|  |  | 
|  | /* @(#)k_rem_pio2.c 1.3 95/01/18 */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | #ifndef lint | 
|  | static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_rem_pio2.c,v 1.7 2005/02/04 18:26:06 das Exp $"; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) | 
|  | * double x[],y[]; int e0,nx,prec; int ipio2[]; | 
|  | * | 
|  | * __kernel_rem_pio2 return the last three digits of N with | 
|  | *		y = x - N*pi/2 | 
|  | * so that |y| < pi/2. | 
|  | * | 
|  | * The method is to compute the integer (mod 8) and fraction parts of | 
|  | * (2/pi)*x without doing the full multiplication. In general we | 
|  | * skip the part of the product that are known to be a huge integer ( | 
|  | * more accurately, = 0 mod 8 ). Thus the number of operations are | 
|  | * independent of the exponent of the input. | 
|  | * | 
|  | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. | 
|  | * | 
|  | * Input parameters: | 
|  | * 	x[]	The input value (must be positive) is broken into nx | 
|  | *		pieces of 24-bit integers in double precision format. | 
|  | *		x[i] will be the i-th 24 bit of x. The scaled exponent | 
|  | *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 | 
|  | *		match x's up to 24 bits. | 
|  | * | 
|  | *		Example of breaking a double positive z into x[0]+x[1]+x[2]: | 
|  | *			e0 = ilogb(z)-23 | 
|  | *			z  = scalbn(z,-e0) | 
|  | *		for i = 0,1,2 | 
|  | *			x[i] = floor(z) | 
|  | *			z    = (z-x[i])*2**24 | 
|  | * | 
|  | * | 
|  | *	y[]	ouput result in an array of double precision numbers. | 
|  | *		The dimension of y[] is: | 
|  | *			24-bit  precision	1 | 
|  | *			53-bit  precision	2 | 
|  | *			64-bit  precision	2 | 
|  | *			113-bit precision	3 | 
|  | *		The actual value is the sum of them. Thus for 113-bit | 
|  | *		precison, one may have to do something like: | 
|  | * | 
|  | *		long double t,w,r_head, r_tail; | 
|  | *		t = (long double)y[2] + (long double)y[1]; | 
|  | *		w = (long double)y[0]; | 
|  | *		r_head = t+w; | 
|  | *		r_tail = w - (r_head - t); | 
|  | * | 
|  | *	e0	The exponent of x[0] | 
|  | * | 
|  | *	nx	dimension of x[] | 
|  | * | 
|  | *  	prec	an integer indicating the precision: | 
|  | *			0	24  bits (single) | 
|  | *			1	53  bits (double) | 
|  | *			2	64  bits (extended) | 
|  | *			3	113 bits (quad) | 
|  | * | 
|  | *	ipio2[] | 
|  | *		integer array, contains the (24*i)-th to (24*i+23)-th | 
|  | *		bit of 2/pi after binary point. The corresponding | 
|  | *		floating value is | 
|  | * | 
|  | *			ipio2[i] * 2^(-24(i+1)). | 
|  | * | 
|  | * External function: | 
|  | *	double scalbn(), floor(); | 
|  | * | 
|  | * | 
|  | * Here is the description of some local variables: | 
|  | * | 
|  | * 	jk	jk+1 is the initial number of terms of ipio2[] needed | 
|  | *		in the computation. The recommended value is 2,3,4, | 
|  | *		6 for single, double, extended,and quad. | 
|  | * | 
|  | * 	jz	local integer variable indicating the number of | 
|  | *		terms of ipio2[] used. | 
|  | * | 
|  | *	jx	nx - 1 | 
|  | * | 
|  | *	jv	index for pointing to the suitable ipio2[] for the | 
|  | *		computation. In general, we want | 
|  | *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 | 
|  | *		is an integer. Thus | 
