|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "code_generator_arm64.h" | 
|  |  | 
|  | #include "aarch64/assembler-aarch64.h" | 
|  | #include "aarch64/registers-aarch64.h" | 
|  | #include "arch/arm64/asm_support_arm64.h" | 
|  | #include "arch/arm64/instruction_set_features_arm64.h" | 
|  | #include "arch/arm64/jni_frame_arm64.h" | 
|  | #include "art_method-inl.h" | 
|  | #include "base/bit_utils.h" | 
|  | #include "base/bit_utils_iterator.h" | 
|  | #include "class_root-inl.h" | 
|  | #include "class_table.h" | 
|  | #include "code_generator_utils.h" | 
|  | #include "compiled_method.h" | 
|  | #include "entrypoints/quick/quick_entrypoints.h" | 
|  | #include "entrypoints/quick/quick_entrypoints_enum.h" | 
|  | #include "gc/accounting/card_table.h" | 
|  | #include "gc/space/image_space.h" | 
|  | #include "heap_poisoning.h" | 
|  | #include "interpreter/mterp/nterp.h" | 
|  | #include "intrinsics.h" | 
|  | #include "intrinsics_arm64.h" | 
|  | #include "intrinsics_utils.h" | 
|  | #include "linker/linker_patch.h" | 
|  | #include "lock_word.h" | 
|  | #include "mirror/array-inl.h" | 
|  | #include "mirror/class-inl.h" | 
|  | #include "mirror/var_handle.h" | 
|  | #include "offsets.h" | 
|  | #include "optimizing/common_arm64.h" | 
|  | #include "thread.h" | 
|  | #include "utils/arm64/assembler_arm64.h" | 
|  | #include "utils/assembler.h" | 
|  | #include "utils/stack_checks.h" | 
|  |  | 
|  | using namespace vixl::aarch64;  // NOLINT(build/namespaces) | 
|  | using vixl::ExactAssemblyScope; | 
|  | using vixl::CodeBufferCheckScope; | 
|  | using vixl::EmissionCheckScope; | 
|  |  | 
|  | #ifdef __ | 
|  | #error "ARM64 Codegen VIXL macro-assembler macro already defined." | 
|  | #endif | 
|  |  | 
|  | namespace art { | 
|  |  | 
|  | template<class MirrorType> | 
|  | class GcRoot; | 
|  |  | 
|  | namespace arm64 { | 
|  |  | 
|  | using helpers::ARM64EncodableConstantOrRegister; | 
|  | using helpers::ArtVixlRegCodeCoherentForRegSet; | 
|  | using helpers::CPURegisterFrom; | 
|  | using helpers::DRegisterFrom; | 
|  | using helpers::FPRegisterFrom; | 
|  | using helpers::HeapOperand; | 
|  | using helpers::HeapOperandFrom; | 
|  | using helpers::InputCPURegisterOrZeroRegAt; | 
|  | using helpers::InputFPRegisterAt; | 
|  | using helpers::InputOperandAt; | 
|  | using helpers::InputRegisterAt; | 
|  | using helpers::Int64FromLocation; | 
|  | using helpers::IsConstantZeroBitPattern; | 
|  | using helpers::LocationFrom; | 
|  | using helpers::OperandFromMemOperand; | 
|  | using helpers::OutputCPURegister; | 
|  | using helpers::OutputFPRegister; | 
|  | using helpers::OutputRegister; | 
|  | using helpers::RegisterFrom; | 
|  | using helpers::StackOperandFrom; | 
|  | using helpers::VIXLRegCodeFromART; | 
|  | using helpers::WRegisterFrom; | 
|  | using helpers::XRegisterFrom; | 
|  |  | 
|  | // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump | 
|  | // table version generates 7 instructions and num_entries literals. Compare/jump sequence will | 
|  | // generates less code/data with a small num_entries. | 
|  | static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; | 
|  |  | 
|  | // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle | 
|  | // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions. | 
|  | // For the Baker read barrier implementation using link-time generated thunks we need to split | 
|  | // the offset explicitly. | 
|  | constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB; | 
|  |  | 
|  | inline Condition ARM64Condition(IfCondition cond) { | 
|  | switch (cond) { | 
|  | case kCondEQ: return eq; | 
|  | case kCondNE: return ne; | 
|  | case kCondLT: return lt; | 
|  | case kCondLE: return le; | 
|  | case kCondGT: return gt; | 
|  | case kCondGE: return ge; | 
|  | case kCondB:  return lo; | 
|  | case kCondBE: return ls; | 
|  | case kCondA:  return hi; | 
|  | case kCondAE: return hs; | 
|  | } | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) { | 
|  | // The ARM64 condition codes can express all the necessary branches, see the | 
|  | // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual. | 
|  | // There is no dex instruction or HIR that would need the missing conditions | 
|  | // "equal or unordered" or "not equal". | 
|  | switch (cond) { | 
|  | case kCondEQ: return eq; | 
|  | case kCondNE: return ne /* unordered */; | 
|  | case kCondLT: return gt_bias ? cc : lt /* unordered */; | 
|  | case kCondLE: return gt_bias ? ls : le /* unordered */; | 
|  | case kCondGT: return gt_bias ? hi /* unordered */ : gt; | 
|  | case kCondGE: return gt_bias ? cs /* unordered */ : ge; | 
|  | default: | 
|  | LOG(FATAL) << "UNREACHABLE"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Location ARM64ReturnLocation(DataType::Type return_type) { | 
|  | // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the | 
|  | // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`, | 
|  | // but we use the exact registers for clarity. | 
|  | if (return_type == DataType::Type::kFloat32) { | 
|  | return LocationFrom(s0); | 
|  | } else if (return_type == DataType::Type::kFloat64) { | 
|  | return LocationFrom(d0); | 
|  | } else if (return_type == DataType::Type::kInt64) { | 
|  | return LocationFrom(x0); | 
|  | } else if (return_type == DataType::Type::kVoid) { | 
|  | return Location::NoLocation(); | 
|  | } else { | 
|  | return LocationFrom(w0); | 
|  | } | 
|  | } | 
|  |  | 
|  | Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) { | 
|  | return ARM64ReturnLocation(return_type); | 
|  | } | 
|  |  | 
|  | static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | RegisterSet caller_saves = RegisterSet::Empty(); | 
|  | caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), | 
|  | RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference), | 
|  | DataType::Type::kReference).GetCode()); | 
|  | return caller_saves; | 
|  | } | 
|  |  | 
|  | // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. | 
|  | #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->  // NOLINT | 
|  | #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value() | 
|  |  | 
|  | void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { | 
|  | size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); | 
|  | const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); | 
|  | for (uint32_t i : LowToHighBits(core_spills)) { | 
|  | // If the register holds an object, update the stack mask. | 
|  | if (locations->RegisterContainsObject(i)) { | 
|  | locations->SetStackBit(stack_offset / kVRegSize); | 
|  | } | 
|  | DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); | 
|  | DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); | 
|  | saved_core_stack_offsets_[i] = stack_offset; | 
|  | stack_offset += kXRegSizeInBytes; | 
|  | } | 
|  |  | 
|  | const size_t fp_reg_size = codegen->GetSlowPathFPWidth(); | 
|  | const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); | 
|  | for (uint32_t i : LowToHighBits(fp_spills)) { | 
|  | DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); | 
|  | DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); | 
|  | saved_fpu_stack_offsets_[i] = stack_offset; | 
|  | stack_offset += fp_reg_size; | 
|  | } | 
|  |  | 
|  | InstructionCodeGeneratorARM64* visitor = | 
|  | down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64(); | 
|  | visitor->SaveLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath()); | 
|  | } | 
|  |  | 
|  | void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { | 
|  | InstructionCodeGeneratorARM64* visitor = | 
|  | down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64(); | 
|  | visitor->RestoreLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath()); | 
|  | } | 
|  |  | 
|  | class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  | if (instruction_->CanThrowIntoCatchBlock()) { | 
|  | // Live registers will be restored in the catch block if caught. | 
|  | SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
|  | } | 
|  | // We're moving two locations to locations that could overlap, so we need a parallel | 
|  | // move resolver. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | codegen->EmitParallelMoves(locations->InAt(0), | 
|  | LocationFrom(calling_convention.GetRegisterAt(0)), | 
|  | DataType::Type::kInt32, | 
|  | locations->InAt(1), | 
|  | LocationFrom(calling_convention.GetRegisterAt(1)), | 
|  | DataType::Type::kInt32); | 
|  | QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() | 
|  | ? kQuickThrowStringBounds | 
|  | : kQuickThrowArrayBounds; | 
|  | arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); | 
|  | CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); | 
|  | } | 
|  |  | 
|  | bool IsFatal() const override { return true; } | 
|  |  | 
|  | const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); | 
|  | } | 
|  |  | 
|  | bool IsFatal() const override { return true; } | 
|  |  | 
|  | const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class LoadClassSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at) | 
|  | : SlowPathCodeARM64(at), cls_(cls) { | 
|  | DCHECK(at->IsLoadClass() || at->IsClinitCheck()); | 
|  | DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); | 
|  | } | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | Location out = locations->Out(); | 
|  | const uint32_t dex_pc = instruction_->GetDexPc(); | 
|  | bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); | 
|  | bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); | 
|  |  | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | if (must_resolve_type) { | 
|  | DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()) || | 
|  | arm64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) || | 
|  | ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(), | 
|  | &cls_->GetDexFile())); | 
|  | dex::TypeIndex type_index = cls_->GetTypeIndex(); | 
|  | __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_); | 
|  | if (cls_->NeedsAccessCheck()) { | 
|  | CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>(); | 
|  | arm64_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this); | 
|  | } else { | 
|  | CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>(); | 
|  | arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); | 
|  | } | 
|  | // If we also must_do_clinit, the resolved type is now in the correct register. | 
|  | } else { | 
|  | DCHECK(must_do_clinit); | 
|  | Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); | 
|  | arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), | 
|  | source, | 
|  | cls_->GetType()); | 
|  | } | 
|  | if (must_do_clinit) { | 
|  | arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); | 
|  | CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>(); | 
|  | } | 
|  |  | 
|  | // Move the class to the desired location. | 
|  | if (out.IsValid()) { | 
|  | DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); | 
|  | DataType::Type type = instruction_->GetType(); | 
|  | arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type); | 
|  | } | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ B(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { return "LoadClassSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | // The class this slow path will load. | 
|  | HLoadClass* const cls_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class LoadStringSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | explicit LoadStringSlowPathARM64(HLoadString* instruction) | 
|  | : SlowPathCodeARM64(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); | 
|  | __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_); | 
|  | arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
|  | DataType::Type type = instruction_->GetType(); | 
|  | arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type); | 
|  |  | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  |  | 
|  | __ B(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { return "LoadStringSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class NullCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | if (instruction_->CanThrowIntoCatchBlock()) { | 
|  | // Live registers will be restored in the catch block if caught. | 
|  | SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
|  | } | 
|  | arm64_codegen->InvokeRuntime(kQuickThrowNullPointer, | 
|  | instruction_, | 
|  | instruction_->GetDexPc(), | 
|  | this); | 
|  | CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); | 
|  | } | 
|  |  | 
|  | bool IsFatal() const override { return true; } | 
|  |  | 
|  | const char* GetDescription() const override { return "NullCheckSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor) | 
|  | : SlowPathCodeARM64(instruction), successor_(successor) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations);  // Only saves live vector regs for SIMD. | 
|  | arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickTestSuspend, void, void>(); | 
|  | RestoreLiveRegisters(codegen, locations);  // Only restores live vector regs for SIMD. | 
|  | if (successor_ == nullptr) { | 
|  | __ B(GetReturnLabel()); | 
|  | } else { | 
|  | __ B(arm64_codegen->GetLabelOf(successor_)); | 
|  | } | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* GetReturnLabel() { | 
|  | DCHECK(successor_ == nullptr); | 
|  | return &return_label_; | 
|  | } | 
|  |  | 
|  | HBasicBlock* GetSuccessor() const { | 
|  | return successor_; | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | // If not null, the block to branch to after the suspend check. | 
|  | HBasicBlock* const successor_; | 
|  |  | 
|  | // If `successor_` is null, the label to branch to after the suspend check. | 
|  | vixl::aarch64::Label return_label_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal) | 
|  | : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  |  | 
|  | DCHECK(instruction_->IsCheckCast() | 
|  | || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | uint32_t dex_pc = instruction_->GetDexPc(); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  |  | 
|  | if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { | 
|  | SaveLiveRegisters(codegen, locations); | 
|  | } | 
|  |  | 
|  | // We're moving two locations to locations that could overlap, so we need a parallel | 
|  | // move resolver. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | codegen->EmitParallelMoves(locations->InAt(0), | 
|  | LocationFrom(calling_convention.GetRegisterAt(0)), | 
|  | DataType::Type::kReference, | 
|  | locations->InAt(1), | 
|  | LocationFrom(calling_convention.GetRegisterAt(1)), | 
|  | DataType::Type::kReference); | 
|  | if (instruction_->IsInstanceOf()) { | 
|  | arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); | 
|  | CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); | 
|  | DataType::Type ret_type = instruction_->GetType(); | 
|  | Location ret_loc = calling_convention.GetReturnLocation(ret_type); | 
|  | arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); | 
|  | } else { | 
|  | DCHECK(instruction_->IsCheckCast()); | 
|  | arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); | 
|  | CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); | 
|  | } | 
|  |  | 
|  | if (!is_fatal_) { | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ B(GetExitLabel()); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; } | 
|  | bool IsFatal() const override { return is_fatal_; } | 
|  |  | 
|  | private: | 
|  | const bool is_fatal_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction) | 
|  | : SlowPathCodeARM64(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | __ Mov(calling_convention.GetRegisterAt(0), | 
|  | static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); | 
|  | arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class ArraySetSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); | 
|  | parallel_move.AddMove( | 
|  | locations->InAt(0), | 
|  | LocationFrom(calling_convention.GetRegisterAt(0)), | 
|  | DataType::Type::kReference, | 
|  | nullptr); | 
|  | parallel_move.AddMove( | 
|  | locations->InAt(1), | 
|  | LocationFrom(calling_convention.GetRegisterAt(1)), | 
|  | DataType::Type::kInt32, | 
|  | nullptr); | 
|  | parallel_move.AddMove( | 
|  | locations->InAt(2), | 
|  | LocationFrom(calling_convention.GetRegisterAt(2)), | 
|  | DataType::Type::kReference, | 
|  | nullptr); | 
|  | codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  |  | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); | 
|  | CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ B(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { return "ArraySetSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) { | 
|  | uint32_t num_entries = switch_instr_->GetNumEntries(); | 
|  | DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); | 
|  |  | 
|  | // We are about to use the assembler to place literals directly. Make sure we have enough | 
|  | // underlying code buffer and we have generated the jump table with right size. | 
|  | EmissionCheckScope scope(codegen->GetVIXLAssembler(), | 
|  | num_entries * sizeof(int32_t), | 
|  | CodeBufferCheckScope::kExactSize); | 
|  |  | 
|  | __ Bind(&table_start_); | 
|  | const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors(); | 
|  | for (uint32_t i = 0; i < num_entries; i++) { | 
|  | vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]); | 
|  | DCHECK(target_label->IsBound()); | 
|  | ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation(); | 
|  | DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min()); | 
|  | DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max()); | 
|  | Literal<int32_t> literal(jump_offset); | 
|  | __ place(&literal); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Slow path generating a read barrier for a heap reference. | 
|  | class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction, | 
|  | Location out, | 
|  | Location ref, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location index) | 
|  | : SlowPathCodeARM64(instruction), | 
|  | out_(out), | 
|  | ref_(ref), | 
|  | obj_(obj), | 
|  | offset_(offset), | 
|  | index_(index) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | // If `obj` is equal to `out` or `ref`, it means the initial object | 
|  | // has been overwritten by (or after) the heap object reference load | 
|  | // to be instrumented, e.g.: | 
|  | // | 
|  | //   __ Ldr(out, HeapOperand(out, class_offset); | 
|  | //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); | 
|  | // | 
|  | // In that case, we have lost the information about the original | 
|  | // object, and the emitted read barrier cannot work properly. | 
|  | DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; | 
|  | DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; | 
|  | } | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | DataType::Type type = DataType::Type::kReference; | 
|  | DCHECK(locations->CanCall()); | 
|  | DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); | 
|  | DCHECK(instruction_->IsInstanceFieldGet() || | 
|  | instruction_->IsPredicatedInstanceFieldGet() || | 
|  | instruction_->IsStaticFieldGet() || | 
|  | instruction_->IsArrayGet() || | 
|  | instruction_->IsInstanceOf() || | 
|  | instruction_->IsCheckCast() || | 
|  | (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) | 
|  | << "Unexpected instruction in read barrier for heap reference slow path: " | 
|  | << instruction_->DebugName(); | 
|  | // The read barrier instrumentation of object ArrayGet | 
|  | // instructions does not support the HIntermediateAddress | 
|  | // instruction. | 
|  | DCHECK(!(instruction_->IsArrayGet() && | 
|  | instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  |  | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | // We may have to change the index's value, but as `index_` is a | 
|  | // constant member (like other "inputs" of this slow path), | 
|  | // introduce a copy of it, `index`. | 
|  | Location index = index_; | 
|  | if (index_.IsValid()) { | 
|  | // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. | 
|  | if (instruction_->IsArrayGet()) { | 
|  | // Compute the actual memory offset and store it in `index`. | 
|  | Register index_reg = RegisterFrom(index_, DataType::Type::kInt32); | 
|  | DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg())); | 
|  | if (codegen->IsCoreCalleeSaveRegister(index_.reg())) { | 
|  | // We are about to change the value of `index_reg` (see the | 
|  | // calls to vixl::MacroAssembler::Lsl and | 
|  | // vixl::MacroAssembler::Mov below), but it has | 
|  | // not been saved by the previous call to | 
|  | // art::SlowPathCode::SaveLiveRegisters, as it is a | 
|  | // callee-save register -- | 
|  | // art::SlowPathCode::SaveLiveRegisters does not consider | 
|  | // callee-save registers, as it has been designed with the | 
|  | // assumption that callee-save registers are supposed to be | 
|  | // handled by the called function.  So, as a callee-save | 
|  | // register, `index_reg` _would_ eventually be saved onto | 
|  | // the stack, but it would be too late: we would have | 
|  | // changed its value earlier.  Therefore, we manually save | 
|  | // it here into another freely available register, | 
|  | // `free_reg`, chosen of course among the caller-save | 
|  | // registers (as a callee-save `free_reg` register would | 
