blob: 8e2085983b08536168630a1101ac79841efa050e [file] [log] [blame]
#!/usr/bin/env python
#
# Copyright (C) 2011 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Builds output_image from the given input_directory, properties_file,
and writes the image to target_output_directory.
If argument generated_prop_file exists, write additional properties to the file.
Usage: build_image.py input_directory properties_file output_image \\
target_output_directory [generated_prop_file]
"""
from __future__ import print_function
import os
import os.path
import re
import shlex
import shutil
import subprocess
import sys
import common
import sparse_img
OPTIONS = common.OPTIONS
FIXED_SALT = "aee087a5be3b982978c923f566a94613496b417f2af592639bc80d141e34dfe7"
BLOCK_SIZE = 4096
BYTES_IN_MB = 1024 * 1024
def RunCommand(cmd, verbose=None, env=None):
"""Echo and run the given command.
Args:
cmd: the command represented as a list of strings.
verbose: show commands being executed.
env: a dictionary of additional environment variables.
Returns:
A tuple of the output and the exit code.
"""
env_copy = None
if env is not None:
env_copy = os.environ.copy()
env_copy.update(env)
if verbose is None:
verbose = OPTIONS.verbose
if verbose:
print("Running: " + " ".join(cmd))
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
env=env_copy)
output, _ = p.communicate()
if verbose:
print(output.rstrip())
return (output, p.returncode)
def GetVerityFECSize(partition_size):
cmd = ["fec", "-s", str(partition_size)]
output, exit_code = RunCommand(cmd, False)
if exit_code != 0:
return False, 0
return True, int(output)
def GetVerityTreeSize(partition_size):
cmd = ["build_verity_tree", "-s", str(partition_size)]
output, exit_code = RunCommand(cmd, False)
if exit_code != 0:
return False, 0
return True, int(output)
def GetVerityMetadataSize(partition_size):
cmd = ["build_verity_metadata.py", "size", str(partition_size)]
output, exit_code = RunCommand(cmd, False)
if exit_code != 0:
return False, 0
return True, int(output)
def GetVeritySize(partition_size, fec_supported):
success, verity_tree_size = GetVerityTreeSize(partition_size)
if not success:
return 0
success, verity_metadata_size = GetVerityMetadataSize(partition_size)
if not success:
return 0
verity_size = verity_tree_size + verity_metadata_size
if fec_supported:
success, fec_size = GetVerityFECSize(partition_size + verity_size)
if not success:
return 0
return verity_size + fec_size
return verity_size
def GetDiskUsage(path):
"""Return number of bytes that "path" occupies on host.
Args:
path: The directory or file to calculate size on
Returns:
True and the number of bytes if successful,
False and 0 otherwise.
"""
env = {"POSIXLY_CORRECT": "1"}
cmd = ["du", "-s", path]
output, exit_code = RunCommand(cmd, verbose=False, env=env)
if exit_code != 0:
return False, 0
# POSIX du returns number of blocks with block size 512
return True, int(output.split()[0]) * 512
def GetSimgSize(image_file):
simg = sparse_img.SparseImage(image_file, build_map=False)
return simg.blocksize * simg.total_blocks
def ZeroPadSimg(image_file, pad_size):
blocks = pad_size // BLOCK_SIZE
print("Padding %d blocks (%d bytes)" % (blocks, pad_size))
simg = sparse_img.SparseImage(image_file, mode="r+b", build_map=False)
simg.AppendFillChunk(0, blocks)
def AVBCalcMaxImageSize(avbtool, footer_type, partition_size, additional_args):
"""Calculates max image size for a given partition size.
Args:
avbtool: String with path to avbtool.
footer_type: 'hash' or 'hashtree' for generating footer.
partition_size: The size of the partition in question.
additional_args: Additional arguments to pass to 'avbtool
add_hashtree_image'.
Returns:
The maximum image size or 0 if an error occurred.
"""
cmd = [avbtool, "add_%s_footer" % footer_type,
"--partition_size", partition_size, "--calc_max_image_size"]
cmd.extend(shlex.split(additional_args))
(output, exit_code) = RunCommand(cmd)
if exit_code != 0:
return 0
else:
return int(output)
def AVBAddFooter(image_path, avbtool, footer_type, partition_size,
partition_name, key_path, algorithm, salt,
additional_args):
"""Adds dm-verity hashtree and AVB metadata to an image.