|  | *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv | 
|  | *		Hence jv = max(0,(e0-3)/24). | 
|  | * | 
|  | *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk. | 
|  | * | 
|  | * 	q[]	double array with integral value, representing the | 
|  | *		24-bits chunk of the product of x and 2/pi. | 
|  | * | 
|  | *	q0	the corresponding exponent of q[0]. Note that the | 
|  | *		exponent for q[i] would be q0-24*i. | 
|  | * | 
|  | *	PIo2[]	double precision array, obtained by cutting pi/2 | 
|  | *		into 24 bits chunks. | 
|  | * | 
|  | *	f[]	ipio2[] in floating point | 
|  | * | 
|  | *	iq[]	integer array by breaking up q[] in 24-bits chunk. | 
|  | * | 
|  | *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk] | 
|  | * | 
|  | *	ih	integer. If >0 it indicates q[] is >= 0.5, hence | 
|  | *		it also indicates the *sign* of the result. | 
|  | * | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Constants: | 
|  | * The hexadecimal values are the intended ones for the following | 
|  | * constants. The decimal values may be used, provided that the | 
|  | * compiler will convert from decimal to binary accurately enough | 
|  | * to produce the hexadecimal values shown. | 
|  | */ | 
|  |  | 
|  | #include "math.h" | 
|  | #include "math_private.h" | 
|  |  | 
|  | static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ | 
|  |  | 
|  | static const double PIo2[] = { | 
|  | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ | 
|  | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ | 
|  | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ | 
|  | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ | 
|  | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ | 
|  | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ | 
|  | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ | 
|  | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ | 
|  | }; | 
|  |  | 
|  | static const double | 
|  | zero   = 0.0, | 
|  | one    = 1.0, | 
|  | two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ | 
|  | twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ | 
|  |  | 
|  | int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) | 
|  | { | 
|  | int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; | 
|  | double z,fw,f[20],fq[20],q[20]; | 
|  |  | 
|  | /* initialize jk*/ | 
|  | jk = init_jk[prec]; | 
|  | jp = jk; | 
|  |  | 
|  | /* determine jx,jv,q0, note that 3>q0 */ | 
|  | jx =  nx-1; | 
|  | jv = (e0-3)/24; if(jv<0) jv=0; | 
|  | q0 =  e0-24*(jv+1); | 
|  |  | 
|  | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ | 
|  | j = jv-jx; m = jx+jk; | 
|  | for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; | 
|  |  | 
|  | /* compute q[0],q[1],...q[jk] */ | 
|  | for (i=0;i<=jk;i++) { | 
|  | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; | 
|  | } | 
|  |  | 
|  | jz = jk; | 
|  | recompute: | 
|  | /* distill q[] into iq[] reversingly */ | 
|  | for(i=0,j=jz,z=q[jz];j>0;i++,j--) { | 
|  | fw    =  (double)((int32_t)(twon24* z)); | 
|  | iq[i] =  (int32_t)(z-two24*fw); | 
|  | z     =  q[j-1]+fw; | 
|  | } | 
|  |  | 
|  | /* compute n */ | 
|  | z  = scalbn(z,q0);		/* actual value of z */ | 
|  | z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */ | 
