blob: 1509199c960115126b3ac2b1c55039a25b020626 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <search.h>
static int int_cmp(const void* lhs, const void* rhs) {
return *reinterpret_cast<const int*>(rhs) - *reinterpret_cast<const int*>(lhs);
}
TEST(search, lfind_lsearch) {
int xs[10];
memset(xs, 0, sizeof(xs));
size_t x_size = 0;
int needle;
// lfind(3) can't find '2' in the empty table.
needle = 2;
ASSERT_EQ(nullptr, lfind(&needle, xs, &x_size, sizeof(xs[0]), int_cmp));
ASSERT_EQ(0U, x_size);
// lsearch(3) will add it.
ASSERT_EQ(&xs[0], lsearch(&needle, xs, &x_size, sizeof(xs[0]), int_cmp));
ASSERT_EQ(2, xs[0]);
ASSERT_EQ(1U, x_size);
// And then lfind(3) can find it.
ASSERT_EQ(&xs[0], lfind(&needle, xs, &x_size, sizeof(xs[0]), int_cmp));
ASSERT_EQ(1U, x_size);
// Inserting a duplicate does nothing (but returns the existing element).
ASSERT_EQ(&xs[0], lsearch(&needle, xs, &x_size, sizeof(xs[0]), int_cmp));
ASSERT_EQ(1U, x_size);
}
struct node {
explicit node(const char* s) : s(strdup(s)) {}
char* s;
};
static int node_cmp(const void* lhs, const void* rhs) {
return strcmp(reinterpret_cast<const node*>(lhs)->s, reinterpret_cast<const node*>(rhs)->s);
}
static std::vector<std::string> g_nodes;
static void node_walk(const void* p, VISIT order, int) {
const node* n = *reinterpret_cast<const node* const*>(p);
if (order == postorder || order == leaf) {
g_nodes.push_back(n->s);
}
}
static size_t g_free_calls;
static void node_free(void* p) {
node* n = reinterpret_cast<node*>(p);
free(n->s);
++g_free_calls;
}
TEST(search, tfind_tsearch_twalk_tdestroy) {
void* root = nullptr;
node n1("z");
node n2("a");
node n3("m");
// tfind(3) can't find anything in the empty tree.
ASSERT_EQ(nullptr, tfind(&n1, &root, node_cmp));
ASSERT_EQ(nullptr, tfind(&n2, &root, node_cmp));
ASSERT_EQ(nullptr, tfind(&n3, &root, node_cmp));
// tsearch(3) inserts and returns a pointer to a new node.
void* i1 = tsearch(&n1, &root, node_cmp);
ASSERT_NE(nullptr, i1);
// ...which tfind(3) will then return.
ASSERT_EQ(i1, tfind(&n1, &root, node_cmp));
ASSERT_EQ(nullptr, tfind(&n2, &root, node_cmp));
ASSERT_EQ(nullptr, tfind(&n3, &root, node_cmp));
// Add the other nodes.
ASSERT_NE(nullptr, tsearch(&n2, &root, node_cmp));
ASSERT_NE(nullptr, tsearch(&n3, &root, node_cmp));
// Use twalk(3) to iterate over the nodes.
g_nodes.clear();
twalk(root, node_walk);
ASSERT_EQ(3U, g_nodes.size());
ASSERT_EQ("a", g_nodes[0]);
ASSERT_EQ("m", g_nodes[1]);
ASSERT_EQ("z", g_nodes[2]);
// tdestroy(3) removes nodes under a node, calling our callback to destroy each one.
g_free_calls = 0;
tdestroy(root, node_free);
ASSERT_EQ(3U, g_free_calls);
}
struct pod_node {
explicit pod_node(int i) : i(i) {}
int i;
};
static int pod_node_cmp(const void* lhs, const void* rhs) {
return reinterpret_cast<const pod_node*>(rhs)->i - reinterpret_cast<const pod_node*>(lhs)->i;
}
TEST(search, tdelete) {
void* root = nullptr;
pod_node n1(123);
ASSERT_NE(nullptr, tsearch(&n1, &root, pod_node_cmp));
// tdelete(3) leaks n1.
pod_node not_there(456);
ASSERT_EQ(nullptr, tdelete(&not_there, &root, pod_node_cmp));
ASSERT_NE(nullptr, tdelete(&n1, &root, pod_node_cmp));
}
struct q_node {
explicit q_node(int i) : i(i) {}
q_node* next;
q_node* prev;
int i;
};
TEST(search, insque_remque) {
q_node zero(0);
q_node one(1);
q_node two(2);
// Linear (not circular).
