blob: d530fa40c86a16dfd9861610dbcc7836a050c363 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
// Contains a thin layer that calls whatever real native allocator
// has been defined. For the libc shared library, this allows the
// implementation of a debug malloc that can intercept all of the allocation
// calls and add special debugging code to attempt to catch allocation
// errors. All of the debugging code is implemented in a separate shared
// library that is only loaded when the property "libc.debug.malloc.options"
// is set to a non-zero value. There are two functions exported to
// allow ddms, or other external users to get information from the debug
// allocation.
// get_malloc_leak_info: Returns information about all of the known native
// allocations that are currently in use.
// free_malloc_leak_info: Frees the data allocated by the call to
// get_malloc_leak_info.
// write_malloc_leak_info: Writes the leak info data to a file.
#include <pthread.h>
#include <stdatomic.h>
#include <private/bionic_defs.h>
#include <private/bionic_config.h>
#include <private/bionic_globals.h>
#include <private/bionic_malloc_dispatch.h>
#if __has_feature(hwaddress_sanitizer)
// FIXME: implement these in HWASan allocator.
extern "C" int __sanitizer_iterate(uintptr_t base __unused, size_t size __unused,
void (*callback)(uintptr_t base, size_t size, void* arg) __unused,
void* arg __unused) {
return 0;
}
extern "C" void __sanitizer_malloc_disable() {
}
extern "C" void __sanitizer_malloc_enable() {
}
#include <sanitizer/hwasan_interface.h>
#define Malloc(function) __sanitizer_ ## function
#else // __has_feature(hwaddress_sanitizer)
#include "jemalloc.h"
#define Malloc(function) je_ ## function
#endif
template <typename T>
static T* RemoveConst(const T* x) {
return const_cast<T*>(x);
}
// RemoveConst is a workaround for bug in current libcxx. Fix in
// https://reviews.llvm.org/D47613
#define atomic_load_explicit_const(obj, order) atomic_load_explicit(RemoveConst(obj), order)
static constexpr memory_order default_read_memory_order = memory_order_acquire;
static constexpr MallocDispatch __libc_malloc_default_dispatch
__attribute__((unused)) = {
Malloc(calloc),
Malloc(free),
Malloc(mallinfo),
Malloc(malloc),
Malloc(malloc_usable_size),
Malloc(memalign),
Malloc(posix_memalign),
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
Malloc(pvalloc),
#endif
Malloc(realloc),
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
Malloc(valloc),
#endif
Malloc(iterate),
Malloc(malloc_disable),
Malloc(malloc_enable),
Malloc(mallopt),
Malloc(aligned_alloc),
};
// Malloc hooks.
void* (*volatile __malloc_hook)(size_t, const void*);
void* (*volatile __realloc_hook)(void*, size_t, const void*);
void (*volatile __free_hook)(void*, const void*);
void* (*volatile __memalign_hook)(size_t, size_t, const void*);
// In a VM process, this is set to 1 after fork()ing out of zygote.
