blob: 658f8bdc90be4ce3313a176c0d9acb0a379d20c6 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <elf.h>
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>
#include <malloc.h>
#include <unistd.h>
#include <tinyxml2.h>
#include <android-base/file.h>
#include "private/bionic_config.h"
#include "private/bionic_malloc.h"
#include "utils.h"
#if defined(__BIONIC__)
#define HAVE_REALLOCARRAY 1
#else
#define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26)
#endif
TEST(malloc, malloc_std) {
// Simple malloc test.
void *ptr = malloc(100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
free(ptr);
}
TEST(malloc, malloc_overflow) {
SKIP_WITH_HWASAN;
errno = 0;
ASSERT_EQ(nullptr, malloc(SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, calloc_std) {
// Simple calloc test.
size_t alloc_len = 100;
char *ptr = (char *)calloc(1, alloc_len);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(alloc_len, malloc_usable_size(ptr));
for (size_t i = 0; i < alloc_len; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_illegal) {
SKIP_WITH_HWASAN;
errno = 0;
ASSERT_EQ(nullptr, calloc(-1, 100));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, calloc_overflow) {
SKIP_WITH_HWASAN;
errno = 0;
ASSERT_EQ(nullptr, calloc(1, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(nullptr, calloc(2, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2));
ASSERT_EQ(ENOMEM, errno);
}
TEST(malloc, memalign_multiple) {
SKIP_WITH_HWASAN; // hwasan requires power of 2 alignment.
// Memalign test where the alignment is any value.
for (size_t i = 0; i <= 12; i++) {
for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) {
char *ptr = reinterpret_cast<char*>(memalign(alignment, 100));
ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment;
ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment;
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i)))
<< "Failed at alignment " << alignment;
free(ptr);
}
}
}
TEST(malloc, memalign_overflow) {
SKIP_WITH_HWASAN;
ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX));
}
TEST(malloc, memalign_non_power2) {
SKIP_WITH_HWASAN;
void* ptr;
for (size_t align = 0; align <= 256; align++) {
ptr = memalign(align, 1024);
ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align;
free(ptr);
}
}
TEST(malloc, memalign_realloc) {
// Memalign and then realloc the pointer a couple of times.
for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) {
char *ptr = (char*)memalign(alignment, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
ASSERT_EQ(0U, (intptr_t)ptr % alignment);
memset(ptr, 0x23, 100);
ptr = (char*)realloc(ptr, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
ASSERT_TRUE(ptr != nullptr);
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
memset(ptr, 0x45, 200);
ptr = (char*)realloc(ptr, 300);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(300U, malloc_usable_size(ptr));
for (size_t i = 0; i < 200; i++) {
ASSERT_EQ(0x45, ptr[i]);
}
memset(ptr, 0x67, 300);
ptr = (char*)realloc(ptr, 250);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(250U, malloc_usable_size(ptr));
for (size_t i = 0; i < 250; i++) {
ASSERT_EQ(0x67, ptr[i]);
}
free(ptr);
}
}
TEST(malloc, malloc_realloc_larger) {
// Realloc to a larger size, malloc is used for the original allocation.
char *ptr = (char *)malloc(100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
memset(ptr, 67, 100);
ptr = (char *)realloc(ptr, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(67, ptr[i]);
}
free(ptr);
}
TEST(malloc, malloc_realloc_smaller) {
// Realloc to a smaller size, malloc is used for the original allocation.
char *ptr = (char *)malloc(200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
memset(ptr, 67, 200);
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(67, ptr[i]);
}
free(ptr);
}
TEST(malloc, malloc_multiple_realloc) {
// Multiple reallocs, malloc is used for the original allocation.