Args:
image_path: Path to image to modify.
avbtool: String with path to avbtool.
footer_type: 'hash' or 'hashtree' for generating footer.
partition_size: The size of the partition in question.
partition_name: The name of the partition - will be embedded in metadata.
key_path: Path to key to use or None.
algorithm: Name of algorithm to use or None.
salt: The salt to use (a hexadecimal string) or None.
additional_args: Additional arguments to pass to 'avbtool
add_hashtree_image'.
Returns:
True if the operation succeeded.
"""
cmd = [avbtool, "add_%s_footer" % footer_type,
"--partition_size", partition_size,
"--partition_name", partition_name,
"--image", image_path]
if key_path and algorithm:
cmd.extend(["--key", key_path, "--algorithm", algorithm])
if salt:
cmd.extend(["--salt", salt])
cmd.extend(shlex.split(additional_args))
(_, exit_code) = RunCommand(cmd)
return exit_code == 0
def AdjustPartitionSizeForVerity(partition_size, fec_supported):
"""Modifies the provided partition size to account for the verity metadata.
This information is used to size the created image appropriately.
Args:
partition_size: the size of the partition to be verified.
Returns:
A tuple of the size of the partition adjusted for verity metadata, and
the size of verity metadata.
"""
key = "%d %d" % (partition_size, fec_supported)
if key in AdjustPartitionSizeForVerity.results:
return AdjustPartitionSizeForVerity.results[key]
hi = partition_size
if hi % BLOCK_SIZE != 0:
hi = (hi // BLOCK_SIZE) * BLOCK_SIZE
# verity tree and fec sizes depend on the partition size, which
# means this estimate is always going to be unnecessarily small
verity_size = GetVeritySize(hi, fec_supported)
lo = partition_size - verity_size
result = lo
# do a binary search for the optimal size
while lo < hi:
i = ((lo + hi) // (2 * BLOCK_SIZE)) * BLOCK_SIZE
v = GetVeritySize(i, fec_supported)
if i + v <= partition_size:
if result < i:
result = i
verity_size = v
lo = i + BLOCK_SIZE
else:
hi = i
if OPTIONS.verbose:
print("Adjusted partition size for verity, partition_size: {},"
" verity_size: {}".format(result, verity_size))
AdjustPartitionSizeForVerity.results[key] = (result, verity_size)
return (result, verity_size)
AdjustPartitionSizeForVerity.results = {}
def BuildVerityFEC(sparse_image_path, verity_path, verity_fec_path,
padding_size):
cmd = ["fec", "-e", "-p", str(padding_size), sparse_image_path,
verity_path, verity_fec_path]
output, exit_code = RunCommand(cmd)
if exit_code != 0:
print("Could not build FEC data! Error: %s" % output)
return False
return True
def BuildVerityTree(sparse_image_path, verity_image_path, prop_dict):
cmd = ["build_verity_tree", "-A", FIXED_SALT, sparse_image_path,
verity_image_path]
output, exit_code = RunCommand(cmd)
if exit_code != 0:
print("Could not build verity tree! Error: %s" % output)
return False
root, salt = output.split()
prop_dict["verity_root_hash"] = root
prop_dict["verity_salt"] = salt
return True
def BuildVerityMetadata(image_size, verity_metadata_path, root_hash, salt,
block_device, signer_path, key, signer_args,
verity_disable):
cmd = ["build_verity_metadata.py", "build", str(image_size),
verity_metadata_path, root_hash, salt, block_device, signer_path, key]
if signer_args:
cmd.append("--signer_args=\"%s\"" % (' '.join(signer_args),))
if verity_disable:
cmd.append("--verity_disable")
output, exit_code = RunCommand(cmd)
if exit_code != 0:
print("Could not build verity metadata! Error: %s" % output)
return False
return True
def Append2Simg(sparse_image_path, unsparse_image_path, error_message):
"""Appends the unsparse image to the given sparse image.
Args:
sparse_image_path: the path to the (sparse) image
unsparse_image_path: the path to the (unsparse) image
Returns:
True on success, False on failure.
