identifier-MPL-2.0"
license_conditions: "reciprocal"
`
// MIT starts a test metadata file for a module with generic notice (MIT) licensing.
MIT = `` +
`package_name: "Android"
license_kinds: "SPDX-license-identifier-MIT"
license_conditions: "notice"
`
// Proprietary starts a test metadata file for a module with proprietary licensing.
Proprietary = `` +
`package_name: "Android"
license_kinds: "legacy_proprietary"
license_conditions: "proprietary"
`
// ByException starts a test metadata file for a module with by_exception_only licensing.
ByException = `` +
`package_name: "Special"
license_kinds: "legacy_by_exception_only"
license_conditions: "by_exception_only"
`
)
var (
// meta maps test file names to metadata file content without dependencies.
meta = map[string]string{
"apacheBin.meta_lic": AOSP,
"apacheLib.meta_lic": AOSP,
"apacheContainer.meta_lic": AOSP + "is_container: true\n",
"dependentModule.meta_lic": DependentModule,
"gplWithClasspathException.meta_lic": Classpath,
"gplBin.meta_lic": GPL,
"gplLib.meta_lic": GPL,
"gplContainer.meta_lic": GPL + "is_container: true\n",
"lgplBin.meta_lic": LGPL,
"lgplLib.meta_lic": LGPL,
"mitBin.meta_lic": MIT,
"mitLib.meta_lic": MIT,
"mplBin.meta_lic": MPL,
"mplLib.meta_lic": MPL,
"proprietary.meta_lic": Proprietary,
"by_exception.meta_lic": ByException,
}
)
// newTestNode constructs a test node in the license graph.
func newTestNode(lg *LicenseGraph, targetName string) *TargetNode {
if tn, alreadyExists := lg.targets[targetName]; alreadyExists {
return tn
}
tn := &TargetNode{name: targetName}
lg.targets[targetName] = tn
return tn
}
// newTestCondition constructs a test license condition in the license graph.
func newTestCondition(lg *LicenseGraph, targetName string, conditionName string) LicenseCondition {
tn := newTestNode(lg, targetName)
cl := LicenseConditionSetFromNames(tn, conditionName).AsList()
if len(cl) == 0 {
panic(fmt.Errorf("attempt to create unrecognized condition: %q", conditionName))
} else if len(cl) != 1 {
panic(fmt.Errorf("unexpected multiple conditions from condition name: %q: got %d, want 1", conditionName, len(cl)))
}
lc := cl[0]
tn.licenseConditions = tn.licenseConditions.Plus(lc)
return lc
}
// newTestConditionSet constructs a test license condition set in the license graph.
func newTestConditionSet(lg *LicenseGraph, targetName string, conditionName []string) LicenseConditionSet {
tn := newTestNode(lg, targetName)
cs := LicenseConditionSetFromNames(tn, conditionName...)
if cs.IsEmpty() {
panic(fmt.Errorf("attempt to create unrecognized condition: %q", conditionName))
}
tn.licenseConditions = tn.licenseConditions.Union(cs)
return cs
}
// testFS implements a test file system (fs.FS) simulated by a map from filename to []byte content.
type testFS map[string][]byte
// Open implements fs.FS.Open() to open a file based on the filename.
func (fs *testFS) Open(name string) (fs.File, error) {
if _, ok := (*fs)[name]; !ok {
return nil, fmt.Errorf("unknown file %q", name)
}
return &testFile{fs, name, 0}, nil
}
// testFile implements a test file (fs.File) based on testFS above.
type testFile struct {
fs *testFS
name string
posn int
}
// Stat not implemented to obviate implementing fs.FileInfo.
func (f *testFile) Stat() (fs.FileInfo, error) {
return nil, fmt.Errorf("unimplemented")
}
// Read copies bytes from the testFS map.
func (f *testFile) Read(b []byte) (int, error) {
if f.posn < 0 {
return 0, fmt.Errorf("file not open: %q", f.name)
}
if f.posn >= len((*f.fs)[f.name]) {
return 0, io.EOF
}
n := copy(b, (*f.fs)[f.name][f.posn:])
f.posn += n
return n, nil
}
// Close marks the testFile as no longer in use.
func (f *testFile) Close() error {
if f.posn < 0 {
return fmt.Errorf("file already closed: %q", f.name)
}
f.posn = -1
return nil
}
// edge describes test data edges to define test graphs.
type edge struct {
target, dep string
}
// String returns a string representation of the edge.