int gMallocLeakZygoteChild = 0;
// =============================================================================
// Allocation functions
// =============================================================================
extern "C" void* calloc(size_t n_elements, size_t elem_size) {
auto _calloc = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.calloc,
default_read_memory_order);
if (__predict_false(_calloc != nullptr)) {
return _calloc(n_elements, elem_size);
}
return Malloc(calloc)(n_elements, elem_size);
}
extern "C" void free(void* mem) {
auto _free = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.free,
default_read_memory_order);
if (__predict_false(_free != nullptr)) {
_free(mem);
} else {
Malloc(free)(mem);
}
}
extern "C" struct mallinfo mallinfo() {
auto _mallinfo = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.mallinfo,
default_read_memory_order);
if (__predict_false(_mallinfo != nullptr)) {
return _mallinfo();
}
return Malloc(mallinfo)();
}
extern "C" int mallopt(int param, int value) {
auto _mallopt = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.mallopt,
default_read_memory_order);
if (__predict_false(_mallopt != nullptr)) {
return _mallopt(param, value);
}
return Malloc(mallopt)(param, value);
}
extern "C" void* malloc(size_t bytes) {
auto _malloc = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.malloc,
default_read_memory_order);
if (__predict_false(_malloc != nullptr)) {
return _malloc(bytes);
}
return Malloc(malloc)(bytes);
}
extern "C" size_t malloc_usable_size(const void* mem) {
auto _malloc_usable_size = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.malloc_usable_size,
default_read_memory_order);
if (__predict_false(_malloc_usable_size != nullptr)) {
return _malloc_usable_size(mem);
}
return Malloc(malloc_usable_size)(mem);
}
extern "C" void* memalign(size_t alignment, size_t bytes) {
auto _memalign = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.memalign,
default_read_memory_order);
if (__predict_false(_memalign != nullptr)) {
return _memalign(alignment, bytes);
}
return Malloc(memalign)(alignment, bytes);
}
extern "C" int posix_memalign(void** memptr, size_t alignment, size_t size) {
auto _posix_memalign = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.posix_memalign,
default_read_memory_order);
if (__predict_false(_posix_memalign != nullptr)) {
return _posix_memalign(memptr, alignment, size);
}
return Malloc(posix_memalign)(memptr, alignment, size);
}
extern "C" void* aligned_alloc(size_t alignment, size_t size) {
auto _aligned_alloc = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.aligned_alloc,
default_read_memory_order);
if (__predict_false(_aligned_alloc != nullptr)) {
return _aligned_alloc(alignment, size);
}
return Malloc(aligned_alloc)(alignment, size);
}
extern "C" void* realloc(void* old_mem, size_t bytes) {
auto _realloc = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.realloc,
default_read_memory_order);
if (__predict_false(_realloc != nullptr)) {
return _realloc(old_mem, bytes);
}
return Malloc(realloc)(old_mem, bytes);
}
extern "C" void* reallocarray(void* old_mem, size_t item_count, size_t item_size) {
size_t new_size;
if (__builtin_mul_overflow(item_count, item_size, &new_size)) {
errno = ENOMEM;
return nullptr;
}
return realloc(old_mem, new_size);
}
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
extern "C" void* pvalloc(size_t bytes) {
auto _pvalloc = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.pvalloc,
default_read_memory_order);
if (__predict_false(_pvalloc != nullptr)) {
return _pvalloc(bytes);
}
return Malloc(pvalloc)(bytes);
}
extern "C" void* valloc(size_t bytes) {
auto _valloc = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.valloc,
default_read_memory_order);
if (__predict_false(_valloc != nullptr)) {
return _valloc(bytes);
}
return Malloc(valloc)(bytes);