"""
cmd = ["append2simg", sparse_image_path, unsparse_image_path]
output, exit_code = RunCommand(cmd)
if exit_code != 0:
print("%s: %s" % (error_message, output))
return False
return True
def Append(target, file_to_append, error_message):
"""Appends file_to_append to target."""
try:
with open(target, "a") as out_file, open(file_to_append, "r") as input_file:
for line in input_file:
out_file.write(line)
except IOError:
print(error_message)
return False
return True
def BuildVerifiedImage(data_image_path, verity_image_path,
verity_metadata_path, verity_fec_path,
padding_size, fec_supported):
if not Append(verity_image_path, verity_metadata_path,
"Could not append verity metadata!"):
return False
if fec_supported:
# build FEC for the entire partition, including metadata
if not BuildVerityFEC(data_image_path, verity_image_path,
verity_fec_path, padding_size):
return False
if not Append(verity_image_path, verity_fec_path, "Could not append FEC!"):
return False
if not Append2Simg(data_image_path, verity_image_path,
"Could not append verity data!"):
return False
return True
def UnsparseImage(sparse_image_path, replace=True):
img_dir = os.path.dirname(sparse_image_path)
unsparse_image_path = "unsparse_" + os.path.basename(sparse_image_path)
unsparse_image_path = os.path.join(img_dir, unsparse_image_path)
if os.path.exists(unsparse_image_path):
if replace:
os.unlink(unsparse_image_path)
else:
return True, unsparse_image_path
inflate_command = ["simg2img", sparse_image_path, unsparse_image_path]
(inflate_output, exit_code) = RunCommand(inflate_command)
if exit_code != 0:
print("Error: '%s' failed with exit code %d:\n%s" % (
inflate_command, exit_code, inflate_output))
os.remove(unsparse_image_path)
return False, None
return True, unsparse_image_path
def MakeVerityEnabledImage(out_file, fec_supported, prop_dict):
"""Creates an image that is verifiable using dm-verity.
Args:
out_file: the location to write the verifiable image at
prop_dict: a dictionary of properties required for image creation and
verification
Returns:
True on success, False otherwise.
"""
# get properties
image_size = int(prop_dict["partition_size"])
block_dev = prop_dict["verity_block_device"]
signer_key = prop_dict["verity_key"] + ".pk8"
if OPTIONS.verity_signer_path is not None:
signer_path = OPTIONS.verity_signer_path
else:
signer_path = prop_dict["verity_signer_cmd"]
signer_args = OPTIONS.verity_signer_args
# make a tempdir
tempdir_name = common.MakeTempDir(suffix="_verity_images")
# get partial image paths
verity_image_path = os.path.join(tempdir_name, "verity.img")
verity_metadata_path = os.path.join(tempdir_name, "verity_metadata.img")
verity_fec_path = os.path.join(tempdir_name, "verity_fec.img")
# build the verity tree and get the root hash and salt
if not BuildVerityTree(out_file, verity_image_path, prop_dict):
return False
# build the metadata blocks
root_hash = prop_dict["verity_root_hash"]
salt = prop_dict["verity_salt"]
verity_disable = "verity_disable" in prop_dict
if not BuildVerityMetadata(image_size, verity_metadata_path, root_hash, salt,
block_dev, signer_path, signer_key, signer_args,
verity_disable):
return False
# build the full verified image
target_size = int(prop_dict["original_partition_size"])
verity_size = int(prop_dict["verity_size"])
padding_size = target_size - image_size - verity_size
assert padding_size >= 0
if not BuildVerifiedImage(out_file,
verity_image_path,
verity_metadata_path,
verity_fec_path,
padding_size,
fec_supported):
return False
return True
def ConvertBlockMapToBaseFs(block_map_file):
base_fs_file = common.MakeTempFile(prefix="script_gen_", suffix=".base_fs")
convert_command = ["blk_alloc_to_base_fs", block_map_file, base_fs_file]
(_, exit_code) = RunCommand(convert_command)
return base_fs_file if exit_code == 0 else None
def CheckHeadroom(ext4fs_output, prop_dict):
"""Checks if there's enough headroom space available.
Headroom is the reserved space on system image (via PRODUCT_SYSTEM_HEADROOM),
which is useful for devices with low disk space that have system image
variation between builds. The 'partition_headroom' in prop_dict is the size
in bytes, while the numbers in 'ext4fs_output' are for 4K-blocks.
Args:
ext4fs_output: The output string from mke2fs command.
prop_dict: The property dict.
Returns:
The check result.
Raises:
AssertionError: On invalid input.