|  | // exhibit the same problem). | 
|  | // | 
|  | // Note we could have requested a temporary register from | 
|  | // the register allocator instead; but we prefer not to, as | 
|  | // this is a slow path, and we know we can find a | 
|  | // caller-save register that is available. | 
|  | Register free_reg = FindAvailableCallerSaveRegister(codegen); | 
|  | __ Mov(free_reg.W(), index_reg); | 
|  | index_reg = free_reg; | 
|  | index = LocationFrom(index_reg); | 
|  | } else { | 
|  | // The initial register stored in `index_` has already been | 
|  | // saved in the call to art::SlowPathCode::SaveLiveRegisters | 
|  | // (as it is not a callee-save register), so we can freely | 
|  | // use it. | 
|  | } | 
|  | // Shifting the index value contained in `index_reg` by the scale | 
|  | // factor (2) cannot overflow in practice, as the runtime is | 
|  | // unable to allocate object arrays with a size larger than | 
|  | // 2^26 - 1 (that is, 2^28 - 4 bytes). | 
|  | __ Lsl(index_reg, index_reg, DataType::SizeShift(type)); | 
|  | static_assert( | 
|  | sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
|  | "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
|  | __ Add(index_reg, index_reg, Operand(offset_)); | 
|  | } else { | 
|  | // In the case of the following intrinsics `index_` is not shifted by a scale factor of 2 | 
|  | // (as in the case of ArrayGet), as it is actually an offset to an object field within an | 
|  | // object. | 
|  | DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); | 
|  | DCHECK(instruction_->GetLocations()->Intrinsified()); | 
|  | HInvoke* invoke = instruction_->AsInvoke(); | 
|  | DCHECK(IsUnsafeGetObject(invoke) || | 
|  | IsVarHandleGet(invoke) || | 
|  | IsUnsafeCASObject(invoke) || | 
|  | IsVarHandleCASFamily(invoke)) << invoke->GetIntrinsic(); | 
|  | DCHECK_EQ(offset_, 0u); | 
|  | DCHECK(index_.IsRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We're moving two or three locations to locations that could | 
|  | // overlap, so we need a parallel move resolver. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); | 
|  | parallel_move.AddMove(ref_, | 
|  | LocationFrom(calling_convention.GetRegisterAt(0)), | 
|  | type, | 
|  | nullptr); | 
|  | parallel_move.AddMove(obj_, | 
|  | LocationFrom(calling_convention.GetRegisterAt(1)), | 
|  | type, | 
|  | nullptr); | 
|  | if (index.IsValid()) { | 
|  | parallel_move.AddMove(index, | 
|  | LocationFrom(calling_convention.GetRegisterAt(2)), | 
|  | DataType::Type::kInt32, | 
|  | nullptr); | 
|  | codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  | } else { | 
|  | codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
|  | arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_); | 
|  | } | 
|  | arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow, | 
|  | instruction_, | 
|  | instruction_->GetDexPc(), | 
|  | this); | 
|  | CheckEntrypointTypes< | 
|  | kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); | 
|  | arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); | 
|  |  | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  |  | 
|  | __ B(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { | 
|  | size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode()); | 
|  | size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode()); | 
|  | for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { | 
|  | if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { | 
|  | return Register(VIXLRegCodeFromART(i), kXRegSize); | 
|  | } | 
|  | } | 
|  | // We shall never fail to find a free caller-save register, as | 
|  | // there are more than two core caller-save registers on ARM64 | 
|  | // (meaning it is possible to find one which is different from | 
|  | // `ref` and `obj`). | 
|  | DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); | 
|  | LOG(FATAL) << "Could not find a free register"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | const Location out_; | 
|  | const Location ref_; | 
|  | const Location obj_; | 
|  | const uint32_t offset_; | 
|  | // An additional location containing an index to an array. | 
|  | // Only used for HArrayGet and the UnsafeGetObject & | 
|  | // UnsafeGetObjectVolatile intrinsics. | 
|  | const Location index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | // Slow path generating a read barrier for a GC root. | 
|  | class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root) | 
|  | : SlowPathCodeARM64(instruction), out_(out), root_(root) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | } | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | DataType::Type type = DataType::Type::kReference; | 
|  | DCHECK(locations->CanCall()); | 
|  | DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); | 
|  | DCHECK(instruction_->IsLoadClass() || | 
|  | instruction_->IsLoadString() || | 
|  | (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) | 
|  | << "Unexpected instruction in read barrier for GC root slow path: " | 
|  | << instruction_->DebugName(); | 
|  |  | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  |  | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | // The argument of the ReadBarrierForRootSlow is not a managed | 
|  | // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`; | 
|  | // thus we need a 64-bit move here, and we cannot use | 
|  | // | 
|  | //   arm64_codegen->MoveLocation( | 
|  | //       LocationFrom(calling_convention.GetRegisterAt(0)), | 
|  | //       root_, | 
|  | //       type); | 
|  | // | 
|  | // which would emit a 32-bit move, as `type` is a (32-bit wide) | 
|  | // reference type (`DataType::Type::kReference`). | 
|  | __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_)); | 
|  | arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, | 
|  | instruction_, | 
|  | instruction_->GetDexPc(), | 
|  | this); | 
|  | CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); | 
|  | arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); | 
|  |  | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ B(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; } | 
|  |  | 
|  | private: | 
|  | const Location out_; | 
|  | const Location root_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class MethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | explicit MethodEntryExitHooksSlowPathARM64(HInstruction* instruction) | 
|  | : SlowPathCodeARM64(instruction) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | LocationSummary* locations = instruction_->GetLocations(); | 
|  | QuickEntrypointEnum entry_point = | 
|  | (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook; | 
|  | CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
|  | __ Bind(GetEntryLabel()); | 
|  | SaveLiveRegisters(codegen, locations); | 
|  | arm64_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this); | 
|  | RestoreLiveRegisters(codegen, locations); | 
|  | __ B(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { | 
|  | return "MethodEntryExitHooksSlowPath"; | 
|  | } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | class CompileOptimizedSlowPathARM64 : public SlowPathCodeARM64 { | 
|  | public: | 
|  | CompileOptimizedSlowPathARM64() : SlowPathCodeARM64(/* instruction= */ nullptr) {} | 
|  |  | 
|  | void EmitNativeCode(CodeGenerator* codegen) override { | 
|  | uint32_t entrypoint_offset = | 
|  | GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value(); | 
|  | __ Bind(GetEntryLabel()); | 
|  | __ Ldr(lr, MemOperand(tr, entrypoint_offset)); | 
|  | // Note: we don't record the call here (and therefore don't generate a stack | 
|  | // map), as the entrypoint should never be suspended. | 
|  | __ Blr(lr); | 
|  | __ B(GetExitLabel()); | 
|  | } | 
|  |  | 
|  | const char* GetDescription() const override { | 
|  | return "CompileOptimizedSlowPath"; | 
|  | } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARM64); | 
|  | }; | 
|  |  | 
|  | #undef __ | 
|  |  | 
|  | Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) { | 
|  | Location next_location; | 
|  | if (type == DataType::Type::kVoid) { | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | } | 
|  |  | 
|  | if (DataType::IsFloatingPointType(type) && | 
|  | (float_index_ < calling_convention.GetNumberOfFpuRegisters())) { | 
|  | next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++)); | 
|  | } else if (!DataType::IsFloatingPointType(type) && | 
|  | (gp_index_ < calling_convention.GetNumberOfRegisters())) { | 
|  | next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++)); | 
|  | } else { | 
|  | size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); | 
|  | next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) | 
|  | : Location::StackSlot(stack_offset); | 
|  | } | 
|  |  | 
|  | // Space on the stack is reserved for all arguments. | 
|  | stack_index_ += DataType::Is64BitType(type) ? 2 : 1; | 
|  | return next_location; | 
|  | } | 
|  |  | 
|  | Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const { | 
|  | return LocationFrom(kArtMethodRegister); | 
|  | } | 
|  |  | 
|  | Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) { | 
|  | DCHECK_NE(type, DataType::Type::kReference); | 
|  |  | 
|  | Location location = Location::NoLocation(); | 
|  | if (DataType::IsFloatingPointType(type)) { | 
|  | if (fpr_index_ < kParameterFPRegistersLength) { | 
|  | location = LocationFrom(kParameterFPRegisters[fpr_index_]); | 
|  | ++fpr_index_; | 
|  | } | 
|  | } else { | 
|  | // Native ABI uses the same registers as managed, except that the method register x0 | 
|  | // is a normal argument. | 
|  | if (gpr_index_ < 1u + kParameterCoreRegistersLength) { | 
|  | location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]); | 
|  | ++gpr_index_; | 
|  | } | 
|  | } | 
|  | if (location.IsInvalid()) { | 
|  | if (DataType::Is64BitType(type)) { | 
|  | location = Location::DoubleStackSlot(stack_offset_); | 
|  | } else { | 
|  | location = Location::StackSlot(stack_offset_); | 
|  | } | 
|  | stack_offset_ += kFramePointerSize; | 
|  |  | 
|  | if (for_register_allocation_) { | 
|  | location = Location::Any(); | 
|  | } | 
|  | } | 
|  | return location; | 
|  | } | 
|  |  | 
|  | Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const { | 
|  | // We perform conversion to the managed ABI return register after the call if needed. | 
|  | InvokeDexCallingConventionVisitorARM64 dex_calling_convention; | 
|  | return dex_calling_convention.GetReturnLocation(type); | 
|  | } | 
|  |  | 
|  | Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const { | 
|  | // Pass the method in the hidden argument x15. | 
|  | return Location::RegisterLocation(x15.GetCode()); | 
|  | } | 
|  |  | 
|  | CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph, | 
|  | const CompilerOptions& compiler_options, | 
|  | OptimizingCompilerStats* stats) | 
|  | : CodeGenerator(graph, | 
|  | kNumberOfAllocatableRegisters, | 
|  | kNumberOfAllocatableFPRegisters, | 
|  | kNumberOfAllocatableRegisterPairs, | 
|  | callee_saved_core_registers.GetList(), | 
|  | callee_saved_fp_registers.GetList(), | 
|  | compiler_options, | 
|  | stats), | 
|  | block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | location_builder_neon_(graph, this), | 
|  | instruction_visitor_neon_(graph, this), | 
|  | location_builder_sve_(graph, this), | 
|  | instruction_visitor_sve_(graph, this), | 
|  | move_resolver_(graph->GetAllocator(), this), | 
|  | assembler_(graph->GetAllocator(), | 
|  | compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()), | 
|  | boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | uint32_literals_(std::less<uint32_t>(), | 
|  | graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | uint64_literals_(std::less<uint64_t>(), | 
|  | graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | jit_string_patches_(StringReferenceValueComparator(), | 
|  | graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | jit_class_patches_(TypeReferenceValueComparator(), | 
|  | graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
|  | jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(), | 
|  | graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) { | 
|  | // Save the link register (containing the return address) to mimic Quick. | 
|  | AddAllocatedRegister(LocationFrom(lr)); | 
|  |  | 
|  | bool use_sve = ShouldUseSVE(); | 
|  | if (use_sve) { | 
|  | location_builder_ = &location_builder_sve_; | 
|  | instruction_visitor_ = &instruction_visitor_sve_; | 
|  | } else { | 
|  | location_builder_ = &location_builder_neon_; | 
|  | instruction_visitor_ = &instruction_visitor_neon_; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CodeGeneratorARM64::ShouldUseSVE() const { | 
|  | return GetInstructionSetFeatures().HasSVE(); | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM64::GetSIMDRegisterWidth() const { | 
|  | return SupportsPredicatedSIMD() | 
|  | ? GetInstructionSetFeatures().GetSVEVectorLength() / kBitsPerByte | 
|  | : vixl::aarch64::kQRegSizeInBytes; | 
|  | } | 
|  |  | 
|  | #define __ GetVIXLAssembler()-> | 
|  |  | 
|  | void CodeGeneratorARM64::EmitJumpTables() { | 
|  | for (auto&& jump_table : jump_tables_) { | 
|  | jump_table->EmitTable(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) { | 
|  | EmitJumpTables(); | 
|  |  | 
|  | // Emit JIT baker read barrier slow paths. | 
|  | DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty()); | 
|  | for (auto& entry : jit_baker_read_barrier_slow_paths_) { | 
|  | uint32_t encoded_data = entry.first; | 
|  | vixl::aarch64::Label* slow_path_entry = &entry.second.label; | 
|  | __ Bind(slow_path_entry); | 
|  | CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr); | 
|  | } | 
|  |  | 
|  | // Ensure we emit the literal pool. | 
|  | __ FinalizeCode(); | 
|  |  | 
|  | CodeGenerator::Finalize(allocator); | 
|  |  | 
|  | // Verify Baker read barrier linker patches. | 
|  | if (kIsDebugBuild) { | 
|  | ArrayRef<const uint8_t> code = allocator->GetMemory(); | 
|  | for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { | 
|  | DCHECK(info.label.IsBound()); | 
|  | uint32_t literal_offset = info.label.GetLocation(); | 
|  | DCHECK_ALIGNED(literal_offset, 4u); | 
|  |  | 
|  | auto GetInsn = [&code](uint32_t offset) { | 
|  | DCHECK_ALIGNED(offset, 4u); | 
|  | return | 
|  | (static_cast<uint32_t>(code[offset + 0]) << 0) + | 
|  | (static_cast<uint32_t>(code[offset + 1]) << 8) + | 
|  | (static_cast<uint32_t>(code[offset + 2]) << 16)+ | 
|  | (static_cast<uint32_t>(code[offset + 3]) << 24); | 
|  | }; | 
|  |  | 
|  | const uint32_t encoded_data = info.custom_data; | 
|  | BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); | 
|  | // Check that the next instruction matches the expected LDR. | 
|  | switch (kind) { | 
|  | case BakerReadBarrierKind::kField: | 
|  | case BakerReadBarrierKind::kAcquire: { | 
|  | DCHECK_GE(code.size() - literal_offset, 8u); | 
|  | uint32_t next_insn = GetInsn(literal_offset + 4u); | 
|  | CheckValidReg(next_insn & 0x1fu);  // Check destination register. | 
|  | const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); | 
|  | if (kind == BakerReadBarrierKind::kField) { | 
|  | // LDR (immediate) with correct base_reg. | 
|  | CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5)); | 
|  | } else { | 
|  | DCHECK(kind == BakerReadBarrierKind::kAcquire); | 
|  | // LDAR with correct base_reg. | 
|  | CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BakerReadBarrierKind::kArray: { | 
|  | DCHECK_GE(code.size() - literal_offset, 8u); | 
|  | uint32_t next_insn = GetInsn(literal_offset + 4u); | 
|  | // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL), | 
|  | // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2]. | 
|  | CheckValidReg(next_insn & 0x1fu);  // Check destination register. | 
|  | const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); | 
|  | CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5)); | 
|  | CheckValidReg((next_insn >> 16) & 0x1f);  // Check index register | 
|  | break; | 
|  | } | 
|  | case BakerReadBarrierKind::kGcRoot: { | 
|  | DCHECK_GE(literal_offset, 4u); | 
|  | uint32_t prev_insn = GetInsn(literal_offset - 4u); | 
|  | const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); | 
|  | // Usually LDR (immediate) with correct root_reg but | 
|  | // we may have a "MOV marked, old_value" for intrinsic CAS. | 
|  | if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) {    // MOV? | 
|  | CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg);  // LDR? | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind); | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM64::PrepareForEmitNativeCode() { | 
|  | // Note: There are 6 kinds of moves: | 
|  | // 1. constant -> GPR/FPR (non-cycle) | 
|  | // 2. constant -> stack (non-cycle) | 
|  | // 3. GPR/FPR -> GPR/FPR | 
|  | // 4. GPR/FPR -> stack | 
|  | // 5. stack -> GPR/FPR | 
|  | // 6. stack -> stack (non-cycle) | 
|  | // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5 | 
|  | // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting | 
|  | // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the | 
|  | // dependency. | 
|  | vixl_temps_.Open(GetVIXLAssembler()); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM64::FinishEmitNativeCode() { | 
|  | vixl_temps_.Close(); | 
|  | } | 
|  |  | 
|  | Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) { | 
|  | DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister | 
|  | || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot | 
|  | || kind == Location::kSIMDStackSlot); | 
|  | kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot) | 
|  | ? Location::kFpuRegister | 
|  | : Location::kRegister; | 
|  | Location scratch = GetScratchLocation(kind); | 
|  | if (!scratch.Equals(Location::NoLocation())) { | 
|  | return scratch; | 
|  | } | 
|  | // Allocate from VIXL temp registers. | 
|  | if (kind == Location::kRegister) { | 
|  | scratch = LocationFrom(vixl_temps_.AcquireX()); | 
|  | } else { | 
|  | DCHECK_EQ(kind, Location::kFpuRegister); | 
|  | scratch = codegen_->GetGraph()->HasSIMD() | 
|  | ? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_) | 
|  | : LocationFrom(vixl_temps_.AcquireD()); | 
|  | } | 
|  | AddScratchLocation(scratch); | 
|  | return scratch; | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) { | 
|  | if (loc.IsRegister()) { | 
|  | vixl_temps_.Release(XRegisterFrom(loc)); | 
|  | } else { | 
|  | DCHECK(loc.IsFpuRegister()); | 
|  | if (codegen_->GetGraph()->HasSIMD()) { | 
|  | codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_); | 
|  | } else { | 
|  | vixl_temps_.Release(DRegisterFrom(loc)); | 
|  | } | 
|  | } | 
|  | RemoveScratchLocation(loc); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverARM64::EmitMove(size_t index) { | 
|  | MoveOperands* move = moves_[index]; | 
|  | codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitMethodExitHook(HMethodExitHook* method_hook) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) | 
|  | LocationSummary(method_hook, LocationSummary::kCallOnSlowPath); | 
|  | DataType::Type return_type = method_hook->InputAt(0)->GetType(); | 
|  | locations->SetInAt(0, ARM64ReturnLocation(return_type)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateMethodEntryExitHook(HInstruction* instruction) { | 
|  | MacroAssembler* masm = GetVIXLAssembler(); | 
|  | UseScratchRegisterScope temps(masm); | 
|  | Register temp = temps.AcquireX(); | 
|  | Register value = temps.AcquireW(); | 
|  |  | 
|  | SlowPathCodeARM64* slow_path = | 
|  | new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARM64(instruction); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  |  | 
|  | uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation()); | 
|  | int offset = instrumentation::Instrumentation::NeedsEntryExitHooksOffset().Int32Value(); | 
|  | __ Mov(temp, address + offset); | 
|  | __ Ldrb(value, MemOperand(temp, 0)); | 
|  | __ Cbnz(value, slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitMethodExitHook(HMethodExitHook* instruction) { | 
|  | DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable()); | 
|  | DCHECK(codegen_->RequiresCurrentMethod()); | 
|  | GenerateMethodEntryExitHook(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitMethodEntryHook(HMethodEntryHook* method_hook) { | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitMethodEntryHook(HMethodEntryHook* instruction) { | 
|  | DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable()); | 
|  | DCHECK(codegen_->RequiresCurrentMethod()); | 
|  | GenerateMethodEntryExitHook(instruction); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MaybeIncrementHotness(bool is_frame_entry) { | 
|  | MacroAssembler* masm = GetVIXLAssembler(); | 
|  | if (GetCompilerOptions().CountHotnessInCompiledCode()) { | 
|  | UseScratchRegisterScope temps(masm); | 
|  | Register counter = temps.AcquireX(); | 
|  | Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX(); | 
|  | if (!is_frame_entry) { | 
|  | __ Ldr(method, MemOperand(sp, 0)); | 
|  | } | 
|  | __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value())); | 
|  | vixl::aarch64::Label done; | 
|  | DCHECK_EQ(0u, interpreter::kNterpHotnessValue); | 
|  | __ Cbz(counter, &done); | 
|  | __ Add(counter, counter, -1); | 