func (e edge) String() string {
return e.target + " -> " + e.dep
}
// byEdge orders edges by target then dep name then annotations.
type byEdge []edge
// Len returns the count of elements in the slice.
func (l byEdge) Len() int { return len(l) }
// Swap rearranges 2 elements of the slice so that each occupies the other's
// former position.
func (l byEdge) Swap(i, j int) { l[i], l[j] = l[j], l[i] }
// Less returns true when the `i`th element is lexicographically less than
// the `j`th element.
func (l byEdge) Less(i, j int) bool {
if l[i].target == l[j].target {
return l[i].dep < l[j].dep
}
return l[i].target < l[j].target
}
// annotated describes annotated test data edges to define test graphs.
type annotated struct {
target, dep string
annotations []string
}
func (e annotated) String() string {
if e.annotations != nil {
return e.target + " -> " + e.dep + " [" + strings.Join(e.annotations, ", ") + "]"
}
return e.target + " -> " + e.dep
}
func (e annotated) IsEqualTo(other annotated) bool {
if e.target != other.target {
return false
}
if e.dep != other.dep {
return false
}
if len(e.annotations) != len(other.annotations) {
return false
}
a1 := append([]string{}, e.annotations...)
a2 := append([]string{}, other.annotations...)
for i := 0; i < len(a1); i++ {
if a1[i] != a2[i] {
return false
}
}
return true
}
// toGraph converts a list of roots and a list of annotated edges into a test license graph.
func toGraph(stderr io.Writer, roots []string, edges []annotated) (*LicenseGraph, error) {
deps := make(map[string][]annotated)
for _, root := range roots {
deps[root] = []annotated{}
}
for _, edge := range edges {
if prev, ok := deps[edge.target]; ok {
deps[edge.target] = append(prev, edge)
} else {
deps[edge.target] = []annotated{edge}
}
if _, ok := deps[edge.dep]; !ok {
deps[edge.dep] = []annotated{}
}
}
fs := make(testFS)
for file, edges := range deps {
body := meta[file]
for _, edge := range edges {
body += fmt.Sprintf("deps: {\n file: %q\n", edge.dep)
for _, ann := range edge.annotations {
body += fmt.Sprintf(" annotations: %q\n", ann)
}
body += "}\n"
}
fs[file] = []byte(body)
}
return ReadLicenseGraph(&fs, stderr, roots)
}
// logGraph outputs a representation of the graph to a test log.
func logGraph(lg *LicenseGraph, t *testing.T) {
t.Logf("license graph:")
t.Logf(" targets:")
for _, target := range lg.Targets() {
t.Logf(" %s%s in package %q", target.Name(), target.LicenseConditions().String(), target.PackageName())
}
t.Logf(" /targets")
t.Logf(" edges:")
for _, edge := range lg.Edges() {
t.Logf(" %s", edge.String())
}
t.Logf(" /edges")
t.Logf("/license graph")
}
// byAnnotatedEdge orders edges by target then dep name then annotations.
type byAnnotatedEdge []annotated
func (l byAnnotatedEdge) Len() int { return len(l) }
func (l byAnnotatedEdge) Swap(i, j int) { l[i], l[j] = l[j], l[i] }
func (l byAnnotatedEdge) Less(i, j int) bool {
if l[i].target == l[j].target {
if l[i].dep == l[j].dep {
ai := append([]string{}, l[i].annotations...)
aj := append([]string{}, l[j].annotations...)
sort.Strings(ai)
sort.Strings(aj)
for k := 0; k < len(ai) && k < len(aj); k++ {
if ai[k] == aj[k] {
continue
}
return ai[k] < aj[k]
}
return len(ai) < len(aj)
}
return l[i].dep < l[j].dep
}
return l[i].target < l[j].target
}
// act describes test data resolution actions to define test action sets.
type act struct {
actsOn, origin, condition string
}
// String returns a human-readable string representing the test action.
func (a act) String() string {
return fmt.Sprintf("%s{%s:%s}", a.actsOn, a.origin, a.condition)
}
// toActionSet converts a list of act test data into a test action set.
func toActionSet(lg *LicenseGraph, data []act) ActionSet {
as := make(ActionSet)
for _, a := range data {
actsOn := newTestNode(lg, a.actsOn)
cs := newTestConditionSet(lg, a.origin, strings.Split(a.condition, "|"))
as[actsOn] = cs
}
return as
}
// res describes test data resolutions to define test resolution sets.
type res struct {
attachesTo, actsOn, origin, condition string
}
// toResolutionSet converts a list of res test data into a test resolution set.
