blob: fae09bec45db20f03b7dc4e51cb8c3985d7250cf [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <benchmark.h>
#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string>
#include <vector>
#include <inttypes.h>
static int64_t g_bytes_processed;
static int64_t g_benchmark_total_time_ns;
static int64_t g_benchmark_start_time_ns;
static int g_name_column_width = 20;
typedef std::vector<::testing::Benchmark*> BenchmarkList;
static BenchmarkList& Benchmarks() {
static BenchmarkList benchmarks;
return benchmarks;
}
// Similar to the code in art, but supporting both binary and decimal prefixes.
static std::string PrettyInt(uint64_t count, size_t base) {
if (base != 2 && base != 10) abort();
// The byte thresholds at which we display amounts. A count is displayed
// in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
static const uint64_t kUnitThresholds2[] = {
1024*1024*1024 /* Gi */, 2*1024*1024 /* Mi */, 3*1024 /* Ki */, 0,
};
static const uint64_t kUnitThresholds10[] = {
1000*1000*1000 /* G */, 2*1000*1000 /* M */, 3*1000 /* k */, 0,
};
static const uint64_t kAmountPerUnit2[] = { 1024*1024*1024, 1024*1024, 1024, 1 };
static const uint64_t kAmountPerUnit10[] = { 1000*1000*1000, 1000*1000, 1000, 1 };
static const char* const kUnitStrings2[] = { "Gi", "Mi", "Ki", "" };
static const char* const kUnitStrings10[] = { "G", "M", "k", "" };
// Which set are we using?
const uint64_t* kUnitThresholds = ((base == 2) ? kUnitThresholds2 : kUnitThresholds10);
const uint64_t* kAmountPerUnit = ((base == 2) ? kAmountPerUnit2 : kAmountPerUnit10);
const char* const* kUnitStrings = ((base == 2) ? kUnitStrings2 : kUnitStrings10);
size_t i = 0;
for (; kUnitThresholds[i] != 0; ++i) {
if (count >= kUnitThresholds[i]) {
break;
}
}
char* s = NULL;
asprintf(&s, "%" PRId64 "%s", count / kAmountPerUnit[i], kUnitStrings[i]);
std::string result(s);
free(s);
return result;
}
static int Round(int n) {
int base = 1;
while (base*10 < n) {
base *= 10;
}
if (n < 2*base) {
return 2*base;
}
if (n < 5*base) {
return 5*base;
}
return 10*base;
}
static int64_t NanoTime() {
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<int64_t>(t.tv_sec) * 1000000000LL + t.tv_nsec;
}
namespace testing {
Benchmark* Benchmark::Arg(int arg) {
args_.push_back(arg);
return this;
}
const char* Benchmark::Name() {
return name_;
}
bool Benchmark::ShouldRun(int argc, char* argv[]) {
if (argc == 1) {
return true; // With no arguments, we run all benchmarks.
}
// Otherwise, we interpret each argument as a regular expression and
// see if any of our benchmarks match.
for (int i = 1; i < argc; i++) {
regex_t re;
if (regcomp(&re, argv[i], 0) != 0) {
fprintf(stderr, "couldn't compile \"%s\" as a regular expression!\n", argv[i]);
exit(EXIT_FAILURE);
}
int match = regexec(&re, name_, 0, NULL, 0);
regfree(&re);
if (match != REG_NOMATCH) {
return true;
}
}
return false;
}
void Benchmark::Register(const char* name, void (*fn)(int), void (*fn_range)(int, int)) {
name_ = name;
fn_ = fn;
fn_range_ = fn_range;
if (fn_ == NULL && fn_range_ == NULL) {
fprintf(stderr, "%s: missing function\n", name_);
exit(EXIT_FAILURE);
}
Benchmarks().push_back(this);
}
void Benchmark::Run() {
if (fn_ != NULL) {
RunWithArg(0);
} else {
if (args_.empty()) {
fprintf(stderr, "%s: no args!\n", name_);
exit(EXIT_FAILURE);
}
for (size_t i = 0; i < args_.size(); ++i) {
RunWithArg(args_[i]);
}
}
}
void Benchmark::RunRepeatedlyWithArg(int iterations, int arg) {
g_bytes_processed = 0;
g_benchmark_total_time_ns = 0;
g_benchmark_start_time_ns = NanoTime();
if (fn_ != NULL) {
fn_(iterations);
} else {
fn_range_(iterations, arg);
}
if (g_benchmark_start_time_ns != 0) {
g_benchmark_total_time_ns += NanoTime() - g_benchmark_start_time_ns;
}
}
void Benchmark::RunWithArg(int arg) {
// Run once in case it's expensive.
int iterations = 1;
int64_t realStartTime = NanoTime();
RunRepeatedlyWithArg(iterations, arg);
int64_t realTotalTime = NanoTime() - realStartTime;
while (realTotalTime < 1e9 && iterations < 1e8) {
int last = iterations;
if (realTotalTime/iterations == 0) {
iterations = 1e9;
} else {
iterations = 1e9 / (realTotalTime/iterations);
}
iterations = std::max(last + 1, std::min(iterations + iterations/2, 100*last));
iterations = Round(iterations);
realStartTime = NanoTime();
RunRepeatedlyWithArg(iterations, arg);
realTotalTime = NanoTime() - realStartTime;
}
char throughput[100];
throughput[0] = '\0';
if (g_benchmark_total_time_ns > 0 && g_bytes_processed > 0) {
double gib_processed = static_cast<double>(g_bytes_processed)/1e9;
double seconds = static_cast<double>(g_benchmark_total_time_ns)/1e9;
snprintf(throughput, sizeof(throughput), " %8.3f GiB/s", gib_processed/seconds);
}
char full_name[100];
if (fn_range_ != NULL) {
snprintf(full_name, sizeof(full_name), "%s/%s", name_, PrettyInt(arg, 2).c_str());
} else {
snprintf(full_name, sizeof(full_name), "%s", name_);
}
printf("%-*s %10s %10" PRId64 "%s\n",
g_name_column_width, full_name,
PrettyInt(iterations, 10).c_str(),
g_benchmark_total_time_ns/iterations,
throughput);
fflush(stdout);
}
} // namespace testing
void SetBenchmarkBytesProcessed(int64_t x) {
g_bytes_processed = x;
}
void StopBenchmarkTiming() {
if (g_benchmark_start_time_ns != 0) {
g_benchmark_total_time_ns += NanoTime() - g_benchmark_start_time_ns;
}
g_benchmark_start_time_ns = 0;
}
void StartBenchmarkTiming() {
if (g_benchmark_start_time_ns == 0) {
g_benchmark_start_time_ns = NanoTime();
}
}
int main(int argc, char* argv[]) {
if (Benchmarks().empty()) {
fprintf(stderr, "No benchmarks registered!\n");
exit(EXIT_FAILURE);
}
for (auto& b : Benchmarks()) {
int name_width = static_cast<int>(strlen(b->Name()));
g_name_column_width = std::max(g_name_column_width, name_width);
}
bool need_header = true;
for (auto& b : Benchmarks()) {
if (b->ShouldRun(argc, argv)) {
if (need_header) {
printf("%-*s %10s %10s\n", g_name_column_width, "", "iterations", "ns/op");
fflush(stdout);
need_header = false;
}
b->Run();
}
}
if (need_header) {
fprintf(stderr, "No matching benchmarks!\n");
fprintf(stderr, "Available benchmarks:\n");
for (auto& b : Benchmarks()) {
fprintf(stderr, " %s\n", b->Name());
}
exit(EXIT_FAILURE);
}
return 0;
}