}
#endif
// We implement malloc debugging only in libc.so, so the code below
// must be excluded if we compile this file for static libc.a
#if !defined(LIBC_STATIC)
#include <dlfcn.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <async_safe/log.h>
#include <sys/system_properties.h>
extern "C" int __cxa_atexit(void (*func)(void *), void *arg, void *dso);
static const char* HOOKS_SHARED_LIB = "libc_malloc_hooks.so";
static const char* HOOKS_PROPERTY_ENABLE = "libc.debug.hooks.enable";
static const char* HOOKS_ENV_ENABLE = "LIBC_HOOKS_ENABLE";
static const char* DEBUG_SHARED_LIB = "libc_malloc_debug.so";
static const char* DEBUG_PROPERTY_OPTIONS = "libc.debug.malloc.options";
static const char* DEBUG_PROPERTY_PROGRAM = "libc.debug.malloc.program";
static const char* DEBUG_ENV_OPTIONS = "LIBC_DEBUG_MALLOC_OPTIONS";
static const char* HEAPPROFD_SHARED_LIB = "heapprofd_client.so";
static const char* HEAPPROFD_PREFIX = "heapprofd";
static const char* HEAPPROFD_PROPERTY_ENABLE = "heapprofd.enable";
static const int HEAPPROFD_SIGNAL = __SIGRTMIN + 4;
enum FunctionEnum : uint8_t {
FUNC_INITIALIZE,
FUNC_FINALIZE,
FUNC_GET_MALLOC_LEAK_INFO,
FUNC_FREE_MALLOC_LEAK_INFO,
FUNC_MALLOC_BACKTRACE,
FUNC_WRITE_LEAK_INFO,
FUNC_LAST,
};
static void* g_functions[FUNC_LAST];
typedef void (*finalize_func_t)();
typedef bool (*init_func_t)(const MallocDispatch*, int*, const char*);
typedef void (*get_malloc_leak_info_func_t)(uint8_t**, size_t*, size_t*, size_t*, size_t*);
typedef void (*free_malloc_leak_info_func_t)(uint8_t*);
typedef bool (*write_malloc_leak_info_func_t)(FILE*);
typedef ssize_t (*malloc_backtrace_func_t)(void*, uintptr_t*, size_t);
// =============================================================================
// Log functions
// =============================================================================
#define error_log(format, ...) \
async_safe_format_log(ANDROID_LOG_ERROR, "libc", (format), ##__VA_ARGS__ )
#define info_log(format, ...) \
async_safe_format_log(ANDROID_LOG_INFO, "libc", (format), ##__VA_ARGS__ )
// =============================================================================
// =============================================================================
// Exported for use by ddms.
// =============================================================================
// Retrieve native heap information.
//
// "*info" is set to a buffer we allocate
// "*overall_size" is set to the size of the "info" buffer
// "*info_size" is set to the size of a single entry
// "*total_memory" is set to the sum of all allocations we're tracking; does
// not include heap overhead
// "*backtrace_size" is set to the maximum number of entries in the back trace
extern "C" void get_malloc_leak_info(uint8_t** info, size_t* overall_size,
size_t* info_size, size_t* total_memory, size_t* backtrace_size) {
void* func = g_functions[FUNC_GET_MALLOC_LEAK_INFO];
if (func == nullptr) {
return;
}
reinterpret_cast<get_malloc_leak_info_func_t>(func)(info, overall_size, info_size, total_memory,
backtrace_size);
}
extern "C" void free_malloc_leak_info(uint8_t* info) {
void* func = g_functions[FUNC_FREE_MALLOC_LEAK_INFO];
if (func == nullptr) {
return;
}
reinterpret_cast<free_malloc_leak_info_func_t>(func)(info);
}
extern "C" void write_malloc_leak_info(FILE* fp) {
if (fp == nullptr) {
error_log("write_malloc_leak_info called with a nullptr");
return;
}
void* func = g_functions[FUNC_WRITE_LEAK_INFO];
bool written = false;
if (func != nullptr) {
written = reinterpret_cast<write_malloc_leak_info_func_t>(func)(fp);
}
if (!written) {
fprintf(fp, "Native heap dump not available. To enable, run these commands (requires root):\n");
fprintf(fp, "# adb shell stop\n");
fprintf(fp, "# adb shell setprop libc.debug.malloc.options backtrace\n");
fprintf(fp, "# adb shell start\n");
}
}