char *ptr = (char *)malloc(200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
memset(ptr, 0x23, 200);
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
ptr = (char*)realloc(ptr, 50);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(50U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
ptr = (char*)realloc(ptr, 150);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(150U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
memset(ptr, 0x23, 150);
ptr = (char*)realloc(ptr, 425);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(425U, malloc_usable_size(ptr));
for (size_t i = 0; i < 150; i++) {
ASSERT_EQ(0x23, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_realloc_larger) {
// Realloc to a larger size, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_realloc_smaller) {
// Realloc to a smaller size, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, calloc_multiple_realloc) {
// Multiple reallocs, calloc is used for the original allocation.
char *ptr = (char *)calloc(1, 200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(200U, malloc_usable_size(ptr));
ptr = (char *)realloc(ptr, 100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(100U, malloc_usable_size(ptr));
for (size_t i = 0; i < 100; i++) {
ASSERT_EQ(0, ptr[i]);
}
ptr = (char*)realloc(ptr, 50);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(50U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0, ptr[i]);
}
ptr = (char*)realloc(ptr, 150);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(150U, malloc_usable_size(ptr));
for (size_t i = 0; i < 50; i++) {
ASSERT_EQ(0, ptr[i]);
}
memset(ptr, 0, 150);
ptr = (char*)realloc(ptr, 425);
ASSERT_TRUE(ptr != nullptr);
ASSERT_LE(425U, malloc_usable_size(ptr));
for (size_t i = 0; i < 150; i++) {
ASSERT_EQ(0, ptr[i]);
}
free(ptr);
}
TEST(malloc, realloc_overflow) {
SKIP_WITH_HWASAN;
errno = 0;
ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
void* ptr = malloc(100);
ASSERT_TRUE(ptr != nullptr);
errno = 0;
ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX));
ASSERT_EQ(ENOMEM, errno);
free(ptr);
}
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
extern "C" void* pvalloc(size_t);
extern "C" void* valloc(size_t);
TEST(malloc, pvalloc_std) {
size_t pagesize = sysconf(_SC_PAGESIZE);
void* ptr = pvalloc(100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
ASSERT_LE(pagesize, malloc_usable_size(ptr));
free(ptr);
}
TEST(malloc, pvalloc_overflow) {
ASSERT_EQ(nullptr, pvalloc(SIZE_MAX));
}
TEST(malloc, valloc_std) {
size_t pagesize = sysconf(_SC_PAGESIZE);
void* ptr = pvalloc(100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
free(ptr);
}
TEST(malloc, valloc_overflow) {
ASSERT_EQ(nullptr, valloc(SIZE_MAX));
}
#endif
TEST(malloc, malloc_info) {
#ifdef __BIONIC__
char* buf;
size_t bufsize;
FILE* memstream = open_memstream(&buf, &bufsize);
ASSERT_NE(nullptr, memstream);
ASSERT_EQ(0, malloc_info(0, memstream));
ASSERT_EQ(0, fclose(memstream));
tinyxml2::XMLDocument doc;
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(buf));
auto root = doc.FirstChildElement();
ASSERT_NE(nullptr, root);
ASSERT_STREQ("malloc", root->Name());
ASSERT_STREQ("jemalloc-1", root->Attribute("version"));
auto arena = root->FirstChildElement();
for (; arena != nullptr; arena = arena->NextSiblingElement()) {
int val;
ASSERT_STREQ("heap", arena->Name());
ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-large")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
arena->FirstChildElement("bins-total")->QueryIntText(&val));
auto bin = arena->FirstChildElement("bin");
for (; bin != nullptr; bin = bin ->NextSiblingElement()) {
if (strcmp(bin->Name(), "bin") == 0) {
ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("allocated")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("nmalloc")->QueryIntText(&val));
ASSERT_EQ(tinyxml2::XML_SUCCESS,
bin->FirstChildElement("ndalloc")->QueryIntText(&val));
}
}
}
#endif
}
TEST(malloc, calloc_usable_size) {
for (size_t size = 1; size <= 2048; size++) {
void* pointer = malloc(size);
ASSERT_TRUE(pointer != nullptr);
memset(pointer, 0xeb, malloc_usable_size(pointer));
free(pointer);
// We should get a previous pointer that has been set to non-zero.