"""
assert ext4fs_output is not None
assert prop_dict.get('fs_type', '').startswith('ext4')
assert 'partition_headroom' in prop_dict
assert 'mount_point' in prop_dict
ext4fs_stats = re.compile(
r'Created filesystem with .* (?P<used_blocks>[0-9]+)/'
r'(?P<total_blocks>[0-9]+) blocks')
last_line = ext4fs_output.strip().split('\n')[-1]
m = ext4fs_stats.match(last_line)
used_blocks = int(m.groupdict().get('used_blocks'))
total_blocks = int(m.groupdict().get('total_blocks'))
headroom_blocks = int(prop_dict['partition_headroom']) / BLOCK_SIZE
adjusted_blocks = total_blocks - headroom_blocks
if used_blocks > adjusted_blocks:
mount_point = prop_dict["mount_point"]
print("Error: Not enough room on %s (total: %d blocks, used: %d blocks, "
"headroom: %d blocks, available: %d blocks)" % (
mount_point, total_blocks, used_blocks, headroom_blocks,
adjusted_blocks))
return False
return True
def BuildImage(in_dir, prop_dict, out_file, target_out=None):
"""Build an image to out_file from in_dir with property prop_dict.
After the function call, values in prop_dict is updated with
computed values.
Args:
in_dir: path of input directory.
prop_dict: property dictionary.
out_file: path of the output image file.
target_out: path of the product out directory to read device specific FS
config files.
Returns:
True iff the image is built successfully.
"""
# system_root_image=true: build a system.img that combines the contents of
# /system and the ramdisk, and can be mounted at the root of the file system.
origin_in = in_dir
fs_config = prop_dict.get("fs_config")
if (prop_dict.get("system_root_image") == "true" and
prop_dict["mount_point"] == "system"):
in_dir = common.MakeTempDir()
# Change the mount point to "/".
prop_dict["mount_point"] = "/"
if fs_config:
# We need to merge the fs_config files of system and ramdisk.
merged_fs_config = common.MakeTempFile(prefix="root_fs_config",
suffix=".txt")
with open(merged_fs_config, "w") as fw:
if "ramdisk_fs_config" in prop_dict:
with open(prop_dict["ramdisk_fs_config"]) as fr:
fw.writelines(fr.readlines())
with open(fs_config) as fr:
fw.writelines(fr.readlines())
fs_config = merged_fs_config
build_command = []
fs_type = prop_dict.get("fs_type", "")
run_e2fsck = False
fs_spans_partition = True
if fs_type.startswith("squash"):
fs_spans_partition = False
is_verity_partition = "verity_block_device" in prop_dict
verity_supported = prop_dict.get("verity") == "true"
verity_fec_supported = prop_dict.get("verity_fec") == "true"
if (prop_dict.get("use_logical_partitions") == "true" and
"partition_size" not in prop_dict):
# if partition_size is not defined, use output of `du' + reserved_size
success, size = GetDiskUsage(origin_in)
if not success:
return False
if OPTIONS.verbose:
print("The tree size of %s is %d MB." % (origin_in, size // BYTES_IN_MB))
size += int(prop_dict.get("partition_reserved_size", 0))
# Round this up to a multiple of 4K so that avbtool works
size = common.RoundUpTo4K(size)
prop_dict["partition_size"] = str(size)
if OPTIONS.verbose:
print("Allocating %d MB for %s." % (size // BYTES_IN_MB, out_file))
# Adjust the partition size to make room for the hashes if this is to be
# verified.
if verity_supported and is_verity_partition:
partition_size = int(prop_dict.get("partition_size"))
(adjusted_size, verity_size) = AdjustPartitionSizeForVerity(
partition_size, verity_fec_supported)
if not adjusted_size:
return False
prop_dict["partition_size"] = str(adjusted_size)
prop_dict["original_partition_size"] = str(partition_size)
prop_dict["verity_size"] = str(verity_size)
# Adjust partition size for AVB hash footer or AVB hashtree footer.
avb_footer_type = ''
if prop_dict.get("avb_hash_enable") == "true":
avb_footer_type = 'hash'
elif prop_dict.get("avb_hashtree_enable") == "true":
avb_footer_type = 'hashtree'
if avb_footer_type:
avbtool = prop_dict["avb_avbtool"]
partition_size = prop_dict["partition_size"]