// =============================================================================
template<typename FunctionType>
static bool InitMallocFunction(void* malloc_impl_handler, _Atomic(FunctionType)* func, const char* prefix, const char* suffix) {
char symbol[128];
snprintf(symbol, sizeof(symbol), "%s_%s", prefix, suffix);
*func = reinterpret_cast<FunctionType>(dlsym(malloc_impl_handler, symbol));
if (*func == nullptr) {
error_log("%s: dlsym(\"%s\") failed", getprogname(), symbol);
return false;
}
return true;
}
static bool InitMallocFunctions(void* impl_handler, MallocDispatch* table, const char* prefix) {
if (!InitMallocFunction<MallocFree>(impl_handler, &table->free, prefix, "free")) {
return false;
}
if (!InitMallocFunction<MallocCalloc>(impl_handler, &table->calloc, prefix, "calloc")) {
return false;
}
if (!InitMallocFunction<MallocMallinfo>(impl_handler, &table->mallinfo, prefix, "mallinfo")) {
return false;
}
if (!InitMallocFunction<MallocMallopt>(impl_handler, &table->mallopt, prefix, "mallopt")) {
return false;
}
if (!InitMallocFunction<MallocMalloc>(impl_handler, &table->malloc, prefix, "malloc")) {
return false;
}
if (!InitMallocFunction<MallocMallocUsableSize>(impl_handler, &table->malloc_usable_size, prefix,
"malloc_usable_size")) {
return false;
}
if (!InitMallocFunction<MallocMemalign>(impl_handler, &table->memalign, prefix, "memalign")) {
return false;
}
if (!InitMallocFunction<MallocPosixMemalign>(impl_handler, &table->posix_memalign, prefix,
"posix_memalign")) {
return false;
}
if (!InitMallocFunction<MallocAlignedAlloc>(impl_handler, &table->aligned_alloc,
prefix, "aligned_alloc")) {
return false;
}
if (!InitMallocFunction<MallocRealloc>(impl_handler, &table->realloc, prefix, "realloc")) {
return false;
}
if (!InitMallocFunction<MallocIterate>(impl_handler, &table->iterate, prefix, "iterate")) {
return false;
}
if (!InitMallocFunction<MallocMallocDisable>(impl_handler, &table->malloc_disable, prefix,
"malloc_disable")) {
return false;
}
if (!InitMallocFunction<MallocMallocEnable>(impl_handler, &table->malloc_enable, prefix,
"malloc_enable")) {
return false;
}
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
if (!InitMallocFunction<MallocPvalloc>(impl_handler, &table->pvalloc, prefix, "pvalloc")) {
return false;
}
if (!InitMallocFunction<MallocValloc>(impl_handler, &table->valloc, prefix, "valloc")) {
return false;
}
#endif
return true;
}
static void malloc_fini_impl(void*) {
// Our BSD stdio implementation doesn't close the standard streams,
// it only flushes them. Other unclosed FILE*s will show up as
// malloc leaks, but to avoid the standard streams showing up in
// leak reports, close them here.
fclose(stdin);
fclose(stdout);
fclose(stderr);
reinterpret_cast<finalize_func_t>(g_functions[FUNC_FINALIZE])();
}
static bool CheckLoadMallocHooks(char** options) {
char* env = getenv(HOOKS_ENV_ENABLE);
if ((env == nullptr || env[0] == '\0' || env[0] == '0') &&
(__system_property_get(HOOKS_PROPERTY_ENABLE, *options) == 0 || *options[0] == '\0' || *options[0] == '0')) {
return false;
}
*options = nullptr;
return true;
}
static bool CheckLoadMallocDebug(char** options) {
// If DEBUG_MALLOC_ENV_OPTIONS is set then it overrides the system properties.
char* env = getenv(DEBUG_ENV_OPTIONS);
if (env == nullptr || env[0] == '\0') {
if (__system_property_get(DEBUG_PROPERTY_OPTIONS, *options) == 0 || *options[0] == '\0') {
return false;
}
// Check to see if only a specific program should have debug malloc enabled.
char program[PROP_VALUE_MAX];
if (__system_property_get(DEBUG_PROPERTY_PROGRAM, program) != 0 &&
strstr(getprogname(), program) == nullptr) {
return false;
}
} else {
*options = env;
}
return true;
}
static bool GetHeapprofdProgramProperty(char* data, size_t size) {
constexpr char prefix[] = "heapprofd.enable.";
// - 1 to skip nullbyte, which we will write later.
