blob: 7b617dbe03986ad86cc6292866e11356100633b9 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.signapk;
import java.nio.BufferUnderflowException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.security.DigestException;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.KeyFactory;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.SignatureException;
import java.security.cert.CertificateEncodingException;
import java.security.cert.X509Certificate;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.MGF1ParameterSpec;
import java.security.spec.PSSParameterSpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
/**
* APK Signature Scheme v2 signer.
*
* <p>APK Signature Scheme v2 is a whole-file signature scheme which aims to protect every single
* bit of the APK, as opposed to the JAR Signature Scheme which protects only the names and
* uncompressed contents of ZIP entries.
*/
public abstract class ApkSignerV2 {
/*
* The two main goals of APK Signature Scheme v2 are:
* 1. Detect any unauthorized modifications to the APK. This is achieved by making the signature
* cover every byte of the APK being signed.
* 2. Enable much faster signature and integrity verification. This is achieved by requiring
* only a minimal amount of APK parsing before the signature is verified, thus completely
* bypassing ZIP entry decompression and by making integrity verification parallelizable by
* employing a hash tree.
*
* The generated signature block is wrapped into an APK Signing Block and inserted into the
* original APK immediately before the start of ZIP Central Directory. This is to ensure that
* JAR and ZIP parsers continue to work on the signed APK. The APK Signing Block is designed for
* extensibility. For example, a future signature scheme could insert its signatures there as
* well. The contract of the APK Signing Block is that all contents outside of the block must be
* protected by signatures inside the block.
*/
public static final int SIGNATURE_RSA_PSS_WITH_SHA256 = 0x0101;
public static final int SIGNATURE_RSA_PSS_WITH_SHA512 = 0x0102;
public static final int SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256 = 0x0103;
public static final int SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512 = 0x0104;
public static final int SIGNATURE_ECDSA_WITH_SHA256 = 0x0201;
public static final int SIGNATURE_ECDSA_WITH_SHA512 = 0x0202;
public static final int SIGNATURE_DSA_WITH_SHA256 = 0x0301;
/**
* {@code .SF} file header section attribute indicating that the APK is signed not just with
* JAR signature scheme but also with APK Signature Scheme v2 or newer. This attribute
* facilitates v2 signature stripping detection.
*
* <p>The attribute contains a comma-separated set of signature scheme IDs.
*/
public static final String SF_ATTRIBUTE_ANDROID_APK_SIGNED_NAME = "X-Android-APK-Signed";
public static final String SF_ATTRIBUTE_ANDROID_APK_SIGNED_VALUE = "2";
private static final int CONTENT_DIGEST_CHUNKED_SHA256 = 0;
private static final int CONTENT_DIGEST_CHUNKED_SHA512 = 1;
private static final int CONTENT_DIGESTED_CHUNK_MAX_SIZE_BYTES = 1024 * 1024;
private static final byte[] APK_SIGNING_BLOCK_MAGIC =
new byte[] {
0x41, 0x50, 0x4b, 0x20, 0x53, 0x69, 0x67, 0x20,
0x42, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x34, 0x32,
};
private static final int APK_SIGNATURE_SCHEME_V2_BLOCK_ID = 0x7109871a;
private ApkSignerV2() {}
/**
* Signer configuration.
*/
public static final class SignerConfig {
/** Private key. */
public PrivateKey privateKey;
/**
* Certificates, with the first certificate containing the public key corresponding to
* {@link #privateKey}.
*/
public List<X509Certificate> certificates;
/**
* List of signature algorithms with which to sign (see {@code SIGNATURE_...} constants).
*/
public List<Integer> signatureAlgorithms;
}
/**
* Signs the provided APK using APK Signature Scheme v2 and returns the signed APK as a list of
* consecutive chunks.
*
* <p>NOTE: To enable APK signature verifier to detect v2 signature stripping, header sections
* of META-INF/*.SF files of APK being signed must contain the
* {@code X-Android-APK-Signed: true} attribute.
*
* @param inputApk contents of the APK to be signed. The APK starts at the current position
* of the buffer and ends at the limit of the buffer.