insque(&zero, nullptr);
insque(&one, &zero);
insque(&two, &one);
int expected = 0;
for (q_node* q = &zero; q != nullptr; q = q->next) {
ASSERT_EQ(expected, q->i);
++expected;
}
ASSERT_EQ(3, expected);
for (q_node* q = &two; q != nullptr; q = q->prev) {
--expected;
ASSERT_EQ(expected, q->i);
}
ASSERT_EQ(0, expected);
q_node* head = &zero;
remque(&one);
ASSERT_EQ(0, head->i);
ASSERT_EQ(2, head->next->i);
ASSERT_EQ(nullptr, head->next->next);
remque(&two);
ASSERT_EQ(0, head->i);
ASSERT_EQ(nullptr, head->next);
remque(&zero);
// Circular.
zero.next = &zero;
zero.prev = &zero;
insque(&one, &zero);
insque(&two, &one);
ASSERT_EQ(0, head->i);
ASSERT_EQ(1, head->next->i);
ASSERT_EQ(2, head->next->next->i);
ASSERT_EQ(0, head->next->next->next->i);
ASSERT_EQ(1, head->next->next->next->next->i);
ASSERT_EQ(2, head->next->next->next->next->next->i);
remque(&one);
ASSERT_EQ(0, head->i);
ASSERT_EQ(2, head->next->i);
ASSERT_EQ(0, head->next->next->i);
ASSERT_EQ(2, head->next->next->next->i);
remque(&two);
ASSERT_EQ(0, head->i);
ASSERT_EQ(0, head->next->i);
remque(&zero);
}
static void AssertEntry(ENTRY* e, const char* expected_key, const char* expected_data) {
ASSERT_TRUE(e != nullptr);
ASSERT_STREQ(expected_key, reinterpret_cast<char*>(e->key));
ASSERT_STREQ(expected_data, reinterpret_cast<char*>(e->data));
}
TEST(search, hcreate_hsearch_hdestroy) {
ASSERT_NE(0, hcreate(13));
// Add some initial entries.
ENTRY* e;
e = hsearch(ENTRY{.key = const_cast<char*>("a"), .data = const_cast<char*>("A")}, ENTER);
AssertEntry(e, "a", "A");
e = hsearch(ENTRY{.key = const_cast<char*>("aa"), .data = const_cast<char*>("B")}, ENTER);
AssertEntry(e, "aa", "B");
e = hsearch(ENTRY{.key = const_cast<char*>("aaa"), .data = const_cast<char*>("C")}, ENTER);
AssertEntry(e, "aaa", "C");
// Check missing.
e = hsearch(ENTRY{.key = const_cast<char*>("aaaa"), .data = nullptr}, FIND);
ASSERT_FALSE(e != nullptr);
// Check present.
e = hsearch(ENTRY{.key = const_cast<char*>("aa"), .data = nullptr}, FIND);
AssertEntry(e, "aa", "B");
// ENTER with an existing key just returns the existing ENTRY.
e = hsearch(ENTRY{.key = const_cast<char*>("aa"), .data = const_cast<char*>("X")}, ENTER);
AssertEntry(e, "aa", "B");
e->data = const_cast<char*>("X");
// Check present and updated.
e = hsearch(ENTRY{.key = const_cast<char*>("aa"), .data = nullptr}, FIND);
AssertEntry(e, "aa", "X");
// But other entries stayed the same.
e = hsearch(ENTRY{.key = const_cast<char*>("a"), .data = nullptr}, FIND);
AssertEntry(e, "a", "A");
e = hsearch(ENTRY{.key = const_cast<char*>("aaa"), .data = nullptr}, FIND);
AssertEntry(e, "aaa", "C");
hdestroy();
}
TEST(search, hcreate_r_hsearch_r_hdestroy_r) {
hsearch_data h1 = {};
ASSERT_EQ(1, hcreate_r(13, &h1));
hsearch_data h2 = {};
ASSERT_EQ(1, hcreate_r(128, &h2));
// Add some initial entries.
ENTRY* e;
ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast<char*>("a"), .data = const_cast<char*>("A")},
ENTER, &e, &h1));
AssertEntry(e, "a", "A");
ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast<char*>("a"), .data = const_cast<char*>("B")},
ENTER, &e, &h2));
AssertEntry(e, "a", "B");
// Check missing.
errno = 0;
ASSERT_EQ(0, hsearch_r(ENTRY{.key = const_cast<char*>("b"), .data = nullptr}, FIND, &e, &h1));
ASSERT_EQ(ESRCH, errno);
// Check present.
ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast<char*>("a"), .data = nullptr}, FIND, &e, &h1));
AssertEntry(e, "a", "A");
ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast<char*>("a"), .data = nullptr}, FIND, &e, &h2));
AssertEntry(e, "a", "B");
// Destroying one doesn't affect the other.
hdestroy_r(&h1);
ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast<char*>("a"), .data = nullptr}, FIND, &e, &h2));
AssertEntry(e, "a", "B");
hdestroy_r(&h2);
}