constexpr size_t prefix_size = sizeof(prefix) - 1;
if (size < prefix_size) {
error_log("%s: Overflow constructing heapprofd property", getprogname());
return false;
}
memcpy(data, prefix, prefix_size);
int fd = open("/proc/self/cmdline", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
error_log("%s: Failed to open /proc/self/cmdline", getprogname());
return false;
}
char cmdline[128];
ssize_t rd = read(fd, cmdline, sizeof(cmdline) - 1);
close(fd);
if (rd == -1) {
error_log("%s: Failed to read /proc/self/cmdline", getprogname());
return false;
}
cmdline[rd] = '\0';
char* first_arg = static_cast<char*>(memchr(cmdline, '\0', rd));
if (first_arg == nullptr || first_arg == cmdline + size - 1) {
error_log("%s: Overflow reading cmdline", getprogname());
return false;
}
// For consistency with what we do with Java app cmdlines, trim everything
// after the @ sign of the first arg.
char* first_at = static_cast<char*>(memchr(cmdline, '@', rd));
if (first_at != nullptr && first_at < first_arg) {
*first_at = '\0';
first_arg = first_at;
}
char* start = static_cast<char*>(memrchr(cmdline, '/', first_arg - cmdline));
if (start == first_arg) {
// The first argument ended in a slash.
error_log("%s: cmdline ends in /", getprogname());
return false;
} else if (start == nullptr) {
start = cmdline;
} else {
// Skip the /.
start++;
}
size_t name_size = static_cast<size_t>(first_arg - start);
if (name_size >= size - prefix_size) {
error_log("%s: overflow constructing heapprofd property.", getprogname());
return false;
}
// + 1 to also copy the trailing null byte.
memcpy(data + prefix_size, start, name_size + 1);
return true;
}
static bool CheckLoadHeapprofd() {
// First check for heapprofd.enable. If it is set to "all", enable
// heapprofd for all processes. Otherwise, check heapprofd.enable.${prog},
// if it is set and not 0, enable heap profiling for this process.
char property_value[PROP_VALUE_MAX];
if (__system_property_get(HEAPPROFD_PROPERTY_ENABLE, property_value) == 0) {
return false;
}
if (strcmp(property_value, "all") == 0) {
return true;
}
char program_property[128];
if (!GetHeapprofdProgramProperty(program_property,
sizeof(program_property))) {
return false;
}
if (__system_property_get(program_property, property_value) == 0) {
return false;
}
return program_property[0] != '\0';
}
static void ClearGlobalFunctions() {
for (size_t i = 0; i < FUNC_LAST; i++) {
g_functions[i] = nullptr;
}
}
static void* LoadSharedLibrary(const char* shared_lib, const char* prefix, MallocDispatch* dispatch_table) {
void* impl_handle = dlopen(shared_lib, RTLD_NOW | RTLD_LOCAL);
if (impl_handle == nullptr) {
error_log("%s: Unable to open shared library %s: %s", getprogname(), shared_lib, dlerror());
return nullptr;
}
static constexpr const char* names[] = {
"initialize",
"finalize",
"get_malloc_leak_info",
"free_malloc_leak_info",
"malloc_backtrace",
"write_malloc_leak_info",
};
for (size_t i = 0; i < FUNC_LAST; i++) {
char symbol[128];
snprintf(symbol, sizeof(symbol), "%s_%s", prefix, names[i]);
g_functions[i] = dlsym(impl_handle, symbol);
if (g_functions[i] == nullptr) {
error_log("%s: %s routine not found in %s", getprogname(), symbol, shared_lib);
dlclose(impl_handle);
ClearGlobalFunctions();
return nullptr;
}
}
if (!InitMallocFunctions(impl_handle, dispatch_table, prefix)) {
dlclose(impl_handle);
ClearGlobalFunctions();
return nullptr;
}
return impl_handle;
}
// A function pointer to heapprofds init function. Used to re-initialize
// heapprofd. This will start a new profiling session and tear down the old
// one in case it is still active.