|  | __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value())); | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { | 
|  | SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARM64(); | 
|  | AddSlowPath(slow_path); | 
|  | ProfilingInfo* info = GetGraph()->GetProfilingInfo(); | 
|  | DCHECK(info != nullptr); | 
|  | DCHECK(!HasEmptyFrame()); | 
|  | uint64_t address = reinterpret_cast64<uint64_t>(info); | 
|  | vixl::aarch64::Label done; | 
|  | UseScratchRegisterScope temps(masm); | 
|  | Register temp = temps.AcquireX(); | 
|  | Register counter = temps.AcquireW(); | 
|  | __ Ldr(temp, DeduplicateUint64Literal(address)); | 
|  | __ Ldrh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value())); | 
|  | __ Cbz(counter, slow_path->GetEntryLabel()); | 
|  | __ Add(counter, counter, -1); | 
|  | __ Strh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value())); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateFrameEntry() { | 
|  | MacroAssembler* masm = GetVIXLAssembler(); | 
|  | __ Bind(&frame_entry_label_); | 
|  |  | 
|  | bool do_overflow_check = | 
|  | FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod(); | 
|  | if (do_overflow_check) { | 
|  | UseScratchRegisterScope temps(masm); | 
|  | Register temp = temps.AcquireX(); | 
|  | DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); | 
|  | __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64))); | 
|  | { | 
|  | // Ensure that between load and RecordPcInfo there are no pools emitted. | 
|  | ExactAssemblyScope eas(GetVIXLAssembler(), | 
|  | kInstructionSize, | 
|  | CodeBufferCheckScope::kExactSize); | 
|  | __ ldr(wzr, MemOperand(temp, 0)); | 
|  | RecordPcInfo(nullptr, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!HasEmptyFrame()) { | 
|  | // Stack layout: | 
|  | //      sp[frame_size - 8]        : lr. | 
|  | //      ...                       : other preserved core registers. | 
|  | //      ...                       : other preserved fp registers. | 
|  | //      ...                       : reserved frame space. | 
|  | //      sp[0]                     : current method. | 
|  | int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize()); | 
|  | uint32_t core_spills_offset = frame_size - GetCoreSpillSize(); | 
|  | CPURegList preserved_core_registers = GetFramePreservedCoreRegisters(); | 
|  | DCHECK(!preserved_core_registers.IsEmpty()); | 
|  | uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize(); | 
|  | CPURegList preserved_fp_registers = GetFramePreservedFPRegisters(); | 
|  |  | 
|  | // Save the current method if we need it, or if using STP reduces code | 
|  | // size. Note that we do not do this in HCurrentMethod, as the | 
|  | // instruction might have been removed in the SSA graph. | 
|  | CPURegister lowest_spill; | 
|  | if (core_spills_offset == kXRegSizeInBytes) { | 
|  | // If there is no gap between the method and the lowest core spill, use | 
|  | // aligned STP pre-index to store both. Max difference is 512. We do | 
|  | // that to reduce code size even if we do not have to save the method. | 
|  | DCHECK_LE(frame_size, 512);  // 32 core registers are only 256 bytes. | 
|  | lowest_spill = preserved_core_registers.PopLowestIndex(); | 
|  | __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex)); | 
|  | } else if (RequiresCurrentMethod()) { | 
|  | __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex)); | 
|  | } else { | 
|  | __ Claim(frame_size); | 
|  | } | 
|  | GetAssembler()->cfi().AdjustCFAOffset(frame_size); | 
|  | if (lowest_spill.IsValid()) { | 
|  | GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset); | 
|  | core_spills_offset += kXRegSizeInBytes; | 
|  | } | 
|  | GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset); | 
|  | GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset); | 
|  |  | 
|  | if (GetGraph()->HasShouldDeoptimizeFlag()) { | 
|  | // Initialize should_deoptimize flag to 0. | 
|  | Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize); | 
|  | __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag())); | 
|  | } | 
|  | } | 
|  | MaybeIncrementHotness(/* is_frame_entry= */ true); | 
|  | MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateFrameExit() { | 
|  | GetAssembler()->cfi().RememberState(); | 
|  | if (!HasEmptyFrame()) { | 
|  | int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize()); | 
|  | uint32_t core_spills_offset = frame_size - GetCoreSpillSize(); | 
|  | CPURegList preserved_core_registers = GetFramePreservedCoreRegisters(); | 
|  | DCHECK(!preserved_core_registers.IsEmpty()); | 
|  | uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize(); | 
|  | CPURegList preserved_fp_registers = GetFramePreservedFPRegisters(); | 
|  |  | 
|  | CPURegister lowest_spill; | 
|  | if (core_spills_offset == kXRegSizeInBytes) { | 
|  | // If there is no gap between the method and the lowest core spill, use | 
|  | // aligned LDP pre-index to pop both. Max difference is 504. We do | 
|  | // that to reduce code size even though the loaded method is unused. | 
|  | DCHECK_LE(frame_size, 504);  // 32 core registers are only 256 bytes. | 
|  | lowest_spill = preserved_core_registers.PopLowestIndex(); | 
|  | core_spills_offset += kXRegSizeInBytes; | 
|  | } | 
|  | GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset); | 
|  | GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset); | 
|  | if (lowest_spill.IsValid()) { | 
|  | __ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex)); | 
|  | GetAssembler()->cfi().Restore(DWARFReg(lowest_spill)); | 
|  | } else { | 
|  | __ Drop(frame_size); | 
|  | } | 
|  | GetAssembler()->cfi().AdjustCFAOffset(-frame_size); | 
|  | } | 
|  | __ Ret(); | 
|  | GetAssembler()->cfi().RestoreState(); | 
|  | GetAssembler()->cfi().DefCFAOffset(GetFrameSize()); | 
|  | } | 
|  |  | 
|  | CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const { | 
|  | DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0)); | 
|  | return CPURegList(CPURegister::kRegister, kXRegSize, | 
|  | core_spill_mask_); | 
|  | } | 
|  |  | 
|  | CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const { | 
|  | DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_, | 
|  | GetNumberOfFloatingPointRegisters())); | 
|  | return CPURegList(CPURegister::kVRegister, kDRegSize, | 
|  | fpu_spill_mask_); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::Bind(HBasicBlock* block) { | 
|  | __ Bind(GetLabelOf(block)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) { | 
|  | DCHECK(location.IsRegister()); | 
|  | __ Mov(RegisterFrom(location, DataType::Type::kInt32), value); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) { | 
|  | if (location.IsRegister()) { | 
|  | locations->AddTemp(location); | 
|  | } else { | 
|  | UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) { | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register card = temps.AcquireX(); | 
|  | Register temp = temps.AcquireW();   // Index within the CardTable - 32bit. | 
|  | vixl::aarch64::Label done; | 
|  | if (value_can_be_null) { | 
|  | __ Cbz(value, &done); | 
|  | } | 
|  | // Load the address of the card table into `card`. | 
|  | __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value())); | 
|  | // Calculate the offset (in the card table) of the card corresponding to | 
|  | // `object`. | 
|  | __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); | 
|  | // Write the `art::gc::accounting::CardTable::kCardDirty` value into the | 
|  | // `object`'s card. | 
|  | // | 
|  | // Register `card` contains the address of the card table. Note that the card | 
|  | // table's base is biased during its creation so that it always starts at an | 
|  | // address whose least-significant byte is equal to `kCardDirty` (see | 
|  | // art::gc::accounting::CardTable::Create). Therefore the STRB instruction | 
|  | // below writes the `kCardDirty` (byte) value into the `object`'s card | 
|  | // (located at `card + object >> kCardShift`). | 
|  | // | 
|  | // This dual use of the value in register `card` (1. to calculate the location | 
|  | // of the card to mark; and 2. to load the `kCardDirty` value) saves a load | 
|  | // (no need to explicitly load `kCardDirty` as an immediate value). | 
|  | __ Strb(card, MemOperand(card, temp.X())); | 
|  | if (value_can_be_null) { | 
|  | __ Bind(&done); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::SetupBlockedRegisters() const { | 
|  | // Blocked core registers: | 
|  | //      lr        : Runtime reserved. | 
|  | //      tr        : Runtime reserved. | 
|  | //      mr        : Runtime reserved. | 
|  | //      ip1       : VIXL core temp. | 
|  | //      ip0       : VIXL core temp. | 
|  | //      x18       : Platform register. | 
|  | // | 
|  | // Blocked fp registers: | 
|  | //      d31       : VIXL fp temp. | 
|  | CPURegList reserved_core_registers = vixl_reserved_core_registers; | 
|  | reserved_core_registers.Combine(runtime_reserved_core_registers); | 
|  | while (!reserved_core_registers.IsEmpty()) { | 
|  | blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true; | 
|  | } | 
|  | blocked_core_registers_[X18] = true; | 
|  |  | 
|  | CPURegList reserved_fp_registers = vixl_reserved_fp_registers; | 
|  | while (!reserved_fp_registers.IsEmpty()) { | 
|  | blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true; | 
|  | } | 
|  |  | 
|  | if (GetGraph()->IsDebuggable()) { | 
|  | // Stubs do not save callee-save floating point registers. If the graph | 
|  | // is debuggable, we need to deal with these registers differently. For | 
|  | // now, just block them. | 
|  | CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers; | 
|  | while (!reserved_fp_registers_debuggable.IsEmpty()) { | 
|  | blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { | 
|  | Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); | 
|  | __ Str(reg, MemOperand(sp, stack_index)); | 
|  | return kArm64WordSize; | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { | 
|  | Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); | 
|  | __ Ldr(reg, MemOperand(sp, stack_index)); | 
|  | return kArm64WordSize; | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, | 
|  | uint32_t reg_id ATTRIBUTE_UNUSED) { | 
|  | LOG(FATAL) << "FP registers shouldn't be saved/restored individually, " | 
|  | << "use SaveRestoreLiveRegistersHelper"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, | 
|  | uint32_t reg_id ATTRIBUTE_UNUSED) { | 
|  | LOG(FATAL) << "FP registers shouldn't be saved/restored individually, " | 
|  | << "use SaveRestoreLiveRegistersHelper"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const { | 
|  | stream << XRegister(reg); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { | 
|  | stream << DRegister(reg); | 
|  | } | 
|  |  | 
|  | const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const { | 
|  | return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures(); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) { | 
|  | if (constant->IsIntConstant()) { | 
|  | __ Mov(Register(destination), constant->AsIntConstant()->GetValue()); | 
|  | } else if (constant->IsLongConstant()) { | 
|  | __ Mov(Register(destination), constant->AsLongConstant()->GetValue()); | 
|  | } else if (constant->IsNullConstant()) { | 
|  | __ Mov(Register(destination), 0); | 
|  | } else if (constant->IsFloatConstant()) { | 
|  | __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue()); | 
|  | } else { | 
|  | DCHECK(constant->IsDoubleConstant()); | 
|  | __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool CoherentConstantAndType(Location constant, DataType::Type type) { | 
|  | DCHECK(constant.IsConstant()); | 
|  | HConstant* cst = constant.GetConstant(); | 
|  | return (cst->IsIntConstant() && type == DataType::Type::kInt32) || | 
|  | // Null is mapped to a core W register, which we associate with kPrimInt. | 
|  | (cst->IsNullConstant() && type == DataType::Type::kInt32) || | 
|  | (cst->IsLongConstant() && type == DataType::Type::kInt64) || | 
|  | (cst->IsFloatConstant() && type == DataType::Type::kFloat32) || | 
|  | (cst->IsDoubleConstant() && type == DataType::Type::kFloat64); | 
|  | } | 
|  |  | 
|  | // Allocate a scratch register from the VIXL pool, querying first | 
|  | // the floating-point register pool, and then the core register | 
|  | // pool. This is essentially a reimplementation of | 
|  | // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize | 
|  | // using a different allocation strategy. | 
|  | static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm, | 
|  | vixl::aarch64::UseScratchRegisterScope* temps, | 
|  | int size_in_bits) { | 
|  | return masm->GetScratchVRegisterList()->IsEmpty() | 
|  | ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits)) | 
|  | : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MoveLocation(Location destination, | 
|  | Location source, | 
|  | DataType::Type dst_type) { | 
|  | if (source.Equals(destination)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // A valid move can always be inferred from the destination and source | 
|  | // locations. When moving from and to a register, the argument type can be | 
|  | // used to generate 32bit instead of 64bit moves. In debug mode we also | 
|  | // checks the coherency of the locations and the type. | 
|  | bool unspecified_type = (dst_type == DataType::Type::kVoid); | 
|  |  | 
|  | if (destination.IsRegister() || destination.IsFpuRegister()) { | 
|  | if (unspecified_type) { | 
|  | HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr; | 
|  | if (source.IsStackSlot() || | 
|  | (src_cst != nullptr && (src_cst->IsIntConstant() | 
|  | || src_cst->IsFloatConstant() | 
|  | || src_cst->IsNullConstant()))) { | 
|  | // For stack slots and 32bit constants, a 64bit type is appropriate. | 
|  | dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32; | 
|  | } else { | 
|  | // If the source is a double stack slot or a 64bit constant, a 64bit | 
|  | // type is appropriate. Else the source is a register, and since the | 
|  | // type has not been specified, we chose a 64bit type to force a 64bit | 
|  | // move. | 
|  | dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64; | 
|  | } | 
|  | } | 
|  | DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) || | 
|  | (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type))); | 
|  | CPURegister dst = CPURegisterFrom(destination, dst_type); | 
|  | if (source.IsStackSlot() || source.IsDoubleStackSlot()) { | 
|  | DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot()); | 
|  | __ Ldr(dst, StackOperandFrom(source)); | 
|  | } else if (source.IsSIMDStackSlot()) { | 
|  | GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source); | 
|  | } else if (source.IsConstant()) { | 
|  | DCHECK(CoherentConstantAndType(source, dst_type)); | 
|  | MoveConstant(dst, source.GetConstant()); | 
|  | } else if (source.IsRegister()) { | 
|  | if (destination.IsRegister()) { | 
|  | __ Mov(Register(dst), RegisterFrom(source, dst_type)); | 
|  | } else { | 
|  | DCHECK(destination.IsFpuRegister()); | 
|  | DataType::Type source_type = DataType::Is64BitType(dst_type) | 
|  | ? DataType::Type::kInt64 | 
|  | : DataType::Type::kInt32; | 
|  | __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type)); | 
|  | } | 
|  | } else { | 
|  | DCHECK(source.IsFpuRegister()); | 
|  | if (destination.IsRegister()) { | 
|  | DataType::Type source_type = DataType::Is64BitType(dst_type) | 
|  | ? DataType::Type::kFloat64 | 
|  | : DataType::Type::kFloat32; | 
|  | __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type)); | 
|  | } else { | 
|  | DCHECK(destination.IsFpuRegister()); | 
|  | if (GetGraph()->HasSIMD()) { | 
|  | GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source); | 
|  | } else { | 
|  | __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (destination.IsSIMDStackSlot()) { | 
|  | GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source); | 
|  | } else {  // The destination is not a register. It must be a stack slot. | 
|  | DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot()); | 
|  | if (source.IsRegister() || source.IsFpuRegister()) { | 
|  | if (unspecified_type) { | 
|  | if (source.IsRegister()) { | 
|  | dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64; | 
|  | } else { | 
|  | dst_type = | 
|  | destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64; | 
|  | } | 
|  | } | 
|  | DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) && | 
|  | (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type))); | 
|  | __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination)); | 
|  | } else if (source.IsConstant()) { | 
|  | DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type)) | 
|  | << source << " " << dst_type; | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | HConstant* src_cst = source.GetConstant(); | 
|  | CPURegister temp; | 
|  | if (src_cst->IsZeroBitPattern()) { | 
|  | temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant()) | 
|  | ? Register(xzr) | 
|  | : Register(wzr); | 
|  | } else { | 
|  | if (src_cst->IsIntConstant()) { | 
|  | temp = temps.AcquireW(); | 
|  | } else if (src_cst->IsLongConstant()) { | 
|  | temp = temps.AcquireX(); | 
|  | } else if (src_cst->IsFloatConstant()) { | 
|  | temp = temps.AcquireS(); | 
|  | } else { | 
|  | DCHECK(src_cst->IsDoubleConstant()); | 
|  | temp = temps.AcquireD(); | 
|  | } | 
|  | MoveConstant(temp, src_cst); | 
|  | } | 
|  | __ Str(temp, StackOperandFrom(destination)); | 
|  | } else { | 
|  | DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot()); | 
|  | DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot()); | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | // Use any scratch register (a core or a floating-point one) | 
|  | // from VIXL scratch register pools as a temporary. | 
|  | // | 
|  | // We used to only use the FP scratch register pool, but in some | 
|  | // rare cases the only register from this pool (D31) would | 
|  | // already be used (e.g. within a ParallelMove instruction, when | 
|  | // a move is blocked by a another move requiring a scratch FP | 
|  | // register, which would reserve D31). To prevent this issue, we | 
|  | // ask for a scratch register of any type (core or FP). | 
|  | // | 
|  | // Also, we start by asking for a FP scratch register first, as the | 
|  | // demand of scratch core registers is higher. This is why we | 
|  | // use AcquireFPOrCoreCPURegisterOfSize instead of | 
|  | // UseScratchRegisterScope::AcquireCPURegisterOfSize, which | 
|  | // allocates core scratch registers first. | 
|  | CPURegister temp = AcquireFPOrCoreCPURegisterOfSize( | 
|  | GetVIXLAssembler(), | 
|  | &temps, | 
|  | (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize)); | 
|  | __ Ldr(temp, StackOperandFrom(source)); | 
|  | __ Str(temp, StackOperandFrom(destination)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::Load(DataType::Type type, | 
|  | CPURegister dst, | 
|  | const MemOperand& src) { | 
|  | switch (type) { | 
|  | case DataType::Type::kBool: | 
|  | case DataType::Type::kUint8: | 
|  | __ Ldrb(Register(dst), src); | 
|  | break; | 
|  | case DataType::Type::kInt8: | 
|  | __ Ldrsb(Register(dst), src); | 
|  | break; | 
|  | case DataType::Type::kUint16: | 
|  | __ Ldrh(Register(dst), src); | 
|  | break; | 
|  | case DataType::Type::kInt16: | 
|  | __ Ldrsh(Register(dst), src); | 
|  | break; | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kReference: | 
|  | case DataType::Type::kInt64: | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); | 
|  | __ Ldr(dst, src); | 
|  | break; | 
|  | case DataType::Type::kUint32: | 
|  | case DataType::Type::kUint64: | 
|  | case DataType::Type::kVoid: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction, | 
|  | DataType::Type type, | 
|  | CPURegister dst, | 
|  | const MemOperand& src, | 
|  | bool needs_null_check) { | 
|  | MacroAssembler* masm = GetVIXLAssembler(); | 
|  | UseScratchRegisterScope temps(masm); | 
|  | Register temp_base = temps.AcquireX(); | 
|  |  | 
|  | DCHECK(!src.IsPreIndex()); | 
|  | DCHECK(!src.IsPostIndex()); | 
|  |  | 
|  | // TODO(vixl): Let the MacroAssembler handle MemOperand. | 
|  | __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src)); | 
|  | { | 
|  | // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | MemOperand base = MemOperand(temp_base); | 
|  | switch (type) { | 
|  | case DataType::Type::kBool: | 
|  | case DataType::Type::kUint8: | 
|  | case DataType::Type::kInt8: | 
|  | { | 
|  | ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ ldarb(Register(dst), base); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | if (type == DataType::Type::kInt8) { | 
|  | __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte); | 
|  | } | 
|  | break; | 
|  | case DataType::Type::kUint16: | 
|  | case DataType::Type::kInt16: | 
|  | { | 
|  | ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ ldarh(Register(dst), base); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | if (type == DataType::Type::kInt16) { | 
|  | __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte); | 
|  | } | 
|  | break; | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kReference: | 
|  | case DataType::Type::kInt64: | 
|  | DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); | 
|  | { | 
|  | ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ ldar(Register(dst), base); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: { | 