* @param signerConfigs signer configurations, one for each signer.
*
* @throws ApkParseException if the APK cannot be parsed.
* @throws InvalidKeyException if a signing key is not suitable for this signature scheme or
* cannot be used in general.
* @throws SignatureException if an error occurs when computing digests of generating
* signatures.
*/
public static ByteBuffer[] sign(
ByteBuffer inputApk,
List<SignerConfig> signerConfigs)
throws ApkParseException, InvalidKeyException, SignatureException {
// Slice/create a view in the inputApk to make sure that:
// 1. inputApk is what's between position and limit of the original inputApk, and
// 2. changes to position, limit, and byte order are not reflected in the original.
ByteBuffer originalInputApk = inputApk;
inputApk = originalInputApk.slice();
inputApk.order(ByteOrder.LITTLE_ENDIAN);
// Locate ZIP End of Central Directory (EoCD), Central Directory, and check that Central
// Directory is immediately followed by the ZIP End of Central Directory.
int eocdOffset = ZipUtils.findZipEndOfCentralDirectoryRecord(inputApk);
if (eocdOffset == -1) {
throw new ApkParseException("Failed to locate ZIP End of Central Directory");
}
if (ZipUtils.isZip64EndOfCentralDirectoryLocatorPresent(inputApk, eocdOffset)) {
throw new ApkParseException("ZIP64 format not supported");
}
inputApk.position(eocdOffset);
long centralDirSizeLong = ZipUtils.getZipEocdCentralDirectorySizeBytes(inputApk);
if (centralDirSizeLong > Integer.MAX_VALUE) {
throw new ApkParseException(
"ZIP Central Directory size out of range: " + centralDirSizeLong);
}
int centralDirSize = (int) centralDirSizeLong;
long centralDirOffsetLong = ZipUtils.getZipEocdCentralDirectoryOffset(inputApk);
if (centralDirOffsetLong > Integer.MAX_VALUE) {
throw new ApkParseException(
"ZIP Central Directory offset in file out of range: " + centralDirOffsetLong);
}
int centralDirOffset = (int) centralDirOffsetLong;
int expectedEocdOffset = centralDirOffset + centralDirSize;
if (expectedEocdOffset < centralDirOffset) {
throw new ApkParseException(
"ZIP Central Directory extent too large. Offset: " + centralDirOffset
+ ", size: " + centralDirSize);
}
if (eocdOffset != expectedEocdOffset) {
throw new ApkParseException(
"ZIP Central Directory not immeiately followed by ZIP End of"
+ " Central Directory. CD end: " + expectedEocdOffset
+ ", EoCD start: " + eocdOffset);
}
// Create ByteBuffers holding the contents of everything before ZIP Central Directory,
// ZIP Central Directory, and ZIP End of Central Directory.
inputApk.clear();
ByteBuffer beforeCentralDir = getByteBuffer(inputApk, centralDirOffset);
ByteBuffer centralDir = getByteBuffer(inputApk, eocdOffset - centralDirOffset);
// Create a copy of End of Central Directory because we'll need modify its contents later.
byte[] eocdBytes = new byte[inputApk.remaining()];
inputApk.get(eocdBytes);
ByteBuffer eocd = ByteBuffer.wrap(eocdBytes);
eocd.order(inputApk.order());
// Figure which which digests to use for APK contents.
Set<Integer> contentDigestAlgorithms = new HashSet<>();
for (SignerConfig signerConfig : signerConfigs) {
for (int signatureAlgorithm : signerConfig.signatureAlgorithms) {
contentDigestAlgorithms.add(
getSignatureAlgorithmContentDigestAlgorithm(signatureAlgorithm));
}
}
// Compute digests of APK contents.
Map<Integer, byte[]> contentDigests; // digest algorithm ID -> digest
try {
contentDigests =
computeContentDigests(
contentDigestAlgorithms,
new ByteBuffer[] {beforeCentralDir, centralDir, eocd});
} catch (DigestException e) {
throw new SignatureException("Failed to compute digests of APK", e);
}
// Sign the digests and wrap the signatures and signer info into an APK Signing Block.