static _Atomic init_func_t g_heapprofd_init_func = nullptr;
static void install_hooks(libc_globals* globals, const char* options,
const char* prefix, const char* shared_lib) {
init_func_t init_func = atomic_load(&g_heapprofd_init_func);
if (init_func != nullptr) {
init_func(&__libc_malloc_default_dispatch, &gMallocLeakZygoteChild, options);
info_log("%s: malloc %s re-enabled", getprogname(), prefix);
return;
}
MallocDispatch dispatch_table;
void* impl_handle = LoadSharedLibrary(shared_lib, prefix, &dispatch_table);
if (impl_handle == nullptr) {
return;
}
init_func = reinterpret_cast<init_func_t>(g_functions[FUNC_INITIALIZE]);
if (!init_func(&__libc_malloc_default_dispatch, &gMallocLeakZygoteChild, options)) {
dlclose(impl_handle);
ClearGlobalFunctions();
return;
}
atomic_store(&g_heapprofd_init_func, init_func);
// We assign free first explicitly to prevent the case where we observe a
// alloc, but miss the corresponding free because of initialization order.
//
// This is safer than relying on the declaration order inside
// MallocDispatch at the cost of an extra atomic pointer write on
// initialization.
atomic_store(&globals->malloc_dispatch.free, dispatch_table.free);
// The struct gets assigned elementwise and each of the elements is an
// _Atomic. Assigning to an _Atomic is an atomic_store operation.
// The assignment is done in declaration order.
globals->malloc_dispatch = dispatch_table;
info_log("%s: malloc %s enabled", getprogname(), prefix);
// Use atexit to trigger the cleanup function. This avoids a problem
// where another atexit function is used to cleanup allocated memory,
// but the finalize function was already called. This particular error
// seems to be triggered by a zygote spawned process calling exit.
int ret_value = __cxa_atexit(malloc_fini_impl, nullptr, nullptr);
if (ret_value != 0) {
error_log("failed to set atexit cleanup function: %d", ret_value);
}
}
extern "C" void InstallInitHeapprofdHook(int);
// Initializes memory allocation framework once per process.
static void malloc_init_impl(libc_globals* globals) {
struct sigaction action = {};
action.sa_handler = InstallInitHeapprofdHook;
sigaction(HEAPPROFD_SIGNAL, &action, nullptr);
const char* prefix;
const char* shared_lib;
char prop[PROP_VALUE_MAX];
char* options = prop;
// Prefer malloc debug since it existed first and is a more complete
// malloc interceptor than the hooks.
if (CheckLoadMallocDebug(&options)) {
prefix = "debug";
shared_lib = DEBUG_SHARED_LIB;
} else if (CheckLoadMallocHooks(&options)) {
prefix = "hooks";
shared_lib = HOOKS_SHARED_LIB;
} else if (CheckLoadHeapprofd()) {
prefix = "heapprofd";
shared_lib = HEAPPROFD_SHARED_LIB;
} else {
return;
}
install_hooks(globals, options, prefix, shared_lib);
}
// Initializes memory allocation framework.
// This routine is called from __libc_init routines in libc_init_dynamic.cpp.
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
__LIBC_HIDDEN__ void __libc_init_malloc(libc_globals* globals) {
malloc_init_impl(globals);
}
// The logic for triggering heapprofd below is as following.
// 1. HEAPPROFD_SIGNAL is received by the process.
// 2. If neither InitHeapprofd nor InitHeapprofdHook are currently installed
// (g_heapprofd_init_hook_installed is false), InitHeapprofdHook is
// installed and g_heapprofd_init_in_progress is set to true.
//
// On the next subsequent malloc, InitHeapprofdHook is called and
// 3a. If the signal is currently being handled (g_heapprofd_init_in_progress
// is true), no action is taken.
// 3b. Otherwise, The signal handler (InstallInitHeapprofdHook) installs a
// temporary malloc hook (InitHeapprofdHook).
// 4. When this hook gets run the first time, it uninstalls itself and spawns
// a thread running InitHeapprofd that loads heapprofd.so and installs the
// hooks within.