func toResolutionSet(lg *LicenseGraph, data []res) ResolutionSet {
rmap := make(ResolutionSet)
for _, r := range data {
attachesTo := newTestNode(lg, r.attachesTo)
actsOn := newTestNode(lg, r.actsOn)
if _, ok := rmap[attachesTo]; !ok {
rmap[attachesTo] = make(ActionSet)
}
cs := newTestConditionSet(lg, r.origin, strings.Split(r.condition, ":"))
rmap[attachesTo][actsOn] |= cs
}
return rmap
}
// tcond associates a target name with '|' separated string conditions.
type tcond struct {
target, conditions string
}
// action represents a single element of an ActionSet for testing.
type action struct {
target *TargetNode
cs LicenseConditionSet
}
// String returns a human-readable string representation of the action.
func (a action) String() string {
return fmt.Sprintf("%s%s", a.target.Name(), a.cs.String())
}
// actionList represents an array of actions and a total order defined by
// target name followed by license condition set.
type actionList []action
// String returns a human-readable string representation of the list.
func (l actionList) String() string {
var sb strings.Builder
fmt.Fprintf(&sb, "[")
sep := ""
for _, a := range l {
fmt.Fprintf(&sb, "%s%s", sep, a.String())
sep = ", "
}
fmt.Fprintf(&sb, "]")
return sb.String()
}
// Len returns the count of elements in the slice.
func (l actionList) Len() int { return len(l) }
// Swap rearranges 2 elements of the slice so that each occupies the other's
// former position.
func (l actionList) Swap(i, j int) { l[i], l[j] = l[j], l[i] }
// Less returns true when the `i`th element is lexicographically less than
// the `j`th element.
func (l actionList) Less(i, j int) bool {
if l[i].target == l[j].target {
return l[i].cs < l[j].cs
}
return l[i].target.Name() < l[j].target.Name()
}
// asActionList represents the resolved license conditions in a license graph
// as an actionList for comparison in a test.
func asActionList(lg *LicenseGraph) actionList {
result := make(actionList, 0, len(lg.targets))
for _, target := range lg.targets {
cs := target.resolution
if cs.IsEmpty() {
continue
}
result = append(result, action{target, cs})
}
return result
}
// toActionList converts an array of tcond into an actionList for comparison
// in a test.
func toActionList(lg *LicenseGraph, actions []tcond) actionList {
result := make(actionList, 0, len(actions))
for _, actn := range actions {
target := newTestNode(lg, actn.target)
cs := NewLicenseConditionSet()
for _, name := range strings.Split(actn.conditions, "|") {
lc, ok := RecognizedConditionNames[name]
if !ok {
panic(fmt.Errorf("Unrecognized test condition name: %q", name))
}
cs = cs.Plus(lc)
}
result = append(result, action{target, cs})
}
return result
}
// confl defines test data for a SourceSharePrivacyConflict as a target name,
// source condition name, privacy condition name triple.
type confl struct {
sourceNode, share, privacy string
}
// toConflictList converts confl test data into an array of
// SourceSharePrivacyConflict for comparison in a test.
func toConflictList(lg *LicenseGraph, data []confl) []SourceSharePrivacyConflict {
result := make([]SourceSharePrivacyConflict, 0, len(data))
for _, c := range data {
fields := strings.Split(c.share, ":")
oshare := fields[0]
cshare := fields[1]
fields = strings.Split(c.privacy, ":")
oprivacy := fields[0]
cprivacy := fields[1]
result = append(result, SourceSharePrivacyConflict{
newTestNode(lg, c.sourceNode),
newTestCondition(lg, oshare, cshare),
newTestCondition(lg, oprivacy, cprivacy),
})
}
return result
}
// checkSameActions compares an actual action set to an expected action set for a test.
func checkSameActions(lg *LicenseGraph, asActual, asExpected ActionSet, t *testing.T) {
rsActual := make(ResolutionSet)
rsExpected := make(ResolutionSet)
testNode := newTestNode(lg, "test")
rsActual[testNode] = asActual
rsExpected[testNode] = asExpected
checkSame(rsActual, rsExpected, t)
}
// checkSame compares an actual resolution set to an expected resolution set for a test.