ByteBuffer apkSigningBlock =
ByteBuffer.wrap(generateApkSigningBlock(signerConfigs, contentDigests));
// Update Central Directory Offset in End of Central Directory Record. Central Directory
// follows the APK Signing Block and thus is shifted by the size of the APK Signing Block.
centralDirOffset += apkSigningBlock.remaining();
eocd.clear();
ZipUtils.setZipEocdCentralDirectoryOffset(eocd, centralDirOffset);
// Follow the Java NIO pattern for ByteBuffer whose contents have been consumed.
originalInputApk.position(originalInputApk.limit());
// Reset positions (to 0) and limits (to capacity) in the ByteBuffers below to follow the
// Java NIO pattern for ByteBuffers which are ready for their contents to be read by caller.
// Contrary to the name, this does not clear the contents of these ByteBuffer.
beforeCentralDir.clear();
centralDir.clear();
eocd.clear();
// Insert APK Signing Block immediately before the ZIP Central Directory.
return new ByteBuffer[] {
beforeCentralDir,
apkSigningBlock,
centralDir,
eocd,
};
}
private static Map<Integer, byte[]> computeContentDigests(
Set<Integer> digestAlgorithms,
ByteBuffer[] contents) throws DigestException {
// For each digest algorithm the result is computed as follows:
// 1. Each segment of contents is split into consecutive chunks of 1 MB in size.
// The final chunk will be shorter iff the length of segment is not a multiple of 1 MB.
// No chunks are produced for empty (zero length) segments.
// 2. The digest of each chunk is computed over the concatenation of byte 0xa5, the chunk's
// length in bytes (uint32 little-endian) and the chunk's contents.
// 3. The output digest is computed over the concatenation of the byte 0x5a, the number of
// chunks (uint32 little-endian) and the concatenation of digests of chunks of all
// segments in-order.
int chunkCount = 0;
for (ByteBuffer input : contents) {
chunkCount += getChunkCount(input.remaining(), CONTENT_DIGESTED_CHUNK_MAX_SIZE_BYTES);
}
final Map<Integer, byte[]> digestsOfChunks = new HashMap<>(digestAlgorithms.size());
for (int digestAlgorithm : digestAlgorithms) {
int digestOutputSizeBytes = getContentDigestAlgorithmOutputSizeBytes(digestAlgorithm);
byte[] concatenationOfChunkCountAndChunkDigests =
new byte[5 + chunkCount * digestOutputSizeBytes];
concatenationOfChunkCountAndChunkDigests[0] = 0x5a;
setUnsignedInt32LittleEngian(
chunkCount, concatenationOfChunkCountAndChunkDigests, 1);
digestsOfChunks.put(digestAlgorithm, concatenationOfChunkCountAndChunkDigests);
}
int chunkIndex = 0;
byte[] chunkContentPrefix = new byte[5];
chunkContentPrefix[0] = (byte) 0xa5;
// Optimization opportunity: digests of chunks can be computed in parallel.
for (ByteBuffer input : contents) {
while (input.hasRemaining()) {
int chunkSize =
Math.min(input.remaining(), CONTENT_DIGESTED_CHUNK_MAX_SIZE_BYTES);
final ByteBuffer chunk = getByteBuffer(input, chunkSize);
for (int digestAlgorithm : digestAlgorithms) {
String jcaAlgorithmName =
getContentDigestAlgorithmJcaDigestAlgorithm(digestAlgorithm);
MessageDigest md;
try {
md = MessageDigest.getInstance(jcaAlgorithmName);
} catch (NoSuchAlgorithmException e) {
throw new DigestException(
jcaAlgorithmName + " MessageDigest not supported", e);
}
// Reset position to 0 and limit to capacity. Position would've been modified
// by the preceding iteration of this loop. NOTE: Contrary to the method name,
// this does not modify the contents of the chunk.