// If calloc does not zero out all of the data, this will fail.
uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size));
ASSERT_TRUE(pointer != nullptr);
size_t usable_size = malloc_usable_size(zero_mem);
for (size_t i = 0; i < usable_size; i++) {
ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i;
}
free(zero_mem);
}
}
TEST(malloc, malloc_0) {
void* p = malloc(0);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, calloc_0_0) {
void* p = calloc(0, 0);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, calloc_0_1) {
void* p = calloc(0, 1);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, calloc_1_0) {
void* p = calloc(1, 0);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, realloc_nullptr_0) {
// realloc(nullptr, size) is actually malloc(size).
void* p = realloc(nullptr, 0);
ASSERT_TRUE(p != nullptr);
free(p);
}
TEST(malloc, realloc_0) {
void* p = malloc(1024);
ASSERT_TRUE(p != nullptr);
// realloc(p, 0) is actually free(p).
void* p2 = realloc(p, 0);
ASSERT_TRUE(p2 == nullptr);
}
constexpr size_t MAX_LOOPS = 200;
// Make sure that memory returned by malloc is aligned to allow these data types.
TEST(malloc, verify_alignment) {
uint32_t** values_32 = new uint32_t*[MAX_LOOPS];
uint64_t** values_64 = new uint64_t*[MAX_LOOPS];
long double** values_ldouble = new long double*[MAX_LOOPS];
// Use filler to attempt to force the allocator to get potentially bad alignments.
void** filler = new void*[MAX_LOOPS];
for (size_t i = 0; i < MAX_LOOPS; i++) {
// Check uint32_t pointers.
filler[i] = malloc(1);
ASSERT_TRUE(filler[i] != nullptr);
values_32[i] = reinterpret_cast<uint32_t*>(malloc(sizeof(uint32_t)));
ASSERT_TRUE(values_32[i] != nullptr);
*values_32[i] = i;
ASSERT_EQ(*values_32[i], i);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_32[i]) & (sizeof(uint32_t) - 1));
free(filler[i]);
}
for (size_t i = 0; i < MAX_LOOPS; i++) {
// Check uint64_t pointers.
filler[i] = malloc(1);
ASSERT_TRUE(filler[i] != nullptr);
values_64[i] = reinterpret_cast<uint64_t*>(malloc(sizeof(uint64_t)));
ASSERT_TRUE(values_64[i] != nullptr);
*values_64[i] = 0x1000 + i;
ASSERT_EQ(*values_64[i], 0x1000 + i);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_64[i]) & (sizeof(uint64_t) - 1));
free(filler[i]);
}
for (size_t i = 0; i < MAX_LOOPS; i++) {
// Check long double pointers.
filler[i] = malloc(1);
ASSERT_TRUE(filler[i] != nullptr);
values_ldouble[i] = reinterpret_cast<long double*>(malloc(sizeof(long double)));
ASSERT_TRUE(values_ldouble[i] != nullptr);
*values_ldouble[i] = 5.5 + i;
ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i);
// 32 bit glibc has a long double size of 12 bytes, so hardcode the
// required alignment to 0x7.
#if !defined(__BIONIC__) && !defined(__LP64__)
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & 0x7);
#else
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & (sizeof(long double) - 1));
#endif
free(filler[i]);
}
for (size_t i = 0; i < MAX_LOOPS; i++) {
free(values_32[i]);
free(values_64[i]);
free(values_ldouble[i]);
}
delete[] filler;
delete[] values_32;
delete[] values_64;
delete[] values_ldouble;
}
TEST(malloc, mallopt_smoke) {
errno = 0;
ASSERT_EQ(0, mallopt(-1000, 1));
// mallopt doesn't set errno.