|  | DCHECK(dst.IsFPRegister()); | 
|  | DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); | 
|  |  | 
|  | Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); | 
|  | { | 
|  | ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ ldar(temp, base); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | __ Fmov(VRegister(dst), temp); | 
|  | break; | 
|  | } | 
|  | case DataType::Type::kUint32: | 
|  | case DataType::Type::kUint64: | 
|  | case DataType::Type::kVoid: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::Store(DataType::Type type, | 
|  | CPURegister src, | 
|  | const MemOperand& dst) { | 
|  | switch (type) { | 
|  | case DataType::Type::kBool: | 
|  | case DataType::Type::kUint8: | 
|  | case DataType::Type::kInt8: | 
|  | __ Strb(Register(src), dst); | 
|  | break; | 
|  | case DataType::Type::kUint16: | 
|  | case DataType::Type::kInt16: | 
|  | __ Strh(Register(src), dst); | 
|  | break; | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kReference: | 
|  | case DataType::Type::kInt64: | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); | 
|  | __ Str(src, dst); | 
|  | break; | 
|  | case DataType::Type::kUint32: | 
|  | case DataType::Type::kUint64: | 
|  | case DataType::Type::kVoid: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::StoreRelease(HInstruction* instruction, | 
|  | DataType::Type type, | 
|  | CPURegister src, | 
|  | const MemOperand& dst, | 
|  | bool needs_null_check) { | 
|  | MacroAssembler* masm = GetVIXLAssembler(); | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp_base = temps.AcquireX(); | 
|  |  | 
|  | DCHECK(!dst.IsPreIndex()); | 
|  | DCHECK(!dst.IsPostIndex()); | 
|  |  | 
|  | // TODO(vixl): Let the MacroAssembler handle this. | 
|  | Operand op = OperandFromMemOperand(dst); | 
|  | __ Add(temp_base, dst.GetBaseRegister(), op); | 
|  | MemOperand base = MemOperand(temp_base); | 
|  | // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | switch (type) { | 
|  | case DataType::Type::kBool: | 
|  | case DataType::Type::kUint8: | 
|  | case DataType::Type::kInt8: | 
|  | { | 
|  | ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ stlrb(Register(src), base); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case DataType::Type::kUint16: | 
|  | case DataType::Type::kInt16: | 
|  | { | 
|  | ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ stlrh(Register(src), base); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kReference: | 
|  | case DataType::Type::kInt64: | 
|  | DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); | 
|  | { | 
|  | ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ stlr(Register(src), base); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: { | 
|  | DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); | 
|  | Register temp_src; | 
|  | if (src.IsZero()) { | 
|  | // The zero register is used to avoid synthesizing zero constants. | 
|  | temp_src = Register(src); | 
|  | } else { | 
|  | DCHECK(src.IsFPRegister()); | 
|  | temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); | 
|  | __ Fmov(temp_src, VRegister(src)); | 
|  | } | 
|  | { | 
|  | ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ stlr(temp_src, base); | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DataType::Type::kUint32: | 
|  | case DataType::Type::kUint64: | 
|  | case DataType::Type::kVoid: | 
|  | LOG(FATAL) << "Unreachable type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint, | 
|  | HInstruction* instruction, | 
|  | uint32_t dex_pc, | 
|  | SlowPathCode* slow_path) { | 
|  | ValidateInvokeRuntime(entrypoint, instruction, slow_path); | 
|  |  | 
|  | ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint); | 
|  | // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the | 
|  | // entire oat file. This adds an extra branch and we do not want to slow down the main path. | 
|  | // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative. | 
|  | if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) { | 
|  | __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value())); | 
|  | // Ensure the pc position is recorded immediately after the `blr` instruction. | 
|  | ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ blr(lr); | 
|  | if (EntrypointRequiresStackMap(entrypoint)) { | 
|  | RecordPcInfo(instruction, dex_pc, slow_path); | 
|  | } | 
|  | } else { | 
|  | // Ensure the pc position is recorded immediately after the `bl` instruction. | 
|  | ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | EmitEntrypointThunkCall(entrypoint_offset); | 
|  | if (EntrypointRequiresStackMap(entrypoint)) { | 
|  | RecordPcInfo(instruction, dex_pc, slow_path); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, | 
|  | HInstruction* instruction, | 
|  | SlowPathCode* slow_path) { | 
|  | ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); | 
|  | __ Ldr(lr, MemOperand(tr, entry_point_offset)); | 
|  | __ Blr(lr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path, | 
|  | Register class_reg) { | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireW(); | 
|  | constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf(); | 
|  | const size_t status_byte_offset = | 
|  | mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte); | 
|  | constexpr uint32_t shifted_visibly_initialized_value = | 
|  | enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << (status_lsb_position % kBitsPerByte); | 
|  |  | 
|  | // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize | 
|  | // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code | 
|  | // size, load only the high byte of the field and compare with 0xf0. | 
|  | // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks | 
|  | // show that this pattern is slower (tested on little cores). | 
|  | __ Ldrb(temp, HeapOperand(class_reg, status_byte_offset)); | 
|  | __ Cmp(temp, shifted_visibly_initialized_value); | 
|  | __ B(lo, slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare( | 
|  | HTypeCheckInstruction* check, vixl::aarch64::Register temp) { | 
|  | uint32_t path_to_root = check->GetBitstringPathToRoot(); | 
|  | uint32_t mask = check->GetBitstringMask(); | 
|  | DCHECK(IsPowerOfTwo(mask + 1)); | 
|  | size_t mask_bits = WhichPowerOf2(mask + 1); | 
|  |  | 
|  | if (mask_bits == 16u) { | 
|  | // Load only the bitstring part of the status word. | 
|  | __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset())); | 
|  | } else { | 
|  | // /* uint32_t */ temp = temp->status_ | 
|  | __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset())); | 
|  | // Extract the bitstring bits. | 
|  | __ Ubfx(temp, temp, 0, mask_bits); | 
|  | } | 
|  | // Compare the bitstring bits to `path_to_root`. | 
|  | __ Cmp(temp, path_to_root); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) { | 
|  | BarrierType type = BarrierAll; | 
|  |  | 
|  | switch (kind) { | 
|  | case MemBarrierKind::kAnyAny: | 
|  | case MemBarrierKind::kAnyStore: { | 
|  | type = BarrierAll; | 
|  | break; | 
|  | } | 
|  | case MemBarrierKind::kLoadAny: { | 
|  | type = BarrierReads; | 
|  | break; | 
|  | } | 
|  | case MemBarrierKind::kStoreStore: { | 
|  | type = BarrierWrites; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected memory barrier " << kind; | 
|  | } | 
|  | __ Dmb(InnerShareable, type); | 
|  | } | 
|  |  | 
|  | bool CodeGeneratorARM64::CanUseImplicitSuspendCheck() const { | 
|  | // Use implicit suspend checks if requested in compiler options unless there are SIMD | 
|  | // instructions in the graph. The implicit suspend check saves all FP registers as | 
|  | // 64-bit (in line with the calling convention) but SIMD instructions can use 128-bit | 
|  | // registers, so they need to be saved in an explicit slow path. | 
|  | return GetCompilerOptions().GetImplicitSuspendChecks() && !GetGraph()->HasSIMD(); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction, | 
|  | HBasicBlock* successor) { | 
|  | if (codegen_->CanUseImplicitSuspendCheck()) { | 
|  | __ Ldr(kImplicitSuspendCheckRegister, MemOperand(kImplicitSuspendCheckRegister)); | 
|  | codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); | 
|  | if (successor != nullptr) { | 
|  | __ B(codegen_->GetLabelOf(successor)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | SuspendCheckSlowPathARM64* slow_path = | 
|  | down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath()); | 
|  | if (slow_path == nullptr) { | 
|  | slow_path = | 
|  | new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor); | 
|  | instruction->SetSlowPath(slow_path); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | if (successor != nullptr) { | 
|  | DCHECK(successor->IsLoopHeader()); | 
|  | } | 
|  | } else { | 
|  | DCHECK_EQ(slow_path->GetSuccessor(), successor); | 
|  | } | 
|  |  | 
|  | UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireW(); | 
|  |  | 
|  | __ Ldr(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue())); | 
|  | __ Tst(temp, Thread::SuspendOrCheckpointRequestFlags()); | 
|  | if (successor == nullptr) { | 
|  | __ B(ne, slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetReturnLabel()); | 
|  | } else { | 
|  | __ B(eq, codegen_->GetLabelOf(successor)); | 
|  | __ B(slow_path->GetEntryLabel()); | 
|  | // slow_path will return to GetLabelOf(successor). | 
|  | } | 
|  | } | 
|  |  | 
|  | InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph, | 
|  | CodeGeneratorARM64* codegen) | 
|  | : InstructionCodeGenerator(graph, codegen), | 
|  | assembler_(codegen->GetAssembler()), | 
|  | codegen_(codegen) {} | 
|  |  | 
|  | void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) { | 
|  | DCHECK_EQ(instr->InputCount(), 2U); | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); | 
|  | DataType::Type type = instr->GetResultType(); | 
|  | switch (type) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction, | 
|  | const FieldInfo& field_info) { | 
|  | DCHECK(instruction->IsInstanceFieldGet() || | 
|  | instruction->IsStaticFieldGet() || | 
|  | instruction->IsPredicatedInstanceFieldGet()); | 
|  |  | 
|  | bool is_predicated = instruction->IsPredicatedInstanceFieldGet(); | 
|  |  | 
|  | bool object_field_get_with_read_barrier = | 
|  | kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, | 
|  | object_field_get_with_read_barrier | 
|  | ? LocationSummary::kCallOnSlowPath | 
|  | : LocationSummary::kNoCall); | 
|  | if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | // We need a temporary register for the read barrier load in | 
|  | // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier() | 
|  | // only if the field is volatile or the offset is too big. | 
|  | if (field_info.IsVolatile() || | 
|  | field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) { | 
|  | locations->AddTemp(FixedTempLocation()); | 
|  | } | 
|  | } | 
|  | // Input for object receiver. | 
|  | locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister()); | 
|  | if (DataType::IsFloatingPointType(instruction->GetType())) { | 
|  | if (is_predicated) { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::SameAsFirstInput()); | 
|  | } else { | 
|  | locations->SetOut(Location::RequiresFpuRegister()); | 
|  | } | 
|  | } else { | 
|  | if (is_predicated) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::SameAsFirstInput()); | 
|  | } else { | 
|  | // The output overlaps for an object field get when read barriers | 
|  | // are enabled: we do not want the load to overwrite the object's | 
|  | // location, as we need it to emit the read barrier. | 
|  | locations->SetOut(Location::RequiresRegister(), | 
|  | object_field_get_with_read_barrier ? Location::kOutputOverlap | 
|  | : Location::kNoOutputOverlap); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction, | 
|  | const FieldInfo& field_info) { | 
|  | DCHECK(instruction->IsInstanceFieldGet() || | 
|  | instruction->IsStaticFieldGet() || | 
|  | instruction->IsPredicatedInstanceFieldGet()); | 
|  | bool is_predicated = instruction->IsPredicatedInstanceFieldGet(); | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | uint32_t receiver_input = is_predicated ? 1 : 0; | 
|  | Location base_loc = locations->InAt(receiver_input); | 
|  | Location out = locations->Out(); | 
|  | uint32_t offset = field_info.GetFieldOffset().Uint32Value(); | 
|  | DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); | 
|  | DataType::Type load_type = instruction->GetType(); | 
|  | MemOperand field = | 
|  | HeapOperand(InputRegisterAt(instruction, receiver_input), field_info.GetFieldOffset()); | 
|  |  | 
|  | if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && | 
|  | load_type == DataType::Type::kReference) { | 
|  | // Object FieldGet with Baker's read barrier case. | 
|  | // /* HeapReference<Object> */ out = *(base + offset) | 
|  | Register base = RegisterFrom(base_loc, DataType::Type::kReference); | 
|  | Location maybe_temp = | 
|  | (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); | 
|  | // Note that potential implicit null checks are handled in this | 
|  | // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call. | 
|  | codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
|  | instruction, | 
|  | out, | 
|  | base, | 
|  | offset, | 
|  | maybe_temp, | 
|  | /* needs_null_check= */ true, | 
|  | field_info.IsVolatile()); | 
|  | } else { | 
|  | // General case. | 
|  | if (field_info.IsVolatile()) { | 
|  | // Note that a potential implicit null check is handled in this | 
|  | // CodeGeneratorARM64::LoadAcquire call. | 
|  | // NB: LoadAcquire will record the pc info if needed. | 
|  | codegen_->LoadAcquire(instruction, | 
|  | load_type, | 
|  | OutputCPURegister(instruction), | 
|  | field, | 
|  | /* needs_null_check= */ true); | 
|  | } else { | 
|  | // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | codegen_->Load(load_type, OutputCPURegister(instruction), field); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | if (load_type == DataType::Type::kReference) { | 
|  | // If read barriers are enabled, emit read barriers other than | 
|  | // Baker's using a slow path (and also unpoison the loaded | 
|  | // reference, if heap poisoning is enabled). | 
|  | codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (IsConstantZeroBitPattern(instruction->InputAt(1))) { | 
|  | locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); | 
|  | } else if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) { | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction, | 
|  | const FieldInfo& field_info, | 
|  | bool value_can_be_null) { | 
|  | DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); | 
|  | bool is_predicated = | 
|  | instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet(); | 
|  |  | 
|  | Register obj = InputRegisterAt(instruction, 0); | 
|  | CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1); | 
|  | CPURegister source = value; | 
|  | Offset offset = field_info.GetFieldOffset(); | 
|  | DataType::Type field_type = field_info.GetFieldType(); | 
|  | std::optional<vixl::aarch64::Label> pred_is_null; | 
|  | if (is_predicated) { | 
|  | pred_is_null.emplace(); | 
|  | __ Cbz(obj, &*pred_is_null); | 
|  | } | 
|  |  | 
|  | { | 
|  | // We use a block to end the scratch scope before the write barrier, thus | 
|  | // freeing the temporary registers so they can be used in `MarkGCCard`. | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  |  | 
|  | if (kPoisonHeapReferences && field_type == DataType::Type::kReference) { | 
|  | DCHECK(value.IsW()); | 
|  | Register temp = temps.AcquireW(); | 
|  | __ Mov(temp, value.W()); | 
|  | GetAssembler()->PoisonHeapReference(temp.W()); | 
|  | source = temp; | 
|  | } | 
|  |  | 
|  | if (field_info.IsVolatile()) { | 
|  | codegen_->StoreRelease( | 
|  | instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true); | 
|  | } else { | 
|  | // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | codegen_->Store(field_type, source, HeapOperand(obj, offset)); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { | 
|  | codegen_->MarkGCCard(obj, Register(value), value_can_be_null); | 
|  | } | 
|  |  | 
|  | if (is_predicated) { | 
|  | __ Bind(&*pred_is_null); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) { | 
|  | DataType::Type type = instr->GetType(); | 
|  |  | 
|  | switch (type) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: { | 
|  | Register dst = OutputRegister(instr); | 
|  | Register lhs = InputRegisterAt(instr, 0); | 
|  | Operand rhs = InputOperandAt(instr, 1); | 
|  | if (instr->IsAdd()) { | 
|  | __ Add(dst, lhs, rhs); | 
|  | } else if (instr->IsAnd()) { | 
|  | __ And(dst, lhs, rhs); | 
|  | } else if (instr->IsOr()) { | 
|  | __ Orr(dst, lhs, rhs); | 
|  | } else if (instr->IsSub()) { | 
|  | __ Sub(dst, lhs, rhs); | 
|  | } else if (instr->IsRor()) { | 
|  | if (rhs.IsImmediate()) { | 
|  | uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1); | 
|  | __ Ror(dst, lhs, shift); | 
|  | } else { | 
|  | // Ensure shift distance is in the same size register as the result. If | 
|  | // we are rotating a long and the shift comes in a w register originally, | 
|  | // we don't need to sxtw for use as an x since the shift distances are | 
|  | // all & reg_bits - 1. | 
|  | __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type)); | 
|  | } | 
|  | } else if (instr->IsMin() || instr->IsMax()) { | 
|  | __ Cmp(lhs, rhs); | 
|  | __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt); | 
|  | } else { | 
|  | DCHECK(instr->IsXor()); | 
|  | __ Eor(dst, lhs, rhs); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: { | 
|  | VRegister dst = OutputFPRegister(instr); | 
|  | VRegister lhs = InputFPRegisterAt(instr, 0); | 
|  | VRegister rhs = InputFPRegisterAt(instr, 1); | 
|  | if (instr->IsAdd()) { | 
|  | __ Fadd(dst, lhs, rhs); | 
|  | } else if (instr->IsSub()) { | 
|  | __ Fsub(dst, lhs, rhs); | 
|  | } else if (instr->IsMin()) { | 
|  | __ Fmin(dst, lhs, rhs); | 
|  | } else if (instr->IsMax()) { | 
|  | __ Fmax(dst, lhs, rhs); | 
|  | } else { | 
|  | LOG(FATAL) << "Unexpected floating-point binary operation"; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected binary operation type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) { | 
|  | DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); | 
|  |  | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); | 
|  | DataType::Type type = instr->GetResultType(); | 
|  | switch (type) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected shift type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) { | 
|  | DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); | 
|  |  | 
|  | DataType::Type type = instr->GetType(); | 
|  | switch (type) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: { | 
|  | Register dst = OutputRegister(instr); | 
|  | Register lhs = InputRegisterAt(instr, 0); | 
|  | Operand rhs = InputOperandAt(instr, 1); | 
|  | if (rhs.IsImmediate()) { | 
|  | uint32_t shift_value = rhs.GetImmediate() & | 
|  | (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance); | 
|  | if (instr->IsShl()) { | 
|  | __ Lsl(dst, lhs, shift_value); | 
|  | } else if (instr->IsShr()) { | 
|  | __ Asr(dst, lhs, shift_value); | 
|  | } else { | 
|  | __ Lsr(dst, lhs, shift_value); | 
|  | } | 
|  | } else { | 
|  | Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W(); | 
|  |  | 
|  | if (instr->IsShl()) { | 
|  | __ Lsl(dst, lhs, rhs_reg); | 
|  | } else if (instr->IsShr()) { | 
|  | __ Asr(dst, lhs, rhs_reg); | 
|  | } else { | 
|  | __ Lsr(dst, lhs, rhs_reg); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected shift operation type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitAdd(HAdd* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitAnd(HAnd* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { | 
|  | DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType(); | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | // There is no immediate variant of negated bitwise instructions in AArch64. | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { | 
|  | Register dst = OutputRegister(instr); | 
|  | Register lhs = InputRegisterAt(instr, 0); | 
|  | Register rhs = InputRegisterAt(instr, 1); | 
|  |  | 
|  | switch (instr->GetOpKind()) { | 
|  | case HInstruction::kAnd: | 
|  | __ Bic(dst, lhs, rhs); | 
|  | break; | 
|  | case HInstruction::kOr: | 
|  | __ Orn(dst, lhs, rhs); | 
|  | break; | 
|  | case HInstruction::kXor: | 
|  | __ Eon(dst, lhs, rhs); | 
|  | break; | 
|  | default: | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitDataProcWithShifterOp( | 
|  | HDataProcWithShifterOp* instruction) { | 
|  | DCHECK(instruction->GetType() == DataType::Type::kInt32 || | 
|  | instruction->GetType() == DataType::Type::kInt64); | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | if (instruction->GetInstrKind() == HInstruction::kNeg) { | 
|  | locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant())); | 
|  | } else { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp( | 
|  | HDataProcWithShifterOp* instruction) { | 
|  | DataType::Type type = instruction->GetType(); | 
|  | HInstruction::InstructionKind kind = instruction->GetInstrKind(); | 
|  | DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); | 
|  | Register out = OutputRegister(instruction); | 
|  | Register left; | 