func checkSame(rsActual, rsExpected ResolutionSet, t *testing.T) {
t.Logf("actual resolution set: %s", rsActual.String())
t.Logf("expected resolution set: %s", rsExpected.String())
actualTargets := rsActual.AttachesTo()
sort.Sort(actualTargets)
expectedTargets := rsExpected.AttachesTo()
sort.Sort(expectedTargets)
t.Logf("actual targets: %s", actualTargets.String())
t.Logf("expected targets: %s", expectedTargets.String())
for _, target := range expectedTargets {
if !rsActual.AttachesToTarget(target) {
t.Errorf("unexpected missing target: got AttachesToTarget(%q) is false, want true", target.name)
continue
}
expectedRl := rsExpected.Resolutions(target)
sort.Sort(expectedRl)
actualRl := rsActual.Resolutions(target)
sort.Sort(actualRl)
if len(expectedRl) != len(actualRl) {
t.Errorf("unexpected number of resolutions attach to %q: %d elements, %d elements",
target.name, len(actualRl), len(expectedRl))
continue
}
for i := 0; i < len(expectedRl); i++ {
if expectedRl[i].attachesTo.name != actualRl[i].attachesTo.name || expectedRl[i].actsOn.name != actualRl[i].actsOn.name {
t.Errorf("unexpected resolution attaches to %q at index %d: got %s, want %s",
target.name, i, actualRl[i].asString(), expectedRl[i].asString())
continue
}
expectedConditions := expectedRl[i].Resolves()
actualConditions := actualRl[i].Resolves()
if expectedConditions != actualConditions {
t.Errorf("unexpected conditions apply to %q acting on %q: got %04x with names %s, want %04x with names %s",
target.name, expectedRl[i].actsOn.name,
actualConditions, actualConditions.Names(),
expectedConditions, expectedConditions.Names())
continue
}
}
}
for _, target := range actualTargets {
if !rsExpected.AttachesToTarget(target) {
t.Errorf("unexpected extra target: got expected.AttachesTo(%q) is false, want true", target.name)
}
}
}
// checkResolvesActions compares an actual action set to an expected action set for a test verifying the actual set
// resolves all of the expected conditions.
func checkResolvesActions(lg *LicenseGraph, asActual, asExpected ActionSet, t *testing.T) {
rsActual := make(ResolutionSet)
rsExpected := make(ResolutionSet)
testNode := newTestNode(lg, "test")
rsActual[testNode] = asActual
rsExpected[testNode] = asExpected
checkResolves(rsActual, rsExpected, t)
}
// checkResolves compares an actual resolution set to an expected resolution set for a test verifying the actual set
// resolves all of the expected conditions.
func checkResolves(rsActual, rsExpected ResolutionSet, t *testing.T) {
t.Logf("actual resolution set: %s", rsActual.String())
t.Logf("expected resolution set: %s", rsExpected.String())
actualTargets := rsActual.AttachesTo()
sort.Sort(actualTargets)
expectedTargets := rsExpected.AttachesTo()
sort.Sort(expectedTargets)
t.Logf("actual targets: %s", actualTargets.String())
t.Logf("expected targets: %s", expectedTargets.String())
for _, target := range expectedTargets {
if !rsActual.AttachesToTarget(target) {
t.Errorf("unexpected missing target: got AttachesToTarget(%q) is false, want true", target.name)
continue
}
expectedRl := rsExpected.Resolutions(target)
sort.Sort(expectedRl)
actualRl := rsActual.Resolutions(target)
sort.Sort(actualRl)
if len(expectedRl) != len(actualRl) {
t.Errorf("unexpected number of resolutions attach to %q: %d elements, %d elements",
target.name, len(actualRl), len(expectedRl))
continue
}
for i := 0; i < len(expectedRl); i++ {
if expectedRl[i].attachesTo.name != actualRl[i].attachesTo.name || expectedRl[i].actsOn.name != actualRl[i].actsOn.name {
t.Errorf("unexpected resolution attaches to %q at index %d: got %s, want %s",
target.name, i, actualRl[i].asString(), expectedRl[i].asString())
continue
}
expectedConditions := expectedRl[i].Resolves()
actualConditions := actualRl[i].Resolves()
if expectedConditions != (expectedConditions & actualConditions) {
t.Errorf("expected conditions missing from %q acting on %q: got %04x with names %s, want %04x with names %s",
target.name, expectedRl[i].actsOn.name,
actualConditions, actualConditions.Names(),
expectedConditions, expectedConditions.Names())
continue
}
}
}
for _, target := range actualTargets {
if !rsExpected.AttachesToTarget(target) {
t.Errorf("unexpected extra target: got expected.AttachesTo(%q) is false, want true", target.name)
}
}
}