ASSERT_EQ(0, errno);
}
TEST(malloc, mallopt_decay) {
#if defined(__BIONIC__)
SKIP_WITH_HWASAN; // hwasan does not implement mallopt
errno = 0;
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
#else
GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
#endif
}
TEST(malloc, mallopt_purge) {
#if defined(__BIONIC__)
SKIP_WITH_HWASAN; // hwasan does not implement mallopt
errno = 0;
ASSERT_EQ(1, mallopt(M_PURGE, 0));
#else
GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
#endif
}
TEST(malloc, reallocarray_overflow) {
#if HAVE_REALLOCARRAY
// Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed".
size_t a = static_cast<size_t>(INTPTR_MIN + 4);
size_t b = 2;
errno = 0;
ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr);
ASSERT_EQ(ENOMEM, errno);
errno = 0;
ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr);
ASSERT_EQ(ENOMEM, errno);
#else
GTEST_LOG_(INFO) << "This test requires a C library with reallocarray.\n";
#endif
}
TEST(malloc, reallocarray) {
#if HAVE_REALLOCARRAY
void* p = reallocarray(nullptr, 2, 32);
ASSERT_TRUE(p != nullptr);
ASSERT_GE(malloc_usable_size(p), 64U);
#else
GTEST_LOG_(INFO) << "This test requires a C library with reallocarray.\n";
#endif
}
TEST(malloc, mallinfo) {
#if defined(__BIONIC__)
SKIP_WITH_HWASAN; // hwasan does not implement mallinfo
static size_t sizes[] = {
8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000
};
constexpr static size_t kMaxAllocs = 50;
for (size_t size : sizes) {
// If some of these allocations are stuck in a thread cache, then keep
// looping until we make an allocation that changes the total size of the
// memory allocated.
// jemalloc implementations counts the thread cache allocations against
// total memory allocated.
void* ptrs[kMaxAllocs] = {};
bool pass = false;
for (size_t i = 0; i < kMaxAllocs; i++) {
size_t allocated = mallinfo().uordblks;
ptrs[i] = malloc(size);
ASSERT_TRUE(ptrs[i] != nullptr);
size_t new_allocated = mallinfo().uordblks;
if (allocated != new_allocated) {
size_t usable_size = malloc_usable_size(ptrs[i]);
// Only check if the total got bigger by at least allocation size.
// Sometimes the mallinfo numbers can go backwards due to compaction
// and/or freeing of cached data.
if (new_allocated >= allocated + usable_size) {
pass = true;
break;
}
}
}
for (void* ptr : ptrs) {
free(ptr);
}
ASSERT_TRUE(pass)
<< "For size " << size << " allocated bytes did not increase after "
<< kMaxAllocs << " allocations.";
}
#else
GTEST_LOG_(INFO) << "Host glibc does not pass this test, skipping.\n";
#endif
}
TEST(android_mallopt, error_on_unexpected_option) {
#if defined(__BIONIC__)
const int unrecognized_option = -1;
errno = 0;
EXPECT_EQ(false, android_mallopt(unrecognized_option, nullptr, 0));
EXPECT_EQ(ENOTSUP, errno);
#else
GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
#endif
}
bool IsDynamic() {
#if defined(__LP64__)
Elf64_Ehdr ehdr;
#else
Elf32_Ehdr ehdr;
#endif
std::string path(android::base::GetExecutablePath());
int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC);
if (fd == -1) {
// Assume dynamic on error.
return true;
}
bool read_completed = android::base::ReadFully(fd, &ehdr, sizeof(ehdr));
close(fd);
// Assume dynamic in error cases.
return !read_completed || ehdr.e_type == ET_DYN;
}
TEST(android_mallopt, init_zygote_child_profiling) {
#if defined(__BIONIC__)
// Successful call.
errno = 0;
if (IsDynamic()) {
EXPECT_EQ(true, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
EXPECT_EQ(0, errno);
} else {
// Not supported in static executables.
EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
EXPECT_EQ(ENOTSUP, errno);
}
// Unexpected arguments rejected.
errno = 0;
char unexpected = 0;
EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, &unexpected, 1));
if (IsDynamic()) {
EXPECT_EQ(EINVAL, errno);
} else {
EXPECT_EQ(ENOTSUP, errno);
}
#else
GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
#endif
}