chunk.clear();
setUnsignedInt32LittleEngian(chunk.remaining(), chunkContentPrefix, 1);
md.update(chunkContentPrefix);
md.update(chunk);
byte[] concatenationOfChunkCountAndChunkDigests =
digestsOfChunks.get(digestAlgorithm);
int expectedDigestSizeBytes =
getContentDigestAlgorithmOutputSizeBytes(digestAlgorithm);
int actualDigestSizeBytes =
md.digest(
concatenationOfChunkCountAndChunkDigests,
5 + chunkIndex * expectedDigestSizeBytes,
expectedDigestSizeBytes);
if (actualDigestSizeBytes != expectedDigestSizeBytes) {
throw new DigestException(
"Unexpected output size of " + md.getAlgorithm()
+ " digest: " + actualDigestSizeBytes);
}
}
chunkIndex++;
}
}
Map<Integer, byte[]> result = new HashMap<>(digestAlgorithms.size());
for (Map.Entry<Integer, byte[]> entry : digestsOfChunks.entrySet()) {
int digestAlgorithm = entry.getKey();
byte[] concatenationOfChunkCountAndChunkDigests = entry.getValue();
String jcaAlgorithmName = getContentDigestAlgorithmJcaDigestAlgorithm(digestAlgorithm);
MessageDigest md;
try {
md = MessageDigest.getInstance(jcaAlgorithmName);
} catch (NoSuchAlgorithmException e) {
throw new DigestException(jcaAlgorithmName + " MessageDigest not supported", e);
}
result.put(digestAlgorithm, md.digest(concatenationOfChunkCountAndChunkDigests));
}
return result;
}
private static final int getChunkCount(int inputSize, int chunkSize) {
return (inputSize + chunkSize - 1) / chunkSize;
}
private static void setUnsignedInt32LittleEngian(int value, byte[] result, int offset) {
result[offset] = (byte) (value & 0xff);
result[offset + 1] = (byte) ((value >> 8) & 0xff);
result[offset + 2] = (byte) ((value >> 16) & 0xff);
result[offset + 3] = (byte) ((value >> 24) & 0xff);
}
private static byte[] generateApkSigningBlock(
List<SignerConfig> signerConfigs,
Map<Integer, byte[]> contentDigests) throws InvalidKeyException, SignatureException {
byte[] apkSignatureSchemeV2Block =
generateApkSignatureSchemeV2Block(signerConfigs, contentDigests);
return generateApkSigningBlock(apkSignatureSchemeV2Block);
}
private static byte[] generateApkSigningBlock(byte[] apkSignatureSchemeV2Block) {
// FORMAT:
// uint64: size (excluding this field)
// repeated ID-value pairs:
// uint64: size (excluding this field)
// uint32: ID
// (size - 4) bytes: value
// uint64: size (same as the one above)
// uint128: magic
int resultSize =
8 // size
+ 8 + 4 + apkSignatureSchemeV2Block.length // v2Block as ID-value pair
+ 8 // size
+ 16 // magic
;
ByteBuffer result = ByteBuffer.allocate(resultSize);
result.order(ByteOrder.LITTLE_ENDIAN);
long blockSizeFieldValue = resultSize - 8;
result.putLong(blockSizeFieldValue);
long pairSizeFieldValue = 4 + apkSignatureSchemeV2Block.length;
result.putLong(pairSizeFieldValue);
result.putInt(APK_SIGNATURE_SCHEME_V2_BLOCK_ID);
result.put(apkSignatureSchemeV2Block);
result.putLong(blockSizeFieldValue);
result.put(APK_SIGNING_BLOCK_MAGIC);
return result.array();
}
private static byte[] generateApkSignatureSchemeV2Block(
List<SignerConfig> signerConfigs,
Map<Integer, byte[]> contentDigests) throws InvalidKeyException, SignatureException {
// FORMAT:
// * length-prefixed sequence of length-prefixed signer blocks.