# avb_add_hash_footer_args or avb_add_hashtree_footer_args.
additional_args = prop_dict["avb_add_" + avb_footer_type + "_footer_args"]
max_image_size = AVBCalcMaxImageSize(avbtool, avb_footer_type,
partition_size, additional_args)
if max_image_size == 0:
return False
prop_dict["partition_size"] = str(max_image_size)
prop_dict["original_partition_size"] = partition_size
if fs_type.startswith("ext"):
build_command = [prop_dict["ext_mkuserimg"]]
if "extfs_sparse_flag" in prop_dict:
build_command.append(prop_dict["extfs_sparse_flag"])
run_e2fsck = True
build_command.extend([in_dir, out_file, fs_type,
prop_dict["mount_point"]])
build_command.append(prop_dict["partition_size"])
if "journal_size" in prop_dict:
build_command.extend(["-j", prop_dict["journal_size"]])
if "timestamp" in prop_dict:
build_command.extend(["-T", str(prop_dict["timestamp"])])
if fs_config:
build_command.extend(["-C", fs_config])
if target_out:
build_command.extend(["-D", target_out])
if "block_list" in prop_dict:
build_command.extend(["-B", prop_dict["block_list"]])
if "base_fs_file" in prop_dict:
base_fs_file = ConvertBlockMapToBaseFs(prop_dict["base_fs_file"])
if base_fs_file is None:
return False
build_command.extend(["-d", base_fs_file])
build_command.extend(["-L", prop_dict["mount_point"]])
if "extfs_inode_count" in prop_dict:
build_command.extend(["-i", prop_dict["extfs_inode_count"]])
if "extfs_rsv_pct" in prop_dict:
build_command.extend(["-M", prop_dict["extfs_rsv_pct"]])
if "flash_erase_block_size" in prop_dict:
build_command.extend(["-e", prop_dict["flash_erase_block_size"]])
if "flash_logical_block_size" in prop_dict:
build_command.extend(["-o", prop_dict["flash_logical_block_size"]])
# Specify UUID and hash_seed if using mke2fs.
if prop_dict["ext_mkuserimg"] == "mkuserimg_mke2fs.sh":
if "uuid" in prop_dict:
build_command.extend(["-U", prop_dict["uuid"]])
if "hash_seed" in prop_dict:
build_command.extend(["-S", prop_dict["hash_seed"]])
if "ext4_share_dup_blocks" in prop_dict:
build_command.append("-c")
if "selinux_fc" in prop_dict:
build_command.append(prop_dict["selinux_fc"])
elif fs_type.startswith("squash"):
build_command = ["mksquashfsimage.sh"]
build_command.extend([in_dir, out_file])
if "squashfs_sparse_flag" in prop_dict:
build_command.extend([prop_dict["squashfs_sparse_flag"]])
build_command.extend(["-m", prop_dict["mount_point"]])
if target_out:
build_command.extend(["-d", target_out])
if fs_config:
build_command.extend(["-C", fs_config])
if "selinux_fc" in prop_dict:
build_command.extend(["-c", prop_dict["selinux_fc"]])
if "block_list" in prop_dict:
build_command.extend(["-B", prop_dict["block_list"]])
if "squashfs_block_size" in prop_dict:
build_command.extend(["-b", prop_dict["squashfs_block_size"]])
if "squashfs_compressor" in prop_dict:
build_command.extend(["-z", prop_dict["squashfs_compressor"]])
if "squashfs_compressor_opt" in prop_dict:
build_command.extend(["-zo", prop_dict["squashfs_compressor_opt"]])
if prop_dict.get("squashfs_disable_4k_align") == "true":
build_command.extend(["-a"])
elif fs_type.startswith("f2fs"):
build_command = ["mkf2fsuserimg.sh"]
build_command.extend([out_file, prop_dict["partition_size"]])
if fs_config:
build_command.extend(["-C", fs_config])
build_command.extend(["-f", in_dir])
if target_out:
build_command.extend(["-D", target_out])
if "selinux_fc" in prop_dict:
build_command.extend(["-s", prop_dict["selinux_fc"]])
build_command.extend(["-t", prop_dict["mount_point"]])
if "timestamp" in prop_dict:
build_command.extend(["-T", str(prop_dict["timestamp"])])
build_command.extend(["-L", prop_dict["mount_point"]])
else:
print("Error: unknown filesystem type '%s'" % (fs_type))
return False
if in_dir != origin_in:
# Construct a staging directory of the root file system.
ramdisk_dir = prop_dict.get("ramdisk_dir")
if ramdisk_dir:
shutil.rmtree(in_dir)
shutil.copytree(ramdisk_dir, in_dir, symlinks=True)
staging_system = os.path.join(in_dir, "system")
shutil.rmtree(staging_system, ignore_errors=True)
shutil.copytree(origin_in, staging_system, symlinks=True)
(mkfs_output, exit_code) = RunCommand(build_command)
if exit_code != 0:
print("Error: '%s' failed with exit code %d:\n%s" % (
build_command, exit_code, mkfs_output))
success, du = GetDiskUsage(origin_in)
du_str = ("%d bytes (%d MB)" % (du, du // BYTES_IN_MB)
) if success else "unknown"
print("Out of space? The tree size of %s is %s." % (
origin_in, du_str))
print("The max is %d bytes (%d MB)." % (
int(prop_dict["partition_size"]),
int(prop_dict["partition_size"]) // BYTES_IN_MB))
print("Reserved space is %d bytes (%d MB)." % (
int(prop_dict.get("partition_reserved_size", 0)),
int(prop_dict.get("partition_reserved_size", 0)) // BYTES_IN_MB))
return False
# Check if there's enough headroom space available for ext4 image.
if "partition_headroom" in prop_dict and fs_type.startswith("ext4"):
if not CheckHeadroom(mkfs_output, prop_dict):
return False
if not fs_spans_partition:
mount_point = prop_dict.get("mount_point")
partition_size = int(prop_dict.get("partition_size"))
image_size = GetSimgSize(out_file)
if image_size > partition_size:
print("Error: %s image size of %d is larger than partition size of "
"%d" % (mount_point, image_size, partition_size))
return False
if verity_supported and is_verity_partition:
ZeroPadSimg(out_file, partition_size - image_size)
# Create the verified image if this is to be verified.
if verity_supported and is_verity_partition:
if not MakeVerityEnabledImage(out_file, verity_fec_supported, prop_dict):
return False
# Add AVB HASH or HASHTREE footer (metadata).
if avb_footer_type:
avbtool = prop_dict["avb_avbtool"]
original_partition_size = prop_dict["original_partition_size"]
partition_name = prop_dict["partition_name"]
# key_path and algorithm are only available when chain partition is used.
key_path = prop_dict.get("avb_key_path")
algorithm = prop_dict.get("avb_algorithm")
salt = prop_dict.get("avb_salt")
# avb_add_hash_footer_args or avb_add_hashtree_footer_args
additional_args = prop_dict["avb_add_" + avb_footer_type + "_footer_args"]
if not AVBAddFooter(out_file, avbtool, avb_footer_type,
original_partition_size, partition_name, key_path,
algorithm, salt, additional_args):
return False
if run_e2fsck and prop_dict.get("skip_fsck") != "true":
success, unsparse_image = UnsparseImage(out_file, replace=False)
if not success:
return False
# Run e2fsck on the inflated image file
e2fsck_command = ["e2fsck", "-f", "-n", unsparse_image]
(e2fsck_output, exit_code) = RunCommand(e2fsck_command)
os.remove(unsparse_image)
if exit_code != 0:
print("Error: '%s' failed with exit code %d:\n%s" % (
e2fsck_command, exit_code, e2fsck_output))
return False
return True
def ImagePropFromGlobalDict(glob_dict, mount_point):
"""Build an image property dictionary from the global dictionary.
Args:
glob_dict: the global dictionary from the build system.
mount_point: such as "system", "data" etc.
"""
d = {}
if "build.prop" in glob_dict:
bp = glob_dict["build.prop"]
if "ro.build.date.utc" in bp:
d["timestamp"] = bp["ro.build.date.utc"]
def copy_prop(src_p, dest_p):
"""Copy a property from the global dictionary.
Args:
src_p: The source property in the global dictionary.
dest_p: The destination property.
Returns:
True if property was found and copied, False otherwise.
"""
if src_p in glob_dict:
d[dest_p] = str(glob_dict[src_p])
return True
return False
common_props = (
"extfs_sparse_flag",
"squashfs_sparse_flag",
"selinux_fc",
"skip_fsck",
"ext_mkuserimg",
"verity",
"verity_key",
"verity_signer_cmd",
"verity_fec",
"verity_disable",
"avb_enable",
"avb_avbtool",
"avb_salt",
"use_logical_partitions",
)
for p in common_props:
copy_prop(p, p)
d["mount_point"] = mount_point
if mount_point == "system":
copy_prop("avb_system_hashtree_enable", "avb_hashtree_enable")
copy_prop("avb_system_add_hashtree_footer_args",
"avb_add_hashtree_footer_args")
copy_prop("avb_system_key_path", "avb_key_path")
copy_prop("avb_system_algorithm", "avb_algorithm")
copy_prop("fs_type", "fs_type")