|  | if (kind != HInstruction::kNeg) { | 
|  | left = InputRegisterAt(instruction, 0); | 
|  | } | 
|  | // If this `HDataProcWithShifterOp` was created by merging a type conversion as the | 
|  | // shifter operand operation, the IR generating `right_reg` (input to the type | 
|  | // conversion) can have a different type from the current instruction's type, | 
|  | // so we manually indicate the type. | 
|  | Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type); | 
|  | Operand right_operand(0); | 
|  |  | 
|  | HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind(); | 
|  | if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) { | 
|  | right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind)); | 
|  | } else { | 
|  | right_operand = Operand(right_reg, | 
|  | helpers::ShiftFromOpKind(op_kind), | 
|  | instruction->GetShiftAmount()); | 
|  | } | 
|  |  | 
|  | // Logical binary operations do not support extension operations in the | 
|  | // operand. Note that VIXL would still manage if it was passed by generating | 
|  | // the extension as a separate instruction. | 
|  | // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`. | 
|  | DCHECK_IMPLIES(right_operand.IsExtendedRegister(), | 
|  | kind != HInstruction::kAnd && kind != HInstruction::kOr && | 
|  | kind != HInstruction::kXor && kind != HInstruction::kNeg); | 
|  | switch (kind) { | 
|  | case HInstruction::kAdd: | 
|  | __ Add(out, left, right_operand); | 
|  | break; | 
|  | case HInstruction::kAnd: | 
|  | __ And(out, left, right_operand); | 
|  | break; | 
|  | case HInstruction::kNeg: | 
|  | DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero()); | 
|  | __ Neg(out, right_operand); | 
|  | break; | 
|  | case HInstruction::kOr: | 
|  | __ Orr(out, left, right_operand); | 
|  | break; | 
|  | case HInstruction::kSub: | 
|  | __ Sub(out, left, right_operand); | 
|  | break; | 
|  | case HInstruction::kXor: | 
|  | __ Eor(out, left, right_operand); | 
|  | break; | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected operation kind: " << kind; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { | 
|  | __ Add(OutputRegister(instruction), | 
|  | InputRegisterAt(instruction, 0), | 
|  | Operand(InputOperandAt(instruction, 1))); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  |  | 
|  | HIntConstant* shift = instruction->GetShift()->AsIntConstant(); | 
|  |  | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | // For byte case we don't need to shift the index variable so we can encode the data offset into | 
|  | // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist | 
|  | // data offset constant generation out of the loop and reduce the critical path length in the | 
|  | // loop. | 
|  | locations->SetInAt(1, shift->GetValue() == 0 | 
|  | ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant()) | 
|  | : Location::RequiresRegister()); | 
|  | locations->SetInAt(2, Location::ConstantLocation(shift)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex( | 
|  | HIntermediateAddressIndex* instruction) { | 
|  | Register index_reg = InputRegisterAt(instruction, 0); | 
|  | uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2)); | 
|  | uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue(); | 
|  |  | 
|  | if (shift == 0) { | 
|  | __ Add(OutputRegister(instruction), index_reg, offset); | 
|  | } else { | 
|  | Register offset_reg = InputRegisterAt(instruction, 1); | 
|  | __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall); | 
|  | HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); | 
|  | if (instr->GetOpKind() == HInstruction::kSub && | 
|  | accumulator->IsConstant() && | 
|  | accumulator->AsConstant()->IsArithmeticZero()) { | 
|  | // Don't allocate register for Mneg instruction. | 
|  | } else { | 
|  | locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, | 
|  | Location::RequiresRegister()); | 
|  | } | 
|  | locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); | 
|  | locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { | 
|  | Register res = OutputRegister(instr); | 
|  | Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex); | 
|  | Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex); | 
|  |  | 
|  | // Avoid emitting code that could trigger Cortex A53's erratum 835769. | 
|  | // This fixup should be carried out for all multiply-accumulate instructions: | 
|  | // madd, msub, smaddl, smsubl, umaddl and umsubl. | 
|  | if (instr->GetType() == DataType::Type::kInt64 && | 
|  | codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) { | 
|  | MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler(); | 
|  | ptrdiff_t off = masm->GetCursorOffset(); | 
|  | if (off >= static_cast<ptrdiff_t>(kInstructionSize) && | 
|  | masm->GetInstructionAt(off - static_cast<ptrdiff_t>(kInstructionSize))->IsLoadOrStore()) { | 
|  | // Make sure we emit only exactly one nop. | 
|  | ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | __ nop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (instr->GetOpKind() == HInstruction::kAdd) { | 
|  | Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); | 
|  | __ Madd(res, mul_left, mul_right, accumulator); | 
|  | } else { | 
|  | DCHECK(instr->GetOpKind() == HInstruction::kSub); | 
|  | HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); | 
|  | if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) { | 
|  | __ Mneg(res, mul_left, mul_right); | 
|  | } else { | 
|  | Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); | 
|  | __ Msub(res, mul_left, mul_right, accumulator); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) { | 
|  | bool object_array_get_with_read_barrier = | 
|  | kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, | 
|  | object_array_get_with_read_barrier | 
|  | ? LocationSummary::kCallOnSlowPath | 
|  | : LocationSummary::kNoCall); | 
|  | if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | if (instruction->GetIndex()->IsConstant()) { | 
|  | // Array loads with constant index are treated as field loads. | 
|  | // We need a temporary register for the read barrier load in | 
|  | // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier() | 
|  | // only if the offset is too big. | 
|  | uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); | 
|  | uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue(); | 
|  | offset += index << DataType::SizeShift(DataType::Type::kReference); | 
|  | if (offset >= kReferenceLoadMinFarOffset) { | 
|  | locations->AddTemp(FixedTempLocation()); | 
|  | } | 
|  | } else if (!instruction->GetArray()->IsIntermediateAddress()) { | 
|  | // We need a non-scratch temporary for the array data pointer in | 
|  | // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no | 
|  | // intermediate address. | 
|  | locations->AddTemp(Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
|  | if (DataType::IsFloatingPointType(instruction->GetType())) { | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | } else { | 
|  | // The output overlaps in the case of an object array get with | 
|  | // read barriers enabled: we do not want the move to overwrite the | 
|  | // array's location, as we need it to emit the read barrier. | 
|  | locations->SetOut( | 
|  | Location::RequiresRegister(), | 
|  | object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) { | 
|  | DataType::Type type = instruction->GetType(); | 
|  | Register obj = InputRegisterAt(instruction, 0); | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location index = locations->InAt(1); | 
|  | Location out = locations->Out(); | 
|  | uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); | 
|  | const bool maybe_compressed_char_at = mirror::kUseStringCompression && | 
|  | instruction->IsStringCharAt(); | 
|  | MacroAssembler* masm = GetVIXLAssembler(); | 
|  | UseScratchRegisterScope temps(masm); | 
|  |  | 
|  | // The non-Baker read barrier instrumentation of object ArrayGet instructions | 
|  | // does not support the HIntermediateAddress instruction. | 
|  | DCHECK(!((type == DataType::Type::kReference) && | 
|  | instruction->GetArray()->IsIntermediateAddress() && | 
|  | kEmitCompilerReadBarrier && | 
|  | !kUseBakerReadBarrier)); | 
|  |  | 
|  | if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
|  | // Object ArrayGet with Baker's read barrier case. | 
|  | // Note that a potential implicit null check is handled in the | 
|  | // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call. | 
|  | DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); | 
|  | if (index.IsConstant()) { | 
|  | DCHECK(!instruction->GetArray()->IsIntermediateAddress()); | 
|  | // Array load with a constant index can be treated as a field load. | 
|  | offset += Int64FromLocation(index) << DataType::SizeShift(type); | 
|  | Location maybe_temp = | 
|  | (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); | 
|  | codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
|  | out, | 
|  | obj.W(), | 
|  | offset, | 
|  | maybe_temp, | 
|  | /* needs_null_check= */ false, | 
|  | /* use_load_acquire= */ false); | 
|  | } else { | 
|  | codegen_->GenerateArrayLoadWithBakerReadBarrier( | 
|  | instruction, out, obj.W(), offset, index, /* needs_null_check= */ false); | 
|  | } | 
|  | } else { | 
|  | // General case. | 
|  | MemOperand source = HeapOperand(obj); | 
|  | Register length; | 
|  | if (maybe_compressed_char_at) { | 
|  | uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); | 
|  | length = temps.AcquireW(); | 
|  | { | 
|  | // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  |  | 
|  | if (instruction->GetArray()->IsIntermediateAddress()) { | 
|  | DCHECK_LT(count_offset, offset); | 
|  | int64_t adjusted_offset = | 
|  | static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset); | 
|  | // Note that `adjusted_offset` is negative, so this will be a LDUR. | 
|  | __ Ldr(length, MemOperand(obj.X(), adjusted_offset)); | 
|  | } else { | 
|  | __ Ldr(length, HeapOperand(obj, count_offset)); | 
|  | } | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  | if (index.IsConstant()) { | 
|  | if (maybe_compressed_char_at) { | 
|  | vixl::aarch64::Label uncompressed_load, done; | 
|  | static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
|  | "Expecting 0=compressed, 1=uncompressed"); | 
|  | __ Tbnz(length.W(), 0, &uncompressed_load); | 
|  | __ Ldrb(Register(OutputCPURegister(instruction)), | 
|  | HeapOperand(obj, offset + Int64FromLocation(index))); | 
|  | __ B(&done); | 
|  | __ Bind(&uncompressed_load); | 
|  | __ Ldrh(Register(OutputCPURegister(instruction)), | 
|  | HeapOperand(obj, offset + (Int64FromLocation(index) << 1))); | 
|  | __ Bind(&done); | 
|  | } else { | 
|  | offset += Int64FromLocation(index) << DataType::SizeShift(type); | 
|  | source = HeapOperand(obj, offset); | 
|  | } | 
|  | } else { | 
|  | Register temp = temps.AcquireSameSizeAs(obj); | 
|  | if (instruction->GetArray()->IsIntermediateAddress()) { | 
|  | // We do not need to compute the intermediate address from the array: the | 
|  | // input instruction has done it already. See the comment in | 
|  | // `TryExtractArrayAccessAddress()`. | 
|  | if (kIsDebugBuild) { | 
|  | HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); | 
|  | DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset); | 
|  | } | 
|  | temp = obj; | 
|  | } else { | 
|  | __ Add(temp, obj, offset); | 
|  | } | 
|  | if (maybe_compressed_char_at) { | 
|  | vixl::aarch64::Label uncompressed_load, done; | 
|  | static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
|  | "Expecting 0=compressed, 1=uncompressed"); | 
|  | __ Tbnz(length.W(), 0, &uncompressed_load); | 
|  | __ Ldrb(Register(OutputCPURegister(instruction)), | 
|  | HeapOperand(temp, XRegisterFrom(index), LSL, 0)); | 
|  | __ B(&done); | 
|  | __ Bind(&uncompressed_load); | 
|  | __ Ldrh(Register(OutputCPURegister(instruction)), | 
|  | HeapOperand(temp, XRegisterFrom(index), LSL, 1)); | 
|  | __ Bind(&done); | 
|  | } else { | 
|  | source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type)); | 
|  | } | 
|  | } | 
|  | if (!maybe_compressed_char_at) { | 
|  | // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | codegen_->Load(type, OutputCPURegister(instruction), source); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  |  | 
|  | if (type == DataType::Type::kReference) { | 
|  | static_assert( | 
|  | sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
|  | "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
|  | Location obj_loc = locations->InAt(0); | 
|  | if (index.IsConstant()) { | 
|  | codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset); | 
|  | } else { | 
|  | codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) { | 
|  | uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); | 
|  | vixl::aarch64::Register out = OutputRegister(instruction); | 
|  | { | 
|  | // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset)); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | // Mask out compression flag from String's array length. | 
|  | if (mirror::kUseStringCompression && instruction->IsStringLength()) { | 
|  | __ Lsr(out.W(), out.W(), 1u); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) { | 
|  | DataType::Type value_type = instruction->GetComponentType(); | 
|  |  | 
|  | bool needs_type_check = instruction->NeedsTypeCheck(); | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
|  | instruction, | 
|  | needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
|  | if (IsConstantZeroBitPattern(instruction->InputAt(2))) { | 
|  | locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); | 
|  | } else if (DataType::IsFloatingPointType(value_type)) { | 
|  | locations->SetInAt(2, Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | locations->SetInAt(2, Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) { | 
|  | DataType::Type value_type = instruction->GetComponentType(); | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | bool needs_type_check = instruction->NeedsTypeCheck(); | 
|  | bool needs_write_barrier = | 
|  | CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); | 
|  |  | 
|  | Register array = InputRegisterAt(instruction, 0); | 
|  | CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2); | 
|  | CPURegister source = value; | 
|  | Location index = locations->InAt(1); | 
|  | size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value(); | 
|  | MemOperand destination = HeapOperand(array); | 
|  | MacroAssembler* masm = GetVIXLAssembler(); | 
|  |  | 
|  | if (!needs_write_barrier) { | 
|  | DCHECK(!needs_type_check); | 
|  | if (index.IsConstant()) { | 
|  | offset += Int64FromLocation(index) << DataType::SizeShift(value_type); | 
|  | destination = HeapOperand(array, offset); | 
|  | } else { | 
|  | UseScratchRegisterScope temps(masm); | 
|  | Register temp = temps.AcquireSameSizeAs(array); | 
|  | if (instruction->GetArray()->IsIntermediateAddress()) { | 
|  | // We do not need to compute the intermediate address from the array: the | 
|  | // input instruction has done it already. See the comment in | 
|  | // `TryExtractArrayAccessAddress()`. | 
|  | if (kIsDebugBuild) { | 
|  | HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); | 
|  | DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset); | 
|  | } | 
|  | temp = array; | 
|  | } else { | 
|  | __ Add(temp, array, offset); | 
|  | } | 
|  | destination = HeapOperand(temp, | 
|  | XRegisterFrom(index), | 
|  | LSL, | 
|  | DataType::SizeShift(value_type)); | 
|  | } | 
|  | { | 
|  | // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | codegen_->Store(value_type, value, destination); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } else { | 
|  | DCHECK(!instruction->GetArray()->IsIntermediateAddress()); | 
|  |  | 
|  | bool can_value_be_null = instruction->GetValueCanBeNull(); | 
|  | vixl::aarch64::Label do_store; | 
|  | if (can_value_be_null) { | 
|  | __ Cbz(Register(value), &do_store); | 
|  | } | 
|  |  | 
|  | SlowPathCodeARM64* slow_path = nullptr; | 
|  | if (needs_type_check) { | 
|  | slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  |  | 
|  | const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
|  | const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
|  | const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
|  |  | 
|  | UseScratchRegisterScope temps(masm); | 
|  | Register temp = temps.AcquireSameSizeAs(array); | 
|  | Register temp2 = temps.AcquireSameSizeAs(array); | 
|  |  | 
|  | // Note that when Baker read barriers are enabled, the type | 
|  | // checks are performed without read barriers.  This is fine, | 
|  | // even in the case where a class object is in the from-space | 
|  | // after the flip, as a comparison involving such a type would | 
|  | // not produce a false positive; it may of course produce a | 
|  | // false negative, in which case we would take the ArraySet | 
|  | // slow path. | 
|  |  | 
|  | // /* HeapReference<Class> */ temp = array->klass_ | 
|  | { | 
|  | // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | __ Ldr(temp, HeapOperand(array, class_offset)); | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | GetAssembler()->MaybeUnpoisonHeapReference(temp); | 
|  |  | 
|  | // /* HeapReference<Class> */ temp = temp->component_type_ | 
|  | __ Ldr(temp, HeapOperand(temp, component_offset)); | 
|  | // /* HeapReference<Class> */ temp2 = value->klass_ | 
|  | __ Ldr(temp2, HeapOperand(Register(value), class_offset)); | 
|  | // If heap poisoning is enabled, no need to unpoison `temp` | 
|  | // nor `temp2`, as we are comparing two poisoned references. | 
|  | __ Cmp(temp, temp2); | 
|  |  | 
|  | if (instruction->StaticTypeOfArrayIsObjectArray()) { | 
|  | vixl::aarch64::Label do_put; | 
|  | __ B(eq, &do_put); | 
|  | // If heap poisoning is enabled, the `temp` reference has | 
|  | // not been unpoisoned yet; unpoison it now. | 
|  | GetAssembler()->MaybeUnpoisonHeapReference(temp); | 
|  |  | 
|  | // /* HeapReference<Class> */ temp = temp->super_class_ | 
|  | __ Ldr(temp, HeapOperand(temp, super_offset)); | 
|  | // If heap poisoning is enabled, no need to unpoison | 
|  | // `temp`, as we are comparing against null below. | 
|  | __ Cbnz(temp, slow_path->GetEntryLabel()); | 
|  | __ Bind(&do_put); | 
|  | } else { | 
|  | __ B(ne, slow_path->GetEntryLabel()); | 
|  | } | 
|  | } | 
|  |  | 
|  | codegen_->MarkGCCard(array, value.W(), /* value_can_be_null= */ false); | 
|  |  | 
|  | if (can_value_be_null) { | 
|  | DCHECK(do_store.IsLinked()); | 
|  | __ Bind(&do_store); | 
|  | } | 
|  |  | 
|  | UseScratchRegisterScope temps(masm); | 
|  | if (kPoisonHeapReferences) { | 
|  | Register temp_source = temps.AcquireSameSizeAs(array); | 
|  | DCHECK(value.IsW()); | 
|  | __ Mov(temp_source, value.W()); | 
|  | GetAssembler()->PoisonHeapReference(temp_source); | 
|  | source = temp_source; | 
|  | } | 
|  |  | 
|  | if (index.IsConstant()) { | 
|  | offset += Int64FromLocation(index) << DataType::SizeShift(value_type); | 
|  | destination = HeapOperand(array, offset); | 
|  | } else { | 
|  | Register temp_base = temps.AcquireSameSizeAs(array); | 
|  | __ Add(temp_base, array, offset); | 
|  | destination = HeapOperand(temp_base, | 
|  | XRegisterFrom(index), | 
|  | LSL, | 
|  | DataType::SizeShift(value_type)); | 
|  | } | 
|  |  | 
|  | { | 
|  | // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | __ Str(source, destination); | 
|  |  | 
|  | if (can_value_be_null || !needs_type_check) { | 
|  | codegen_->MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (slow_path != nullptr) { | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) { | 
|  | RegisterSet caller_saves = RegisterSet::Empty(); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); | 
|  | caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode())); | 
|  | LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); | 
|  |  | 
|  | // If both index and length are constant, we can check the bounds statically and | 
|  | // generate code accordingly. We want to make sure we generate constant locations | 
|  | // in that case, regardless of whether they are encodable in the comparison or not. | 
|  | HInstruction* index = instruction->InputAt(0); | 
|  | HInstruction* length = instruction->InputAt(1); | 
|  | bool both_const = index->IsConstant() && length->IsConstant(); | 
|  | locations->SetInAt(0, both_const | 
|  | ? Location::ConstantLocation(index->AsConstant()) | 
|  | : ARM64EncodableConstantOrRegister(index, instruction)); | 
|  | locations->SetInAt(1, both_const | 
|  | ? Location::ConstantLocation(length->AsConstant()) | 
|  | : ARM64EncodableConstantOrRegister(length, instruction)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location index_loc = locations->InAt(0); | 
|  | Location length_loc = locations->InAt(1); | 
|  |  | 
|  | int cmp_first_input = 0; | 
|  | int cmp_second_input = 1; | 
|  | Condition cond = hs; | 
|  |  | 
|  | if (index_loc.IsConstant()) { | 
|  | int64_t index = Int64FromLocation(index_loc); | 
|  | if (length_loc.IsConstant()) { | 
|  | int64_t length = Int64FromLocation(length_loc); | 
|  | if (index < 0 || index >= length) { | 
|  | BoundsCheckSlowPathARM64* slow_path = | 
|  | new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | __ B(slow_path->GetEntryLabel()); | 
|  | } else { | 
|  | // BCE will remove the bounds check if we are guaranteed to pass. | 