List<byte[]> signerBlocks = new ArrayList<>(signerConfigs.size());
int signerNumber = 0;
for (SignerConfig signerConfig : signerConfigs) {
signerNumber++;
byte[] signerBlock;
try {
signerBlock = generateSignerBlock(signerConfig, contentDigests);
} catch (InvalidKeyException e) {
throw new InvalidKeyException("Signer #" + signerNumber + " failed", e);
} catch (SignatureException e) {
throw new SignatureException("Signer #" + signerNumber + " failed", e);
}
signerBlocks.add(signerBlock);
}
return encodeAsSequenceOfLengthPrefixedElements(
new byte[][] {
encodeAsSequenceOfLengthPrefixedElements(signerBlocks),
});
}
private static byte[] generateSignerBlock(
SignerConfig signerConfig,
Map<Integer, byte[]> contentDigests) throws InvalidKeyException, SignatureException {
if (signerConfig.certificates.isEmpty()) {
throw new SignatureException("No certificates configured for signer");
}
PublicKey publicKey = signerConfig.certificates.get(0).getPublicKey();
byte[] encodedPublicKey = encodePublicKey(publicKey);
V2SignatureSchemeBlock.SignedData signedData = new V2SignatureSchemeBlock.SignedData();
try {
signedData.certificates = encodeCertificates(signerConfig.certificates);
} catch (CertificateEncodingException e) {
throw new SignatureException("Failed to encode certificates", e);
}
List<Pair<Integer, byte[]>> digests =
new ArrayList<>(signerConfig.signatureAlgorithms.size());
for (int signatureAlgorithm : signerConfig.signatureAlgorithms) {
int contentDigestAlgorithm =
getSignatureAlgorithmContentDigestAlgorithm(signatureAlgorithm);
byte[] contentDigest = contentDigests.get(contentDigestAlgorithm);
if (contentDigest == null) {
throw new RuntimeException(
getContentDigestAlgorithmJcaDigestAlgorithm(contentDigestAlgorithm)
+ " content digest for "
+ getSignatureAlgorithmJcaSignatureAlgorithm(signatureAlgorithm)
+ " not computed");
}
digests.add(Pair.create(signatureAlgorithm, contentDigest));
}
signedData.digests = digests;
V2SignatureSchemeBlock.Signer signer = new V2SignatureSchemeBlock.Signer();
// FORMAT:
// * length-prefixed sequence of length-prefixed digests:
// * uint32: signature algorithm ID
// * length-prefixed bytes: digest of contents
// * length-prefixed sequence of certificates:
// * length-prefixed bytes: X.509 certificate (ASN.1 DER encoded).
// * length-prefixed sequence of length-prefixed additional attributes:
// * uint32: ID
// * (length - 4) bytes: value
signer.signedData = encodeAsSequenceOfLengthPrefixedElements(new byte[][] {
encodeAsSequenceOfLengthPrefixedPairsOfIntAndLengthPrefixedBytes(signedData.digests),
encodeAsSequenceOfLengthPrefixedElements(signedData.certificates),
// additional attributes
new byte[0],
});
signer.publicKey = encodedPublicKey;
signer.signatures = new ArrayList<>();
for (int signatureAlgorithm : signerConfig.signatureAlgorithms) {
Pair<String, ? extends AlgorithmParameterSpec> signatureParams =
getSignatureAlgorithmJcaSignatureAlgorithm(signatureAlgorithm);
String jcaSignatureAlgorithm = signatureParams.getFirst();
AlgorithmParameterSpec jcaSignatureAlgorithmParams = signatureParams.getSecond();
byte[] signatureBytes;
try {
Signature signature = Signature.getInstance(jcaSignatureAlgorithm);
signature.initSign(signerConfig.privateKey);
if (jcaSignatureAlgorithmParams != null) {
signature.setParameter(jcaSignatureAlgorithmParams);
}
signature.update(signer.signedData);
signatureBytes = signature.sign();
} catch (InvalidKeyException e) {
throw new InvalidKeyException("Failed sign using " + jcaSignatureAlgorithm, e);
} catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException
| SignatureException e) {
throw new SignatureException("Failed sign using " + jcaSignatureAlgorithm, e);
}
try {
Signature signature = Signature.getInstance(jcaSignatureAlgorithm);
signature.initVerify(publicKey);
if (jcaSignatureAlgorithmParams != null) {