# Copy the generic system fs type first, override with specific one if
# available.
copy_prop("system_fs_type", "fs_type")
copy_prop("system_headroom", "partition_headroom")
copy_prop("system_size", "partition_size")
if not copy_prop("system_journal_size", "journal_size"):
d["journal_size"] = "0"
copy_prop("system_verity_block_device", "verity_block_device")
copy_prop("system_root_image", "system_root_image")
copy_prop("ramdisk_dir", "ramdisk_dir")
copy_prop("ramdisk_fs_config", "ramdisk_fs_config")
copy_prop("ext4_share_dup_blocks", "ext4_share_dup_blocks")
copy_prop("system_squashfs_compressor", "squashfs_compressor")
copy_prop("system_squashfs_compressor_opt", "squashfs_compressor_opt")
copy_prop("system_squashfs_block_size", "squashfs_block_size")
copy_prop("system_squashfs_disable_4k_align", "squashfs_disable_4k_align")
copy_prop("system_base_fs_file", "base_fs_file")
copy_prop("system_extfs_inode_count", "extfs_inode_count")
if not copy_prop("system_extfs_rsv_pct", "extfs_rsv_pct"):
d["extfs_rsv_pct"] = "0"
copy_prop("system_reserved_size", "partition_reserved_size")
elif mount_point == "system_other":
# We inherit the selinux policies of /system since we contain some of its
# files.
d["mount_point"] = "system"
copy_prop("avb_system_hashtree_enable", "avb_hashtree_enable")
copy_prop("avb_system_add_hashtree_footer_args",
"avb_add_hashtree_footer_args")
copy_prop("avb_system_key_path", "avb_key_path")
copy_prop("avb_system_algorithm", "avb_algorithm")
copy_prop("fs_type", "fs_type")
copy_prop("system_fs_type", "fs_type")
copy_prop("system_size", "partition_size")
if not copy_prop("system_journal_size", "journal_size"):
d["journal_size"] = "0"
copy_prop("system_verity_block_device", "verity_block_device")
copy_prop("system_squashfs_compressor", "squashfs_compressor")
copy_prop("system_squashfs_compressor_opt", "squashfs_compressor_opt")
copy_prop("system_squashfs_block_size", "squashfs_block_size")
copy_prop("system_base_fs_file", "base_fs_file")
copy_prop("system_extfs_inode_count", "extfs_inode_count")
if not copy_prop("system_extfs_rsv_pct", "extfs_rsv_pct"):
d["extfs_rsv_pct"] = "0"
copy_prop("system_reserved_size", "partition_reserved_size")
elif mount_point == "data":
# Copy the generic fs type first, override with specific one if available.
copy_prop("fs_type", "fs_type")
copy_prop("userdata_fs_type", "fs_type")
copy_prop("userdata_size", "partition_size")
copy_prop("flash_logical_block_size", "flash_logical_block_size")
copy_prop("flash_erase_block_size", "flash_erase_block_size")
elif mount_point == "cache":
copy_prop("cache_fs_type", "fs_type")
copy_prop("cache_size", "partition_size")
elif mount_point == "vendor":
copy_prop("avb_vendor_hashtree_enable", "avb_hashtree_enable")
copy_prop("avb_vendor_add_hashtree_footer_args",
"avb_add_hashtree_footer_args")
copy_prop("avb_vendor_key_path", "avb_key_path")
copy_prop("avb_vendor_algorithm", "avb_algorithm")
copy_prop("vendor_fs_type", "fs_type")
copy_prop("vendor_size", "partition_size")
if not copy_prop("vendor_journal_size", "journal_size"):
d["journal_size"] = "0"
copy_prop("vendor_verity_block_device", "verity_block_device")
copy_prop("ext4_share_dup_blocks", "ext4_share_dup_blocks")
copy_prop("vendor_squashfs_compressor", "squashfs_compressor")
copy_prop("vendor_squashfs_compressor_opt", "squashfs_compressor_opt")
copy_prop("vendor_squashfs_block_size", "squashfs_block_size")
copy_prop("vendor_squashfs_disable_4k_align", "squashfs_disable_4k_align")
copy_prop("vendor_base_fs_file", "base_fs_file")
copy_prop("vendor_extfs_inode_count", "extfs_inode_count")
if not copy_prop("vendor_extfs_rsv_pct", "extfs_rsv_pct"):