|  | // However, some optimization after BCE may have generated this, and we should not | 
|  | // generate a bounds check if it is a valid range. | 
|  | } | 
|  | return; | 
|  | } | 
|  | // Only the index is constant: change the order of the operands and commute the condition | 
|  | // so we can use an immediate constant for the index (only the second input to a cmp | 
|  | // instruction can be an immediate). | 
|  | cmp_first_input = 1; | 
|  | cmp_second_input = 0; | 
|  | cond = ls; | 
|  | } | 
|  | BoundsCheckSlowPathARM64* slow_path = | 
|  | new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction); | 
|  | __ Cmp(InputRegisterAt(instruction, cmp_first_input), | 
|  | InputOperandAt(instruction, cmp_second_input)); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | __ B(slow_path->GetEntryLabel(), cond); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (check->HasUses()) { | 
|  | locations->SetOut(Location::SameAsFirstInput()); | 
|  | } | 
|  | // Rely on the type initialization to save everything we need. | 
|  | locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) { | 
|  | // We assume the class is not null. | 
|  | SlowPathCodeARM64* slow_path = | 
|  | new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0)); | 
|  | } | 
|  |  | 
|  | static bool IsFloatingPointZeroConstant(HInstruction* inst) { | 
|  | return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero())) | 
|  | || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero())); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) { | 
|  | VRegister lhs_reg = InputFPRegisterAt(instruction, 0); | 
|  | Location rhs_loc = instruction->GetLocations()->InAt(1); | 
|  | if (rhs_loc.IsConstant()) { | 
|  | // 0.0 is the only immediate that can be encoded directly in | 
|  | // an FCMP instruction. | 
|  | // | 
|  | // Both the JLS (section 15.20.1) and the JVMS (section 6.5) | 
|  | // specify that in a floating-point comparison, positive zero | 
|  | // and negative zero are considered equal, so we can use the | 
|  | // literal 0.0 for both cases here. | 
|  | // | 
|  | // Note however that some methods (Float.equal, Float.compare, | 
|  | // Float.compareTo, Double.equal, Double.compare, | 
|  | // Double.compareTo, Math.max, Math.min, StrictMath.max, | 
|  | // StrictMath.min) consider 0.0 to be (strictly) greater than | 
|  | // -0.0. So if we ever translate calls to these methods into a | 
|  | // HCompare instruction, we must handle the -0.0 case with | 
|  | // care here. | 
|  | DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant())); | 
|  | __ Fcmp(lhs_reg, 0.0); | 
|  | } else { | 
|  | __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitCompare(HCompare* compare) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall); | 
|  | DataType::Type in_type = compare->InputAt(0)->GetType(); | 
|  | switch (in_type) { | 
|  | case DataType::Type::kBool: | 
|  | case DataType::Type::kUint8: | 
|  | case DataType::Type::kInt8: | 
|  | case DataType::Type::kUint16: | 
|  | case DataType::Type::kInt16: | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | } | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, | 
|  | IsFloatingPointZeroConstant(compare->InputAt(1)) | 
|  | ? Location::ConstantLocation(compare->InputAt(1)->AsConstant()) | 
|  | : Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type for compare operation " << in_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) { | 
|  | DataType::Type in_type = compare->InputAt(0)->GetType(); | 
|  |  | 
|  | //  0 if: left == right | 
|  | //  1 if: left  > right | 
|  | // -1 if: left  < right | 
|  | switch (in_type) { | 
|  | case DataType::Type::kBool: | 
|  | case DataType::Type::kUint8: | 
|  | case DataType::Type::kInt8: | 
|  | case DataType::Type::kUint16: | 
|  | case DataType::Type::kInt16: | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: { | 
|  | Register result = OutputRegister(compare); | 
|  | Register left = InputRegisterAt(compare, 0); | 
|  | Operand right = InputOperandAt(compare, 1); | 
|  | __ Cmp(left, right); | 
|  | __ Cset(result, ne);          // result == +1 if NE or 0 otherwise | 
|  | __ Cneg(result, result, lt);  // result == -1 if LT or unchanged otherwise | 
|  | break; | 
|  | } | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: { | 
|  | Register result = OutputRegister(compare); | 
|  | GenerateFcmp(compare); | 
|  | __ Cset(result, ne); | 
|  | __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias())); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unimplemented compare type " << in_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::HandleCondition(HCondition* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
|  |  | 
|  | if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, | 
|  | IsFloatingPointZeroConstant(instruction->InputAt(1)) | 
|  | ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant()) | 
|  | : Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | // Integer cases. | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); | 
|  | } | 
|  |  | 
|  | if (!instruction->IsEmittedAtUseSite()) { | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) { | 
|  | if (instruction->IsEmittedAtUseSite()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Register res = RegisterFrom(locations->Out(), instruction->GetType()); | 
|  | IfCondition if_cond = instruction->GetCondition(); | 
|  |  | 
|  | if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) { | 
|  | GenerateFcmp(instruction); | 
|  | __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias())); | 
|  | } else { | 
|  | // Integer cases. | 
|  | Register lhs = InputRegisterAt(instruction, 0); | 
|  | Operand rhs = InputOperandAt(instruction, 1); | 
|  | __ Cmp(lhs, rhs); | 
|  | __ Cset(res, ARM64Condition(if_cond)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define FOR_EACH_CONDITION_INSTRUCTION(M)                                                \ | 
|  | M(Equal)                                                                               \ | 
|  | M(NotEqual)                                                                            \ | 
|  | M(LessThan)                                                                            \ | 
|  | M(LessThanOrEqual)                                                                     \ | 
|  | M(GreaterThan)                                                                         \ | 
|  | M(GreaterThanOrEqual)                                                                  \ | 
|  | M(Below)                                                                               \ | 
|  | M(BelowOrEqual)                                                                        \ | 
|  | M(Above)                                                                               \ | 
|  | M(AboveOrEqual) | 
|  | #define DEFINE_CONDITION_VISITORS(Name)                                                  \ | 
|  | void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }         \ | 
|  | void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } | 
|  | FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS) | 
|  | #undef DEFINE_CONDITION_VISITORS | 
|  | #undef FOR_EACH_CONDITION_INSTRUCTION | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) { | 
|  | int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); | 
|  | uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); | 
|  | DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm; | 
|  |  | 
|  | Register out = OutputRegister(instruction); | 
|  | Register dividend = InputRegisterAt(instruction, 0); | 
|  |  | 
|  | Register final_dividend; | 
|  | if (HasNonNegativeOrMinIntInputAt(instruction, 0)) { | 
|  | // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends. | 
|  | // NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends: | 
|  | //   imm == 2 | 
|  | //     add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001 | 
|  | //     asr out, out(0x80000001), #1 => out = 0xc0000000 | 
|  | //     This is the same as 'asr out, 0x80000000, #1' | 
|  | // | 
|  | //   imm > 2 | 
|  | //     add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number | 
|  | //         of the rightmost 1s is ctz_imm. | 
|  | //     cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true) | 
|  | //     csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1 | 
|  | //     asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the | 
|  | //         leftmost 1s is ctz_imm + 1. | 
|  | //     This is the same as 'asr out, dividend(0x80000000), #ctz_imm'. | 
|  | // | 
|  | //   imm == INT32_MIN | 
|  | //     add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1 | 
|  | //     cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true) | 
|  | //     csel out, temp(-1), dividend(0x80000000), lt => out = -1 | 
|  | //     neg out, out(-1), asr #31 => out = 1 | 
|  | //     This is the same as 'neg out, dividend(0x80000000), asr #31'. | 
|  | final_dividend = dividend; | 
|  | } else { | 
|  | if (abs_imm == 2) { | 
|  | int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte; | 
|  | __ Add(out, dividend, Operand(dividend, LSR, bits - 1)); | 
|  | } else { | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireSameSizeAs(out); | 
|  | __ Add(temp, dividend, abs_imm - 1); | 
|  | __ Cmp(dividend, 0); | 
|  | __ Csel(out, temp, dividend, lt); | 
|  | } | 
|  | final_dividend = out; | 
|  | } | 
|  |  | 
|  | int ctz_imm = CTZ(abs_imm); | 
|  | if (imm > 0) { | 
|  | __ Asr(out, final_dividend, ctz_imm); | 
|  | } else { | 
|  | __ Neg(out, Operand(final_dividend, ASR, ctz_imm)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true if the magic number was modified by subtracting 2^32(Int32 div) or 2^64(Int64 div). | 
|  | // So dividend needs to be added. | 
|  | static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) { | 
|  | return divisor > 0 && magic_number < 0; | 
|  | } | 
|  |  | 
|  | // Return true if the magic number was modified by adding 2^32(Int32 div) or 2^64(Int64 div). | 
|  | // So dividend needs to be subtracted. | 
|  | static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) { | 
|  | return divisor < 0 && magic_number > 0; | 
|  | } | 
|  |  | 
|  | // Generate code which increments the value in register 'in' by 1 if the value is negative. | 
|  | // It is done with 'add out, in, in, lsr #31 or #63'. | 
|  | // If the value is a result of an operation setting the N flag, CINC MI can be used | 
|  | // instead of ADD. 'use_cond_inc' controls this. | 
|  | void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne( | 
|  | Register out, | 
|  | Register in, | 
|  | bool use_cond_inc) { | 
|  | if (use_cond_inc) { | 
|  | __ Cinc(out, in, mi); | 
|  | } else { | 
|  | __ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper to generate code producing the result of HRem with a constant divisor. | 
|  | void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant( | 
|  | Register out, | 
|  | Register dividend, | 
|  | Register quotient, | 
|  | int64_t divisor, | 
|  | UseScratchRegisterScope* temps_scope) { | 
|  | Register temp_imm = temps_scope->AcquireSameSizeAs(out); | 
|  | __ Mov(temp_imm, divisor); | 
|  | __ Msub(out, quotient, temp_imm, dividend); | 
|  | } | 
|  |  | 
|  | // Helper to generate code for HDiv/HRem instructions when a dividend is non-negative and | 
|  | // a divisor is a positive constant, not power of 2. | 
|  | void InstructionCodeGeneratorARM64::GenerateInt64UnsignedDivRemWithAnyPositiveConstant( | 
|  | HBinaryOperation* instruction) { | 
|  | DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
|  | DCHECK(instruction->GetResultType() == DataType::Type::kInt64); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location second = locations->InAt(1); | 
|  | DCHECK(second.IsConstant()); | 
|  |  | 
|  | Register out = OutputRegister(instruction); | 
|  | Register dividend = InputRegisterAt(instruction, 0); | 
|  | int64_t imm = Int64FromConstant(second.GetConstant()); | 
|  | DCHECK_GT(imm, 0); | 
|  |  | 
|  | int64_t magic; | 
|  | int shift; | 
|  | CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift); | 
|  |  | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireSameSizeAs(out); | 
|  |  | 
|  | auto generate_unsigned_div_code = [this, magic, shift](Register out, | 
|  | Register dividend, | 
|  | Register temp) { | 
|  | // temp = get_high(dividend * magic) | 
|  | __ Mov(temp, magic); | 
|  | if (magic > 0 && shift == 0) { | 
|  | __ Smulh(out, dividend, temp); | 
|  | } else { | 
|  | __ Smulh(temp, dividend, temp); | 
|  | if (magic < 0) { | 
|  | // The negative magic means that the multiplier m is greater than INT64_MAX. | 
|  | // In such a case shift is never 0. See the proof in | 
|  | // InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant. | 
|  | __ Add(temp, temp, dividend); | 
|  | } | 
|  | DCHECK_NE(shift, 0); | 
|  | __ Lsr(out, temp, shift); | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (instruction->IsDiv()) { | 
|  | generate_unsigned_div_code(out, dividend, temp); | 
|  | } else { | 
|  | generate_unsigned_div_code(temp, dividend, temp); | 
|  | GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper to generate code for HDiv/HRem instructions for any dividend and a constant divisor | 
|  | // (not power of 2). | 
|  | void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant( | 
|  | HBinaryOperation* instruction) { | 
|  | DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
|  | DCHECK(instruction->GetResultType() == DataType::Type::kInt64); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location second = locations->InAt(1); | 
|  | DCHECK(second.IsConstant()); | 
|  |  | 
|  | Register out = OutputRegister(instruction); | 
|  | Register dividend = InputRegisterAt(instruction, 0); | 
|  | int64_t imm = Int64FromConstant(second.GetConstant()); | 
|  |  | 
|  | int64_t magic; | 
|  | int shift; | 
|  | CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift); | 
|  |  | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireSameSizeAs(out); | 
|  |  | 
|  | // temp = get_high(dividend * magic) | 
|  | __ Mov(temp, magic); | 
|  | __ Smulh(temp, dividend, temp); | 
|  |  | 
|  | // The multiplication result might need some corrections to be finalized. | 
|  | // The last correction is to increment by 1, if the result is negative. | 
|  | // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'. | 
|  | // Such ADD usually has latency 2, e.g. on Cortex-A55. | 
|  | // However if one of the corrections is ADD or SUB, the sign can be detected | 
|  | // with ADDS/SUBS. They set the N flag if the result is negative. | 
|  | // This allows to use CINC MI which has latency 1. | 
|  | bool use_cond_inc = false; | 
|  |  | 
|  | // Some combinations of magic_number and the divisor require to correct the result. | 
|  | // Check whether the correction is needed. | 
|  | if (NeedToAddDividend(magic, imm)) { | 
|  | __ Adds(temp, temp, dividend); | 
|  | use_cond_inc = true; | 
|  | } else if (NeedToSubDividend(magic, imm)) { | 
|  | __ Subs(temp, temp, dividend); | 
|  | use_cond_inc = true; | 
|  | } | 
|  |  | 
|  | if (shift != 0) { | 
|  | __ Asr(temp, temp, shift); | 
|  | } | 
|  |  | 
|  | if (instruction->IsRem()) { | 
|  | GenerateIncrementNegativeByOne(temp, temp, use_cond_inc); | 
|  | GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); | 
|  | } else { | 
|  | GenerateIncrementNegativeByOne(out, temp, use_cond_inc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant( | 
|  | HBinaryOperation* instruction) { | 
|  | DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
|  | DCHECK(instruction->GetResultType() == DataType::Type::kInt32); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location second = locations->InAt(1); | 
|  | DCHECK(second.IsConstant()); | 
|  |  | 
|  | Register out = OutputRegister(instruction); | 
|  | Register dividend = InputRegisterAt(instruction, 0); | 
|  | int64_t imm = Int64FromConstant(second.GetConstant()); | 
|  |  | 
|  | int64_t magic; | 
|  | int shift; | 
|  | CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift); | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireSameSizeAs(out); | 
|  |  | 
|  | // temp = get_high(dividend * magic) | 
|  | __ Mov(temp, magic); | 
|  | __ Smull(temp.X(), dividend, temp); | 
|  |  | 
|  | // The multiplication result might need some corrections to be finalized. | 
|  | // The last correction is to increment by 1, if the result is negative. | 
|  | // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'. | 
|  | // Such ADD usually has latency 2, e.g. on Cortex-A55. | 
|  | // However if one of the corrections is ADD or SUB, the sign can be detected | 
|  | // with ADDS/SUBS. They set the N flag if the result is negative. | 
|  | // This allows to use CINC MI which has latency 1. | 
|  | bool use_cond_inc = false; | 
|  |  | 
|  | // ADD/SUB correction is performed in the high 32 bits | 
|  | // as high 32 bits are ignored because type are kInt32. | 
|  | if (NeedToAddDividend(magic, imm)) { | 
|  | __ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32)); | 
|  | use_cond_inc = true; | 
|  | } else if (NeedToSubDividend(magic, imm)) { | 
|  | __ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32)); | 
|  | use_cond_inc = true; | 
|  | } | 
|  |  | 
|  | // Extract the result from the high 32 bits and apply the final right shift. | 
|  | DCHECK_LT(shift, 32); | 
|  | if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) { | 
|  | // No need to adjust the result for a non-negative dividend and a positive divisor. | 
|  | if (instruction->IsDiv()) { | 
|  | __ Lsr(out.X(), temp.X(), 32 + shift); | 
|  | } else { | 
|  | __ Lsr(temp.X(), temp.X(), 32 + shift); | 
|  | GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); | 
|  | } | 
|  | } else { | 
|  | __ Asr(temp.X(), temp.X(), 32 + shift); | 
|  |  | 
|  | if (instruction->IsRem()) { | 
|  | GenerateIncrementNegativeByOne(temp, temp, use_cond_inc); | 
|  | GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); | 
|  | } else { | 
|  | GenerateIncrementNegativeByOne(out, temp, use_cond_inc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction, | 
|  | int64_t divisor) { | 
|  | DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
|  | if (instruction->GetResultType() == DataType::Type::kInt64) { | 
|  | if (divisor > 0 && HasNonNegativeInputAt(instruction, 0)) { | 
|  | GenerateInt64UnsignedDivRemWithAnyPositiveConstant(instruction); | 
|  | } else { | 
|  | GenerateInt64DivRemWithAnyConstant(instruction); | 
|  | } | 
|  | } else { | 
|  | GenerateInt32DivRemWithAnyConstant(instruction); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) { | 
|  | int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); | 
|  |  | 
|  | if (imm == 0) { | 
|  | // Do not generate anything. DivZeroCheck would prevent any code to be executed. | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (IsPowerOfTwo(AbsOrMin(imm))) { | 
|  | GenerateIntDivForPower2Denom(instruction); | 
|  | } else { | 
|  | // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier. | 
|  | DCHECK(imm < -2 || imm > 2) << imm; | 
|  | GenerateDivRemWithAnyConstant(instruction, imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) { | 
|  | DCHECK(DataType::IsIntOrLongType(instruction->GetResultType())) | 
|  | << instruction->GetResultType(); | 
|  |  | 
|  | if (instruction->GetLocations()->InAt(1).IsConstant()) { | 
|  | GenerateIntDivForConstDenom(instruction); | 
|  | } else { | 
|  | Register out = OutputRegister(instruction); | 
|  | Register dividend = InputRegisterAt(instruction, 0); | 
|  | Register divisor = InputRegisterAt(instruction, 1); | 
|  | __ Sdiv(out, dividend, divisor); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitDiv(HDiv* div) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall); | 
|  | switch (div->GetResultType()) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected div type " << div->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) { | 
|  | DataType::Type type = div->GetResultType(); | 
|  | switch (type) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | GenerateIntDiv(div); | 
|  | break; | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected div type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
|  | LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); | 
|  | locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
|  | SlowPathCodeARM64* slow_path = | 
|  | new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | Location value = instruction->GetLocations()->InAt(0); | 
|  |  | 
|  | DataType::Type type = instruction->GetType(); | 
|  |  | 
|  | if (!DataType::IsIntegralType(type)) { | 
|  | LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | if (value.IsConstant()) { | 
|  | int64_t divisor = Int64FromLocation(value); | 
|  | if (divisor == 0) { | 
|  | __ B(slow_path->GetEntryLabel()); | 
|  | } else { | 
|  | // A division by a non-null constant is valid. We don't need to perform | 
|  | // any check, so simply fall through. | 
|  | } | 
|  | } else { | 
|  | __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitDoubleConstant( | 
|  | HDoubleConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitExit(HExit* exit) { | 
|  | exit->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) { | 
|  | if (successor->IsExitBlock()) { | 