signature.setParameter(jcaSignatureAlgorithmParams);
}
signature.update(signer.signedData);
if (!signature.verify(signatureBytes)) {
throw new SignatureException("Signature did not verify");
}
} catch (InvalidKeyException e) {
throw new InvalidKeyException("Failed to verify generated " + jcaSignatureAlgorithm
+ " signature using public key from certificate", e);
} catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException
| SignatureException e) {
throw new SignatureException("Failed to verify generated " + jcaSignatureAlgorithm
+ " signature using public key from certificate", e);
}
signer.signatures.add(Pair.create(signatureAlgorithm, signatureBytes));
}
// FORMAT:
// * length-prefixed signed data
// * length-prefixed sequence of length-prefixed signatures:
// * uint32: signature algorithm ID
// * length-prefixed bytes: signature of signed data
// * length-prefixed bytes: public key (X.509 SubjectPublicKeyInfo, ASN.1 DER encoded)
return encodeAsSequenceOfLengthPrefixedElements(
new byte[][] {
signer.signedData,
encodeAsSequenceOfLengthPrefixedPairsOfIntAndLengthPrefixedBytes(
signer.signatures),
signer.publicKey,
});
}
private static final class V2SignatureSchemeBlock {
private static final class Signer {
public byte[] signedData;
public List<Pair<Integer, byte[]>> signatures;
public byte[] publicKey;
}
private static final class SignedData {
public List<Pair<Integer, byte[]>> digests;
public List<byte[]> certificates;
}
}
private static byte[] encodePublicKey(PublicKey publicKey) throws InvalidKeyException {
byte[] encodedPublicKey = null;
if ("X.509".equals(publicKey.getFormat())) {
encodedPublicKey = publicKey.getEncoded();
}
if (encodedPublicKey == null) {
try {
encodedPublicKey =
KeyFactory.getInstance(publicKey.getAlgorithm())
.getKeySpec(publicKey, X509EncodedKeySpec.class)
.getEncoded();
} catch (NoSuchAlgorithmException | InvalidKeySpecException e) {
throw new InvalidKeyException(
"Failed to obtain X.509 encoded form of public key " + publicKey
+ " of class " + publicKey.getClass().getName(),
e);
}
}
if ((encodedPublicKey == null) || (encodedPublicKey.length == 0)) {
throw new InvalidKeyException(
"Failed to obtain X.509 encoded form of public key " + publicKey
+ " of class " + publicKey.getClass().getName());
}
return encodedPublicKey;
}
public static List<byte[]> encodeCertificates(List<X509Certificate> certificates)
throws CertificateEncodingException {
List<byte[]> result = new ArrayList<>();
for (X509Certificate certificate : certificates) {
result.add(certificate.getEncoded());
}
return result;
}
private static byte[] encodeAsSequenceOfLengthPrefixedElements(List<byte[]> sequence) {
return encodeAsSequenceOfLengthPrefixedElements(
sequence.toArray(new byte[sequence.size()][]));
}
private static byte[] encodeAsSequenceOfLengthPrefixedElements(byte[][] sequence) {
int payloadSize = 0;
for (byte[] element : sequence) {
payloadSize += 4 + element.length;
}
ByteBuffer result = ByteBuffer.allocate(payloadSize);
result.order(ByteOrder.LITTLE_ENDIAN);
for (byte[] element : sequence) {
result.putInt(element.length);
result.put(element);
}
return result.array();
}
private static byte[] encodeAsSequenceOfLengthPrefixedPairsOfIntAndLengthPrefixedBytes(
List<Pair<Integer, byte[]>> sequence) {
int resultSize = 0;
for (Pair<Integer, byte[]> element : sequence) {
resultSize += 12 + element.getSecond().length;
}
ByteBuffer result = ByteBuffer.allocate(resultSize);
result.order(ByteOrder.LITTLE_ENDIAN);
for (Pair<Integer, byte[]> element : sequence) {
byte[] second = element.getSecond();
result.putInt(8 + second.length);
result.putInt(element.getFirst());
result.putInt(second.length);
result.put(second);
}
return result.array();
}
/**
* Relative <em>get</em> method for reading {@code size} number of bytes from the current
* position of this buffer.