d["extfs_rsv_pct"] = "0"
copy_prop("vendor_reserved_size", "partition_reserved_size")
elif mount_point == "product":
copy_prop("avb_product_hashtree_enable", "avb_hashtree_enable")
copy_prop("avb_product_add_hashtree_footer_args",
"avb_add_hashtree_footer_args")
copy_prop("avb_product_key_path", "avb_key_path")
copy_prop("avb_product_algorithm", "avb_algorithm")
copy_prop("product_fs_type", "fs_type")
copy_prop("product_size", "partition_size")
if not copy_prop("product_journal_size", "journal_size"):
d["journal_size"] = "0"
copy_prop("product_verity_block_device", "verity_block_device")
copy_prop("product_squashfs_compressor", "squashfs_compressor")
copy_prop("product_squashfs_compressor_opt", "squashfs_compressor_opt")
copy_prop("product_squashfs_block_size", "squashfs_block_size")
copy_prop("product_squashfs_disable_4k_align", "squashfs_disable_4k_align")
copy_prop("product_base_fs_file", "base_fs_file")
copy_prop("product_extfs_inode_count", "extfs_inode_count")
if not copy_prop("product_extfs_rsv_pct", "extfs_rsv_pct"):
d["extfs_rsv_pct"] = "0"
elif mount_point == "oem":
copy_prop("fs_type", "fs_type")
copy_prop("oem_size", "partition_size")
if not copy_prop("oem_journal_size", "journal_size"):
d["journal_size"] = "0"
copy_prop("oem_extfs_inode_count", "extfs_inode_count")
if not copy_prop("oem_extfs_rsv_pct", "extfs_rsv_pct"):
d["extfs_rsv_pct"] = "0"
d["partition_name"] = mount_point
return d
def LoadGlobalDict(filename):
"""Load "name=value" pairs from filename"""
d = {}
f = open(filename)
for line in f:
line = line.strip()
if not line or line.startswith("#"):
continue
k, v = line.split("=", 1)
d[k] = v
f.close()
return d
def GlobalDictFromImageProp(image_prop, mount_point):
d = {}
def copy_prop(src_p, dest_p):
if src_p in image_prop:
d[dest_p] = image_prop[src_p]
return True
return False
if mount_point == "system":
copy_prop("partition_size", "system_size")
elif mount_point == "system_other":
copy_prop("partition_size", "system_size")
elif mount_point == "vendor":
copy_prop("partition_size", "vendor_size")
return d
def SaveGlobalDict(filename, glob_dict):
with open(filename, "w") as f:
f.writelines(["%s=%s" % (key, value) for (key, value) in glob_dict.items()])
def main(argv):
if len(argv) < 4 or len(argv) > 5:
print(__doc__)
sys.exit(1)
in_dir = argv[0]
glob_dict_file = argv[1]
out_file = argv[2]
target_out = argv[3]
prop_file_out = argv[4] if len(argv) >= 5 else None
glob_dict = LoadGlobalDict(glob_dict_file)
if "mount_point" in glob_dict:
# The caller knows the mount point and provides a dictionay needed by
# BuildImage().
image_properties = glob_dict
else:
image_filename = os.path.basename(out_file)
mount_point = ""
if image_filename == "system.img":
mount_point = "system"
elif image_filename == "system_other.img":
mount_point = "system_other"
elif image_filename == "userdata.img":
mount_point = "data"
elif image_filename == "cache.img":
mount_point = "cache"
elif image_filename == "vendor.img":
mount_point = "vendor"
elif image_filename == "oem.img":
mount_point = "oem"
elif image_filename == "product.img":
mount_point = "product"
else:
print("error: unknown image file name ", image_filename, file=sys.stderr)
sys.exit(1)
image_properties = ImagePropFromGlobalDict(glob_dict, mount_point)
if not BuildImage(in_dir, image_properties, out_file, target_out):
print("error: failed to build %s from %s" % (out_file, in_dir),
file=sys.stderr)
sys.exit(1)
if prop_file_out:
glob_dict_out = GlobalDictFromImageProp(image_properties, mount_point)
SaveGlobalDict(prop_file_out, glob_dict_out)
if __name__ == '__main__':
try:
main(sys.argv[1:])
finally:
common.Cleanup()