|  | n  = (int32_t) z; | 
|  | z -= (double)n; | 
|  | ih = 0; | 
|  | if(q0>0) {	/* need iq[jz-1] to determine n */ | 
|  | i  = (iq[jz-1]>>(24-q0)); n += i; | 
|  | iq[jz-1] -= i<<(24-q0); | 
|  | ih = iq[jz-1]>>(23-q0); | 
|  | } | 
|  | else if(q0==0) ih = iq[jz-1]>>23; | 
|  | else if(z>=0.5) ih=2; | 
|  |  | 
|  | if(ih>0) {	/* q > 0.5 */ | 
|  | n += 1; carry = 0; | 
|  | for(i=0;i<jz ;i++) {	/* compute 1-q */ | 
|  | j = iq[i]; | 
|  | if(carry==0) { | 
|  | if(j!=0) { | 
|  | carry = 1; iq[i] = 0x1000000- j; | 
|  | } | 
|  | } else  iq[i] = 0xffffff - j; | 
|  | } | 
|  | if(q0>0) {		/* rare case: chance is 1 in 12 */ | 
|  | switch(q0) { | 
|  | case 1: | 
|  | iq[jz-1] &= 0x7fffff; break; | 
|  | case 2: | 
|  | iq[jz-1] &= 0x3fffff; break; | 
|  | } | 
|  | } | 
|  | if(ih==2) { | 
|  | z = one - z; | 
|  | if(carry!=0) z -= scalbn(one,q0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check if recomputation is needed */ | 
|  | if(z==zero) { | 
|  | j = 0; | 
|  | for (i=jz-1;i>=jk;i--) j |= iq[i]; | 
|  | if(j==0) { /* need recomputation */ | 
|  | for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */ | 
|  |  | 
|  | for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */ | 
|  | f[jx+i] = (double) ipio2[jv+i]; | 
|  | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; | 
|  | q[i] = fw; | 
|  | } | 
|  | jz += k; | 
|  | goto recompute; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* chop off zero terms */ | 
|  | if(z==0.0) { | 
|  | jz -= 1; q0 -= 24; | 
|  | while(iq[jz]==0) { jz--; q0-=24;} | 
|  | } else { /* break z into 24-bit if necessary */ | 
|  | z = scalbn(z,-q0); | 
|  | if(z>=two24) { | 
|  | fw = (double)((int32_t)(twon24*z)); | 
|  | iq[jz] = (int32_t)(z-two24*fw); | 
|  | jz += 1; q0 += 24; | 
|  | iq[jz] = (int32_t) fw; | 
|  | } else iq[jz] = (int32_t) z ; | 
|  | } | 
|  |  | 
|  | /* convert integer "bit" chunk to floating-point value */ | 
|  | fw = scalbn(one,q0); | 
|  | for(i=jz;i>=0;i--) { | 
|  | q[i] = fw*(double)iq[i]; fw*=twon24; | 
|  | } | 
|  |  | 
|  | /* compute PIo2[0,...,jp]*q[jz,...,0] */ | 
|  | for(i=jz;i>=0;i--) { | 
|  | for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; | 
|  | fq[jz-i] = fw; | 
|  | } | 
|  |  | 
|  | /* compress fq[] into y[] */ | 
|  | switch(prec) { | 
|  | case 0: | 
|  | fw = 0.0; | 
|  | for (i=jz;i>=0;i--) fw += fq[i]; | 
|  | y[0] = (ih==0)? fw: -fw; | 
|  | break; | 
|  | case 1: | 
|  | case 2: | 
|  | fw = 0.0; | 
|  | for (i=jz;i>=0;i--) fw += fq[i]; | 
|  | y[0] = (ih==0)? fw: -fw; | 
|  | fw = fq[0]-fw; | 
|  | for (i=1;i<=jz;i++) fw += fq[i]; | 
|  | y[1] = (ih==0)? fw: -fw; | 
|  | break; | 
|  | case 3:	/* painful */ | 
|  | for (i=jz;i>0;i--) { | 
|  | fw      = fq[i-1]+fq[i]; | 
|  | fq[i]  += fq[i-1]-fw; | 
|  | fq[i-1] = fw; | 
|  | } | 
|  | for (i=jz;i>1;i--) { | 
|  | fw      = fq[i-1]+fq[i]; | 
|  | fq[i]  += fq[i-1]-fw; | 
|  | fq[i-1] = fw; | 
|  | } | 
|  | for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; | 
|  | if(ih==0) { | 
|  | y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw; | 
|  | } else { | 
|  | y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; | 
|  | } | 
|  | } | 
|  | return n&7; | 
|  | } |