|  | DCHECK(got->GetPrevious()->AlwaysThrows()); | 
|  | return;  // no code needed | 
|  | } | 
|  |  | 
|  | HBasicBlock* block = got->GetBlock(); | 
|  | HInstruction* previous = got->GetPrevious(); | 
|  | HLoopInformation* info = block->GetLoopInformation(); | 
|  |  | 
|  | if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { | 
|  | codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false); | 
|  | GenerateSuspendCheck(info->GetSuspendCheck(), successor); | 
|  | return;  // `GenerateSuspendCheck()` emitted the jump. | 
|  | } | 
|  | if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { | 
|  | GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  | if (!codegen_->GoesToNextBlock(block, successor)) { | 
|  | __ B(codegen_->GetLabelOf(successor)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitGoto(HGoto* got) { | 
|  | got->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) { | 
|  | HandleGoto(got, got->GetSuccessor()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) { | 
|  | try_boundary->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) { | 
|  | HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); | 
|  | if (!successor->IsExitBlock()) { | 
|  | HandleGoto(try_boundary, successor); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction, | 
|  | size_t condition_input_index, | 
|  | vixl::aarch64::Label* true_target, | 
|  | vixl::aarch64::Label* false_target) { | 
|  | HInstruction* cond = instruction->InputAt(condition_input_index); | 
|  |  | 
|  | if (true_target == nullptr && false_target == nullptr) { | 
|  | // Nothing to do. The code always falls through. | 
|  | return; | 
|  | } else if (cond->IsIntConstant()) { | 
|  | // Constant condition, statically compared against "true" (integer value 1). | 
|  | if (cond->AsIntConstant()->IsTrue()) { | 
|  | if (true_target != nullptr) { | 
|  | __ B(true_target); | 
|  | } | 
|  | } else { | 
|  | DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); | 
|  | if (false_target != nullptr) { | 
|  | __ B(false_target); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The following code generates these patterns: | 
|  | //  (1) true_target == nullptr && false_target != nullptr | 
|  | //        - opposite condition true => branch to false_target | 
|  | //  (2) true_target != nullptr && false_target == nullptr | 
|  | //        - condition true => branch to true_target | 
|  | //  (3) true_target != nullptr && false_target != nullptr | 
|  | //        - condition true => branch to true_target | 
|  | //        - branch to false_target | 
|  | if (IsBooleanValueOrMaterializedCondition(cond)) { | 
|  | // The condition instruction has been materialized, compare the output to 0. | 
|  | Location cond_val = instruction->GetLocations()->InAt(condition_input_index); | 
|  | DCHECK(cond_val.IsRegister()); | 
|  | if (true_target == nullptr) { | 
|  | __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target); | 
|  | } else { | 
|  | __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target); | 
|  | } | 
|  | } else { | 
|  | // The condition instruction has not been materialized, use its inputs as | 
|  | // the comparison and its condition as the branch condition. | 
|  | HCondition* condition = cond->AsCondition(); | 
|  |  | 
|  | DataType::Type type = condition->InputAt(0)->GetType(); | 
|  | if (DataType::IsFloatingPointType(type)) { | 
|  | GenerateFcmp(condition); | 
|  | if (true_target == nullptr) { | 
|  | IfCondition opposite_condition = condition->GetOppositeCondition(); | 
|  | __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target); | 
|  | } else { | 
|  | __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target); | 
|  | } | 
|  | } else { | 
|  | // Integer cases. | 
|  | Register lhs = InputRegisterAt(condition, 0); | 
|  | Operand rhs = InputOperandAt(condition, 1); | 
|  |  | 
|  | Condition arm64_cond; | 
|  | vixl::aarch64::Label* non_fallthrough_target; | 
|  | if (true_target == nullptr) { | 
|  | arm64_cond = ARM64Condition(condition->GetOppositeCondition()); | 
|  | non_fallthrough_target = false_target; | 
|  | } else { | 
|  | arm64_cond = ARM64Condition(condition->GetCondition()); | 
|  | non_fallthrough_target = true_target; | 
|  | } | 
|  |  | 
|  | if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) && | 
|  | rhs.IsImmediate() && (rhs.GetImmediate() == 0)) { | 
|  | switch (arm64_cond) { | 
|  | case eq: | 
|  | __ Cbz(lhs, non_fallthrough_target); | 
|  | break; | 
|  | case ne: | 
|  | __ Cbnz(lhs, non_fallthrough_target); | 
|  | break; | 
|  | case lt: | 
|  | // Test the sign bit and branch accordingly. | 
|  | __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); | 
|  | break; | 
|  | case ge: | 
|  | // Test the sign bit and branch accordingly. | 
|  | __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); | 
|  | break; | 
|  | default: | 
|  | // Without the `static_cast` the compiler throws an error for | 
|  | // `-Werror=sign-promo`. | 
|  | LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond); | 
|  | } | 
|  | } else { | 
|  | __ Cmp(lhs, rhs); | 
|  | __ B(arm64_cond, non_fallthrough_target); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If neither branch falls through (case 3), the conditional branch to `true_target` | 
|  | // was already emitted (case 2) and we need to emit a jump to `false_target`. | 
|  | if (true_target != nullptr && false_target != nullptr) { | 
|  | __ B(false_target); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitIf(HIf* if_instr) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); | 
|  | if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) { | 
|  | HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); | 
|  | HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); | 
|  | vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor); | 
|  | if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) { | 
|  | true_target = nullptr; | 
|  | } | 
|  | vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor); | 
|  | if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) { | 
|  | false_target = nullptr; | 
|  | } | 
|  | GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) | 
|  | LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | RegisterSet caller_saves = RegisterSet::Empty(); | 
|  | caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); | 
|  | locations->SetCustomSlowPathCallerSaves(caller_saves); | 
|  | if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) { | 
|  | SlowPathCodeARM64* slow_path = | 
|  | deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize); | 
|  | GenerateTestAndBranch(deoptimize, | 
|  | /* condition_input_index= */ 0, | 
|  | slow_path->GetEntryLabel(), | 
|  | /* false_target= */ nullptr); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) | 
|  | LocationSummary(flag, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { | 
|  | __ Ldr(OutputRegister(flag), | 
|  | MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag())); | 
|  | } | 
|  |  | 
|  | static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) { | 
|  | return condition->IsCondition() && | 
|  | DataType::IsFloatingPointType(condition->InputAt(0)->GetType()); | 
|  | } | 
|  |  | 
|  | static inline Condition GetConditionForSelect(HCondition* condition) { | 
|  | IfCondition cond = condition->AsCondition()->GetCondition(); | 
|  | return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias()) | 
|  | : ARM64Condition(cond); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitSelect(HSelect* select) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); | 
|  | if (DataType::IsFloatingPointType(select->GetType())) { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | } else { | 
|  | HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); | 
|  | HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); | 
|  | bool is_true_value_constant = cst_true_value != nullptr; | 
|  | bool is_false_value_constant = cst_false_value != nullptr; | 
|  | // Ask VIXL whether we should synthesize constants in registers. | 
|  | // We give an arbitrary register to VIXL when dealing with non-constant inputs. | 
|  | Operand true_op = is_true_value_constant ? | 
|  | Operand(Int64FromConstant(cst_true_value)) : Operand(x1); | 
|  | Operand false_op = is_false_value_constant ? | 
|  | Operand(Int64FromConstant(cst_false_value)) : Operand(x2); | 
|  | bool true_value_in_register = false; | 
|  | bool false_value_in_register = false; | 
|  | MacroAssembler::GetCselSynthesisInformation( | 
|  | x0, true_op, false_op, &true_value_in_register, &false_value_in_register); | 
|  | true_value_in_register |= !is_true_value_constant; | 
|  | false_value_in_register |= !is_false_value_constant; | 
|  |  | 
|  | locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister() | 
|  | : Location::ConstantLocation(cst_true_value)); | 
|  | locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister() | 
|  | : Location::ConstantLocation(cst_false_value)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { | 
|  | locations->SetInAt(2, Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) { | 
|  | HInstruction* cond = select->GetCondition(); | 
|  | Condition csel_cond; | 
|  |  | 
|  | if (IsBooleanValueOrMaterializedCondition(cond)) { | 
|  | if (cond->IsCondition() && cond->GetNext() == select) { | 
|  | // Use the condition flags set by the previous instruction. | 
|  | csel_cond = GetConditionForSelect(cond->AsCondition()); | 
|  | } else { | 
|  | __ Cmp(InputRegisterAt(select, 2), 0); | 
|  | csel_cond = ne; | 
|  | } | 
|  | } else if (IsConditionOnFloatingPointValues(cond)) { | 
|  | GenerateFcmp(cond); | 
|  | csel_cond = GetConditionForSelect(cond->AsCondition()); | 
|  | } else { | 
|  | __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1)); | 
|  | csel_cond = GetConditionForSelect(cond->AsCondition()); | 
|  | } | 
|  |  | 
|  | if (DataType::IsFloatingPointType(select->GetType())) { | 
|  | __ Fcsel(OutputFPRegister(select), | 
|  | InputFPRegisterAt(select, 1), | 
|  | InputFPRegisterAt(select, 0), | 
|  | csel_cond); | 
|  | } else { | 
|  | __ Csel(OutputRegister(select), | 
|  | InputOperandAt(select, 1), | 
|  | InputOperandAt(select, 0), | 
|  | csel_cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) { | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(info); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) { | 
|  | // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) { | 
|  | __ Claim(adjustment); | 
|  | GetAssembler()->cfi().AdjustCFAOffset(adjustment); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) { | 
|  | __ Drop(adjustment); | 
|  | GetAssembler()->cfi().AdjustCFAOffset(-adjustment); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateNop() { | 
|  | __ Nop(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitPredicatedInstanceFieldGet( | 
|  | HPredicatedInstanceFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitPredicatedInstanceFieldGet( | 
|  | HPredicatedInstanceFieldGet* instruction) { | 
|  | vixl::aarch64::Label finish; | 
|  | __ Cbz(InputRegisterAt(instruction, 1), &finish); | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | __ Bind(&finish); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
|  | HandleFieldSet(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
|  | HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); | 
|  | } | 
|  |  | 
|  | // Temp is used for read barrier. | 
|  | static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { | 
|  | if (kEmitCompilerReadBarrier && | 
|  | (kUseBakerReadBarrier || | 
|  | type_check_kind == TypeCheckKind::kAbstractClassCheck || | 
|  | type_check_kind == TypeCheckKind::kClassHierarchyCheck || | 
|  | type_check_kind == TypeCheckKind::kArrayObjectCheck)) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Interface case has 3 temps, one for holding the number of interfaces, one for the current | 
|  | // interface pointer, one for loading the current interface. | 
|  | // The other checks have one temp for loading the object's class. | 
|  | static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { | 
|  | if (type_check_kind == TypeCheckKind::kInterfaceCheck) { | 
|  | return 3; | 
|  | } | 
|  | return 1 + NumberOfInstanceOfTemps(type_check_kind); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) { | 
|  | LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
|  | TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
|  | bool baker_read_barrier_slow_path = false; | 
|  | switch (type_check_kind) { | 
|  | case TypeCheckKind::kExactCheck: | 
|  | case TypeCheckKind::kAbstractClassCheck: | 
|  | case TypeCheckKind::kClassHierarchyCheck: | 
|  | case TypeCheckKind::kArrayObjectCheck: { | 
|  | bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); | 
|  | call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; | 
|  | baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; | 
|  | break; | 
|  | } | 
|  | case TypeCheckKind::kArrayCheck: | 
|  | case TypeCheckKind::kUnresolvedCheck: | 
|  | case TypeCheckKind::kInterfaceCheck: | 
|  | call_kind = LocationSummary::kCallOnSlowPath; | 
|  | break; | 
|  | case TypeCheckKind::kBitstringCheck: | 
|  | break; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); | 
|  | if (baker_read_barrier_slow_path) { | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | } | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (type_check_kind == TypeCheckKind::kBitstringCheck) { | 
|  | locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); | 
|  | locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); | 
|  | locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); | 
|  | } else { | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | } | 
|  | // The "out" register is used as a temporary, so it overlaps with the inputs. | 
|  | // Note that TypeCheckSlowPathARM64 uses this register too. | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
|  | // Add temps if necessary for read barriers. | 
|  | locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) { | 
|  | TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location obj_loc = locations->InAt(0); | 
|  | Register obj = InputRegisterAt(instruction, 0); | 
|  | Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) | 
|  | ? Register() | 
|  | : InputRegisterAt(instruction, 1); | 
|  | Location out_loc = locations->Out(); | 
|  | Register out = OutputRegister(instruction); | 
|  | const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); | 
|  | DCHECK_LE(num_temps, 1u); | 
|  | Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); | 
|  | uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
|  | uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
|  | uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
|  | uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
|  |  | 
|  | vixl::aarch64::Label done, zero; | 
|  | SlowPathCodeARM64* slow_path = nullptr; | 
|  |  | 
|  | // Return 0 if `obj` is null. | 
|  | // Avoid null check if we know `obj` is not null. | 
|  | if (instruction->MustDoNullCheck()) { | 
|  | __ Cbz(obj, &zero); | 
|  | } | 
|  |  | 
|  | switch (type_check_kind) { | 
|  | case TypeCheckKind::kExactCheck: { | 
|  | ReadBarrierOption read_barrier_option = | 
|  | CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | read_barrier_option); | 
|  | __ Cmp(out, cls); | 
|  | __ Cset(out, eq); | 
|  | if (zero.IsLinked()) { | 
|  | __ B(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kAbstractClassCheck: { | 
|  | ReadBarrierOption read_barrier_option = | 
|  | CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | read_barrier_option); | 
|  | // If the class is abstract, we eagerly fetch the super class of the | 
|  | // object to avoid doing a comparison we know will fail. | 
|  | vixl::aarch64::Label loop, success; | 
|  | __ Bind(&loop); | 
|  | // /* HeapReference<Class> */ out = out->super_class_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | out_loc, | 
|  | super_offset, | 
|  | maybe_temp_loc, | 
|  | read_barrier_option); | 
|  | // If `out` is null, we use it for the result, and jump to `done`. | 
|  | __ Cbz(out, &done); | 
|  | __ Cmp(out, cls); | 
|  | __ B(ne, &loop); | 
|  | __ Mov(out, 1); | 
|  | if (zero.IsLinked()) { | 
|  | __ B(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kClassHierarchyCheck: { | 
|  | ReadBarrierOption read_barrier_option = | 
|  | CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | read_barrier_option); | 
|  | // Walk over the class hierarchy to find a match. | 
|  | vixl::aarch64::Label loop, success; | 
|  | __ Bind(&loop); | 
|  | __ Cmp(out, cls); | 
|  | __ B(eq, &success); | 
|  | // /* HeapReference<Class> */ out = out->super_class_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | out_loc, | 
|  | super_offset, | 
|  | maybe_temp_loc, | 
|  | read_barrier_option); | 
|  | __ Cbnz(out, &loop); | 
|  | // If `out` is null, we use it for the result, and jump to `done`. | 
|  | __ B(&done); | 
|  | __ Bind(&success); | 
|  | __ Mov(out, 1); | 
|  | if (zero.IsLinked()) { | 
|  | __ B(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kArrayObjectCheck: { | 
|  | ReadBarrierOption read_barrier_option = | 
|  | CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | read_barrier_option); | 
|  | // Do an exact check. | 
|  | vixl::aarch64::Label exact_check; | 
|  | __ Cmp(out, cls); | 
|  | __ B(eq, &exact_check); | 
|  | // Otherwise, we need to check that the object's class is a non-primitive array. | 
|  | // /* HeapReference<Class> */ out = out->component_type_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | out_loc, | 
|  | component_offset, | 
|  | maybe_temp_loc, | 
|  | read_barrier_option); | 
|  | // If `out` is null, we use it for the result, and jump to `done`. | 
|  | __ Cbz(out, &done); | 
|  | __ Ldrh(out, HeapOperand(out, primitive_offset)); | 
|  | static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
|  | __ Cbnz(out, &zero); | 
|  | __ Bind(&exact_check); | 
|  | __ Mov(out, 1); | 
|  | __ B(&done); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kArrayCheck: { | 
|  | // No read barrier since the slow path will retry upon failure. | 
|  | // /* HeapReference<Class> */ out = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | kWithoutReadBarrier); | 
|  | __ Cmp(out, cls); | 
|  | DCHECK(locations->OnlyCallsOnSlowPath()); | 
|  | slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( | 
|  | instruction, /* is_fatal= */ false); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | __ B(ne, slow_path->GetEntryLabel()); | 
|  | __ Mov(out, 1); | 
|  | if (zero.IsLinked()) { | 
|  | __ B(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kUnresolvedCheck: | 
|  | case TypeCheckKind::kInterfaceCheck: { | 
|  | // Note that we indeed only call on slow path, but we always go | 
|  | // into the slow path for the unresolved and interface check | 
|  | // cases. | 
|  | // | 
|  | // We cannot directly call the InstanceofNonTrivial runtime | 
|  | // entry point without resorting to a type checking slow path | 
|  | // here (i.e. by calling InvokeRuntime directly), as it would | 
|  | // require to assign fixed registers for the inputs of this | 
|  | // HInstanceOf instruction (following the runtime calling | 
|  | // convention), which might be cluttered by the potential first | 
|  | // read barrier emission at the beginning of this method. | 
|  | // | 
|  | // TODO: Introduce a new runtime entry point taking the object | 
|  | // to test (instead of its class) as argument, and let it deal | 
|  | // with the read barrier issues. This will let us refactor this | 
|  | // case of the `switch` code as it was previously (with a direct | 
|  | // call to the runtime not using a type checking slow path). | 
|  | // This should also be beneficial for the other cases above. | 
|  | DCHECK(locations->OnlyCallsOnSlowPath()); | 
|  | slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( | 
|  | instruction, /* is_fatal= */ false); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | __ B(slow_path->GetEntryLabel()); | 
|  | if (zero.IsLinked()) { | 
|  | __ B(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kBitstringCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | out_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | GenerateBitstringTypeCheckCompare(instruction, out); | 
|  | __ Cset(out, eq); | 
|  | if (zero.IsLinked()) { | 
|  | __ B(&done); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (zero.IsLinked()) { | 
|  | __ Bind(&zero); | 
|  | __ Mov(out, 0); | 
|  | } | 
|  |  | 
|  | if (done.IsLinked()) { | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | if (slow_path != nullptr) { | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) { | 
|  | TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
|  | LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | if (type_check_kind == TypeCheckKind::kBitstringCheck) { | 
|  | locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); | 
|  | locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); | 
|  | locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); | 
|  | } else { | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | } | 
|  | // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64. | 
|  | locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) { | 