// 5. g_heapprofd_init_in_progress and g_heapprofd_init_hook_installed are
// reset to false so heapprofd can be reinitialized. Reinitialization
// means that a new profiling session is started and any still active is
// torn down.
//
// This roundabout way is needed because we are running non AS-safe code, so
// we cannot run it directly in the signal handler. The other approach of
// running a standby thread and signalling through write(2) and read(2) would
// significantly increase the number of active threads in the system.
static _Atomic bool g_heapprofd_init_in_progress = false;
static _Atomic bool g_heapprofd_init_hook_installed = false;
static void* InitHeapprofd(void*) {
__libc_globals.mutate([](libc_globals* globals) {
install_hooks(globals, nullptr, HEAPPROFD_PREFIX, HEAPPROFD_SHARED_LIB);
});
atomic_store(&g_heapprofd_init_in_progress, false);
// Allow to install hook again to re-initialize heap profiling after the
// current session finished.
atomic_store(&g_heapprofd_init_hook_installed, false);
return nullptr;
}
static void* InitHeapprofdHook(size_t bytes) {
if (!atomic_exchange(&g_heapprofd_init_hook_installed, true)) {
__libc_globals.mutate([](libc_globals* globals) {
atomic_store(&globals->malloc_dispatch.malloc, nullptr);
});
pthread_t thread_id;
if (pthread_create(&thread_id, nullptr, InitHeapprofd, nullptr) == -1)
error_log("%s: heapprofd: failed to pthread_create.", getprogname());
else if (pthread_detach(thread_id) == -1)
error_log("%s: heapprofd: failed to pthread_detach", getprogname());
if (pthread_setname_np(thread_id, "heapprofdinit") == -1)
error_log("%s: heapprod: failed to pthread_setname_np", getprogname());
}
return Malloc(malloc)(bytes);
}
extern "C" void InstallInitHeapprofdHook(int) {
if (!atomic_exchange(&g_heapprofd_init_in_progress, true)) {
__libc_globals.mutate([](libc_globals* globals) {
atomic_store(&globals->malloc_dispatch.malloc, InitHeapprofdHook);
});
}
}
#endif // !LIBC_STATIC
// =============================================================================
// Exported for use by libmemunreachable.
// =============================================================================
// Calls callback for every allocation in the anonymous heap mapping
// [base, base+size). Must be called between malloc_disable and malloc_enable.
extern "C" int malloc_iterate(uintptr_t base, size_t size,
void (*callback)(uintptr_t base, size_t size, void* arg), void* arg) {
auto _iterate = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.iterate,
default_read_memory_order);
if (__predict_false(_iterate != nullptr)) {
return _iterate(base, size, callback, arg);
}
return Malloc(iterate)(base, size, callback, arg);
}
// Disable calls to malloc so malloc_iterate gets a consistent view of
// allocated memory.
extern "C" void malloc_disable() {
auto _malloc_disable = atomic_load_explicit_const(
& __libc_globals->malloc_dispatch.malloc_disable,
default_read_memory_order);
if (__predict_false(_malloc_disable != nullptr)) {
return _malloc_disable();
}
return Malloc(malloc_disable)();
}
// Re-enable calls to malloc after a previous call to malloc_disable.
extern "C" void malloc_enable() {
auto _malloc_enable = atomic_load_explicit_const(
&__libc_globals->malloc_dispatch.malloc_enable,
default_read_memory_order);
if (__predict_false(_malloc_enable != nullptr)) {
return _malloc_enable();
}
return Malloc(malloc_enable)();
}
#ifndef LIBC_STATIC
extern "C" ssize_t malloc_backtrace(void* pointer, uintptr_t* frames, size_t frame_count) {
void* func = g_functions[FUNC_MALLOC_BACKTRACE];
if (func == nullptr) {
return 0;
}
return reinterpret_cast<malloc_backtrace_func_t>(func)(pointer, frames, frame_count);
}
#else
extern "C" ssize_t malloc_backtrace(void*, uintptr_t*, size_t) {
return 0;
}
#endif