*
* <p>This method reads the next {@code size} bytes at this buffer's current position,
* returning them as a {@code ByteBuffer} with start set to 0, limit and capacity set to
* {@code size}, byte order set to this buffer's byte order; and then increments the position by
* {@code size}.
*/
private static ByteBuffer getByteBuffer(ByteBuffer source, int size) {
if (size < 0) {
throw new IllegalArgumentException("size: " + size);
}
int originalLimit = source.limit();
int position = source.position();
int limit = position + size;
if ((limit < position) || (limit > originalLimit)) {
throw new BufferUnderflowException();
}
source.limit(limit);
try {
ByteBuffer result = source.slice();
result.order(source.order());
source.position(limit);
return result;
} finally {
source.limit(originalLimit);
}
}
private static Pair<String, ? extends AlgorithmParameterSpec>
getSignatureAlgorithmJcaSignatureAlgorithm(int sigAlgorithm) {
switch (sigAlgorithm) {
case SIGNATURE_RSA_PSS_WITH_SHA256:
return Pair.create(
"SHA256withRSA/PSS",
new PSSParameterSpec(
"SHA-256", "MGF1", MGF1ParameterSpec.SHA256, 256 / 8, 1));
case SIGNATURE_RSA_PSS_WITH_SHA512:
return Pair.create(
"SHA512withRSA/PSS",
new PSSParameterSpec(
"SHA-512", "MGF1", MGF1ParameterSpec.SHA512, 512 / 8, 1));
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256:
return Pair.create("SHA256withRSA", null);
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512:
return Pair.create("SHA512withRSA", null);
case SIGNATURE_ECDSA_WITH_SHA256:
return Pair.create("SHA256withECDSA", null);
case SIGNATURE_ECDSA_WITH_SHA512:
return Pair.create("SHA512withECDSA", null);
case SIGNATURE_DSA_WITH_SHA256:
return Pair.create("SHA256withDSA", null);
default:
throw new IllegalArgumentException(
"Unknown signature algorithm: 0x"
+ Long.toHexString(sigAlgorithm & 0xffffffff));
}
}
private static int getSignatureAlgorithmContentDigestAlgorithm(int sigAlgorithm) {
switch (sigAlgorithm) {
case SIGNATURE_RSA_PSS_WITH_SHA256:
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256:
case SIGNATURE_ECDSA_WITH_SHA256:
case SIGNATURE_DSA_WITH_SHA256:
return CONTENT_DIGEST_CHUNKED_SHA256;
case SIGNATURE_RSA_PSS_WITH_SHA512:
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512:
case SIGNATURE_ECDSA_WITH_SHA512:
return CONTENT_DIGEST_CHUNKED_SHA512;
default:
throw new IllegalArgumentException(
"Unknown signature algorithm: 0x"
+ Long.toHexString(sigAlgorithm & 0xffffffff));
}
}
private static String getContentDigestAlgorithmJcaDigestAlgorithm(int digestAlgorithm) {
switch (digestAlgorithm) {
case CONTENT_DIGEST_CHUNKED_SHA256:
return "SHA-256";
case CONTENT_DIGEST_CHUNKED_SHA512:
return "SHA-512";
default:
throw new IllegalArgumentException(
"Unknown content digest algorthm: " + digestAlgorithm);
}
}
private static int getContentDigestAlgorithmOutputSizeBytes(int digestAlgorithm) {
switch (digestAlgorithm) {
case CONTENT_DIGEST_CHUNKED_SHA256:
return 256 / 8;
case CONTENT_DIGEST_CHUNKED_SHA512:
return 512 / 8;
default:
throw new IllegalArgumentException(
"Unknown content digest algorthm: " + digestAlgorithm);
}
}
/**
* Indicates that APK file could not be parsed.
*/
public static class ApkParseException extends Exception {
private static final long serialVersionUID = 1L;
public ApkParseException(String message) {
super(message);
}
public ApkParseException(String message, Throwable cause) {
super(message, cause);
}
}
}