|  | TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location obj_loc = locations->InAt(0); | 
|  | Register obj = InputRegisterAt(instruction, 0); | 
|  | Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) | 
|  | ? Register() | 
|  | : InputRegisterAt(instruction, 1); | 
|  | const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); | 
|  | DCHECK_GE(num_temps, 1u); | 
|  | DCHECK_LE(num_temps, 3u); | 
|  | Location temp_loc = locations->GetTemp(0); | 
|  | Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); | 
|  | Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); | 
|  | Register temp = WRegisterFrom(temp_loc); | 
|  | const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
|  | const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
|  | const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
|  | const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
|  | const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); | 
|  | const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); | 
|  | const uint32_t object_array_data_offset = | 
|  | mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); | 
|  |  | 
|  | bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); | 
|  | SlowPathCodeARM64* type_check_slow_path = | 
|  | new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( | 
|  | instruction, is_type_check_slow_path_fatal); | 
|  | codegen_->AddSlowPath(type_check_slow_path); | 
|  |  | 
|  | vixl::aarch64::Label done; | 
|  | // Avoid null check if we know obj is not null. | 
|  | if (instruction->MustDoNullCheck()) { | 
|  | __ Cbz(obj, &done); | 
|  | } | 
|  |  | 
|  | switch (type_check_kind) { | 
|  | case TypeCheckKind::kExactCheck: | 
|  | case TypeCheckKind::kArrayCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | __ Cmp(temp, cls); | 
|  | // Jump to slow path for throwing the exception or doing a | 
|  | // more involved array check. | 
|  | __ B(ne, type_check_slow_path->GetEntryLabel()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kAbstractClassCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // If the class is abstract, we eagerly fetch the super class of the | 
|  | // object to avoid doing a comparison we know will fail. | 
|  | vixl::aarch64::Label loop; | 
|  | __ Bind(&loop); | 
|  | // /* HeapReference<Class> */ temp = temp->super_class_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | temp_loc, | 
|  | super_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // If the class reference currently in `temp` is null, jump to the slow path to throw the | 
|  | // exception. | 
|  | __ Cbz(temp, type_check_slow_path->GetEntryLabel()); | 
|  | // Otherwise, compare classes. | 
|  | __ Cmp(temp, cls); | 
|  | __ B(ne, &loop); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kClassHierarchyCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // Walk over the class hierarchy to find a match. | 
|  | vixl::aarch64::Label loop; | 
|  | __ Bind(&loop); | 
|  | __ Cmp(temp, cls); | 
|  | __ B(eq, &done); | 
|  |  | 
|  | // /* HeapReference<Class> */ temp = temp->super_class_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | temp_loc, | 
|  | super_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // If the class reference currently in `temp` is not null, jump | 
|  | // back at the beginning of the loop. | 
|  | __ Cbnz(temp, &loop); | 
|  | // Otherwise, jump to the slow path to throw the exception. | 
|  | __ B(type_check_slow_path->GetEntryLabel()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kArrayObjectCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // Do an exact check. | 
|  | __ Cmp(temp, cls); | 
|  | __ B(eq, &done); | 
|  |  | 
|  | // Otherwise, we need to check that the object's class is a non-primitive array. | 
|  | // /* HeapReference<Class> */ temp = temp->component_type_ | 
|  | GenerateReferenceLoadOneRegister(instruction, | 
|  | temp_loc, | 
|  | component_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // If the component type is null, jump to the slow path to throw the exception. | 
|  | __ Cbz(temp, type_check_slow_path->GetEntryLabel()); | 
|  | // Otherwise, the object is indeed an array. Further check that this component type is not a | 
|  | // primitive type. | 
|  | __ Ldrh(temp, HeapOperand(temp, primitive_offset)); | 
|  | static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
|  | __ Cbnz(temp, type_check_slow_path->GetEntryLabel()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kUnresolvedCheck: | 
|  | // We always go into the type check slow path for the unresolved check cases. | 
|  | // | 
|  | // We cannot directly call the CheckCast runtime entry point | 
|  | // without resorting to a type checking slow path here (i.e. by | 
|  | // calling InvokeRuntime directly), as it would require to | 
|  | // assign fixed registers for the inputs of this HInstanceOf | 
|  | // instruction (following the runtime calling convention), which | 
|  | // might be cluttered by the potential first read barrier | 
|  | // emission at the beginning of this method. | 
|  | __ B(type_check_slow_path->GetEntryLabel()); | 
|  | break; | 
|  | case TypeCheckKind::kInterfaceCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | // /* HeapReference<Class> */ temp = temp->iftable_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | temp_loc, | 
|  | iftable_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  | // Iftable is never null. | 
|  | __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset)); | 
|  | // Loop through the iftable and check if any class matches. | 
|  | vixl::aarch64::Label start_loop; | 
|  | __ Bind(&start_loop); | 
|  | __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel()); | 
|  | __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset)); | 
|  | GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc)); | 
|  | // Go to next interface. | 
|  | __ Add(temp, temp, 2 * kHeapReferenceSize); | 
|  | __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2); | 
|  | // Compare the classes and continue the loop if they do not match. | 
|  | __ Cmp(cls, WRegisterFrom(maybe_temp3_loc)); | 
|  | __ B(ne, &start_loop); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TypeCheckKind::kBitstringCheck: { | 
|  | // /* HeapReference<Class> */ temp = obj->klass_ | 
|  | GenerateReferenceLoadTwoRegisters(instruction, | 
|  | temp_loc, | 
|  | obj_loc, | 
|  | class_offset, | 
|  | maybe_temp2_loc, | 
|  | kWithoutReadBarrier); | 
|  |  | 
|  | GenerateBitstringTypeCheckCompare(instruction, temp); | 
|  | __ B(ne, type_check_slow_path->GetEntryLabel()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | __ Bind(&done); | 
|  |  | 
|  | __ Bind(type_check_slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
|  | // The trampoline uses the same calling convention as dex calling conventions, | 
|  | // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain | 
|  | // the method_idx. | 
|  | HandleInvoke(invoke); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
|  | codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) { | 
|  | InvokeDexCallingConventionVisitorARM64 calling_convention_visitor; | 
|  | CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) { | 
|  | HandleInvoke(invoke); | 
|  | if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { | 
|  | // We cannot request ip1 as it's blocked by the register allocator. | 
|  | invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction, | 
|  | Register klass) { | 
|  | DCHECK_EQ(klass.GetCode(), 0u); | 
|  | // We know the destination of an intrinsic, so no need to record inline | 
|  | // caches. | 
|  | if (!instruction->GetLocations()->Intrinsified() && | 
|  | GetGraph()->IsCompilingBaseline() && | 
|  | !Runtime::Current()->IsAotCompiler()) { | 
|  | DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke()); | 
|  | ProfilingInfo* info = GetGraph()->GetProfilingInfo(); | 
|  | DCHECK(info != nullptr); | 
|  | InlineCache* cache = info->GetInlineCache(instruction->GetDexPc()); | 
|  | uint64_t address = reinterpret_cast64<uint64_t>(cache); | 
|  | vixl::aarch64::Label done; | 
|  | __ Mov(x8, address); | 
|  | __ Ldr(x9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value())); | 
|  | // Fast path for a monomorphic cache. | 
|  | __ Cmp(klass, x9); | 
|  | __ B(eq, &done); | 
|  | InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc()); | 
|  | __ Bind(&done); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) { | 
|  | // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. | 
|  | LocationSummary* locations = invoke->GetLocations(); | 
|  | Register temp = XRegisterFrom(locations->GetTemp(0)); | 
|  | Location receiver = locations->InAt(0); | 
|  | Offset class_offset = mirror::Object::ClassOffset(); | 
|  | Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); | 
|  |  | 
|  | // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | if (receiver.IsStackSlot()) { | 
|  | __ Ldr(temp.W(), StackOperandFrom(receiver)); | 
|  | { | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | // /* HeapReference<Class> */ temp = temp->klass_ | 
|  | __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset)); | 
|  | codegen_->MaybeRecordImplicitNullCheck(invoke); | 
|  | } | 
|  | } else { | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | // /* HeapReference<Class> */ temp = receiver->klass_ | 
|  | __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset)); | 
|  | codegen_->MaybeRecordImplicitNullCheck(invoke); | 
|  | } | 
|  |  | 
|  | // Instead of simply (possibly) unpoisoning `temp` here, we should | 
|  | // emit a read barrier for the previous class reference load. | 
|  | // However this is not required in practice, as this is an | 
|  | // intermediate/temporary reference and because the current | 
|  | // concurrent copying collector keeps the from-space memory | 
|  | // intact/accessible until the end of the marking phase (the | 
|  | // concurrent copying collector may not in the future). | 
|  | GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); | 
|  |  | 
|  | // If we're compiling baseline, update the inline cache. | 
|  | codegen_->MaybeGenerateInlineCacheCheck(invoke, temp); | 
|  |  | 
|  | // The register ip1 is required to be used for the hidden argument in | 
|  | // art_quick_imt_conflict_trampoline, so prevent VIXL from using it. | 
|  | MacroAssembler* masm = GetVIXLAssembler(); | 
|  | UseScratchRegisterScope scratch_scope(masm); | 
|  | scratch_scope.Exclude(ip1); | 
|  | if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { | 
|  | Location interface_method = locations->InAt(invoke->GetNumberOfArguments() - 1); | 
|  | if (interface_method.IsStackSlot()) { | 
|  | __ Ldr(ip1, StackOperandFrom(interface_method)); | 
|  | } else { | 
|  | __ Mov(ip1, XRegisterFrom(interface_method)); | 
|  | } | 
|  | // If the load kind is through a runtime call, we will pass the method we | 
|  | // fetch the IMT, which will either be a no-op if we don't hit the conflict | 
|  | // stub, or will make us always go through the trampoline when there is a | 
|  | // conflict. | 
|  | } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) { | 
|  | codegen_->LoadMethod( | 
|  | invoke->GetHiddenArgumentLoadKind(), Location::RegisterLocation(ip1.GetCode()), invoke); | 
|  | } | 
|  |  | 
|  | __ Ldr(temp, | 
|  | MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); | 
|  | uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( | 
|  | invoke->GetImtIndex(), kArm64PointerSize)); | 
|  | // temp = temp->GetImtEntryAt(method_offset); | 
|  | __ Ldr(temp, MemOperand(temp, method_offset)); | 
|  | if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) { | 
|  | // We pass the method from the IMT in case of a conflict. This will ensure | 
|  | // we go into the runtime to resolve the actual method. | 
|  | __ Mov(ip1, temp); | 
|  | } | 
|  | // lr = temp->GetEntryPoint(); | 
|  | __ Ldr(lr, MemOperand(temp, entry_point.Int32Value())); | 
|  |  | 
|  | { | 
|  | // Ensure the pc position is recorded immediately after the `blr` instruction. | 
|  | ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  |  | 
|  | // lr(); | 
|  | __ blr(lr); | 
|  | DCHECK(!codegen_->IsLeafMethod()); | 
|  | codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
|  | } | 
|  |  | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
|  | IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); | 
|  | if (intrinsic.TryDispatch(invoke)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | HandleInvoke(invoke); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
|  | // Explicit clinit checks triggered by static invokes must have been pruned by | 
|  | // art::PrepareForRegisterAllocation. | 
|  | DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
|  |  | 
|  | IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); | 
|  | if (intrinsic.TryDispatch(invoke)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { | 
|  | CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor( | 
|  | /*for_register_allocation=*/ true); | 
|  | CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); | 
|  | } else { | 
|  | HandleInvoke(invoke); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) { | 
|  | if (invoke->GetLocations()->Intrinsified()) { | 
|  | IntrinsicCodeGeneratorARM64 intrinsic(codegen); | 
|  | intrinsic.Dispatch(invoke); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch( | 
|  | const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, | 
|  | ArtMethod* method ATTRIBUTE_UNUSED) { | 
|  | // On ARM64 we support all dispatch types. | 
|  | return desired_dispatch_info; | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) { | 
|  | switch (load_kind) { | 
|  | case MethodLoadKind::kBootImageLinkTimePcRelative: { | 
|  | DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); | 
|  | // Add ADRP with its PC-relative method patch. | 
|  | vixl::aarch64::Label* adrp_label = | 
|  | NewBootImageMethodPatch(invoke->GetResolvedMethodReference()); | 
|  | EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); | 
|  | // Add ADD with its PC-relative method patch. | 
|  | vixl::aarch64::Label* add_label = | 
|  | NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label); | 
|  | EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp)); | 
|  | break; | 
|  | } | 
|  | case MethodLoadKind::kBootImageRelRo: { | 
|  | // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load. | 
|  | uint32_t boot_image_offset = GetBootImageOffset(invoke); | 
|  | LoadBootImageRelRoEntry(WRegisterFrom(temp), boot_image_offset); | 
|  | break; | 
|  | } | 
|  | case MethodLoadKind::kBssEntry: { | 
|  | // Add ADRP with its PC-relative .bss entry patch. | 
|  | vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(invoke->GetMethodReference()); | 
|  | EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); | 
|  | // Add LDR with its PC-relative .bss entry patch. | 
|  | vixl::aarch64::Label* ldr_label = | 
|  | NewMethodBssEntryPatch(invoke->GetMethodReference(), adrp_label); | 
|  | // All aligned loads are implicitly atomic consume operations on ARM64. | 
|  | EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp)); | 
|  | break; | 
|  | } | 
|  | case MethodLoadKind::kJitDirectAddress: { | 
|  | // Load method address from literal pool. | 
|  | __ Ldr(XRegisterFrom(temp), | 
|  | DeduplicateUint64Literal(reinterpret_cast<uint64_t>(invoke->GetResolvedMethod()))); | 
|  | break; | 
|  | } | 
|  | case MethodLoadKind::kRuntimeCall: { | 
|  | // Test situation, don't do anything. | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | LOG(FATAL) << "Load kind should have already been handled " << load_kind; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateStaticOrDirectCall( | 
|  | HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { | 
|  | // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention. | 
|  | Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp. | 
|  | switch (invoke->GetMethodLoadKind()) { | 
|  | case MethodLoadKind::kStringInit: { | 
|  | uint32_t offset = | 
|  | GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); | 
|  | // temp = thread->string_init_entrypoint | 
|  | __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset)); | 
|  | break; | 
|  | } | 
|  | case MethodLoadKind::kRecursive: { | 
|  | callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex()); | 
|  | break; | 
|  | } | 
|  | case MethodLoadKind::kRuntimeCall: { | 
|  | GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); | 
|  | return;  // No code pointer retrieval; the runtime performs the call directly. | 
|  | } | 
|  | case MethodLoadKind::kBootImageLinkTimePcRelative: | 
|  | DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); | 
|  | if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { | 
|  | // Do not materialize the method pointer, load directly the entrypoint. | 
|  | // Add ADRP with its PC-relative JNI entrypoint patch. | 
|  | vixl::aarch64::Label* adrp_label = | 
|  | NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference()); | 
|  | EmitAdrpPlaceholder(adrp_label, lr); | 
|  | // Add the LDR with its PC-relative method patch. | 
|  | vixl::aarch64::Label* add_label = | 
|  | NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), adrp_label); | 
|  | EmitLdrOffsetPlaceholder(add_label, lr, lr); | 
|  | break; | 
|  | } | 
|  | FALLTHROUGH_INTENDED; | 
|  | default: { | 
|  | LoadMethod(invoke->GetMethodLoadKind(), temp, invoke); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto call_lr = [&]() { | 
|  | // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. | 
|  | ExactAssemblyScope eas(GetVIXLAssembler(), | 
|  | kInstructionSize, | 
|  | CodeBufferCheckScope::kExactSize); | 
|  | // lr() | 
|  | __ blr(lr); | 
|  | RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); | 
|  | }; | 
|  | switch (invoke->GetCodePtrLocation()) { | 
|  | case CodePtrLocation::kCallSelf: | 
|  | { | 
|  | DCHECK(!GetGraph()->HasShouldDeoptimizeFlag()); | 
|  | // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. | 
|  | ExactAssemblyScope eas(GetVIXLAssembler(), | 
|  | kInstructionSize, | 
|  | CodeBufferCheckScope::kExactSize); | 
|  | __ bl(&frame_entry_label_); | 
|  | RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); | 
|  | } | 
|  | break; | 
|  | case CodePtrLocation::kCallCriticalNative: { | 
|  | size_t out_frame_size = | 
|  | PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARM64, | 
|  | kAapcs64StackAlignment, | 
|  | GetCriticalNativeDirectCallFrameSize>(invoke); | 
|  | if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) { | 
|  | call_lr(); | 
|  | } else { | 
|  | // LR = callee_method->ptr_sized_fields_.data_;  // EntryPointFromJni | 
|  | MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kArm64PointerSize); | 
|  | __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value())); | 
|  | // lr() | 
|  | call_lr(); | 
|  | } | 
|  | // Zero-/sign-extend the result when needed due to native and managed ABI mismatch. | 
|  | switch (invoke->GetType()) { | 
|  | case DataType::Type::kBool: | 
|  | __ Ubfx(w0, w0, 0, 8); | 
|  | break; | 
|  | case DataType::Type::kInt8: | 
|  | __ Sbfx(w0, w0, 0, 8); | 
|  | break; | 
|  | case DataType::Type::kUint16: | 
|  | __ Ubfx(w0, w0, 0, 16); | 
|  | break; | 
|  | case DataType::Type::kInt16: | 
|  | __ Sbfx(w0, w0, 0, 16); | 
|  | break; | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | case DataType::Type::kVoid: | 
|  | break; | 
|  | default: | 
|  | DCHECK(false) << invoke->GetType(); | 
|  | break; | 
|  | } | 
|  | if (out_frame_size != 0u) { | 
|  | DecreaseFrame(out_frame_size); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CodePtrLocation::kCallArtMethod: { | 
|  | // LR = callee_method->ptr_sized_fields_.entry_point_from_quick_compiled_code_; | 
|  | MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); | 
|  | __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value())); | 
|  | // lr() | 
|  | call_lr(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | DCHECK(!IsLeafMethod()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateVirtualCall( | 
|  | HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) { | 
|  | // Use the calling convention instead of the location of the receiver, as | 
|  | // intrinsics may have put the receiver in a different register. In the intrinsics | 
|  | // slow path, the arguments have been moved to the right place, so here we are | 
|  | // guaranteed that the receiver is the first register of the calling convention. | 
|  | InvokeDexCallingConvention calling_convention; | 
|  | Register receiver = calling_convention.GetRegisterAt(0); | 
|  | Register temp = XRegisterFrom(temp_in); | 
|  | size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
|  | invoke->GetVTableIndex(), kArm64PointerSize).SizeValue(); | 
|  | Offset class_offset = mirror::Object::ClassOffset(); | 
|  | Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); | 
|  |  | 
|  | DCHECK(receiver.IsRegister()); | 
|  |  | 
|  | { | 
|  | // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | // /* HeapReference<Class> */ temp = receiver->klass_ | 
|  | __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset)); | 
|  | MaybeRecordImplicitNullCheck(invoke); | 
|  | } | 
|  | // Instead of simply (possibly) unpoisoning `temp` here, we should | 
|  | // emit a read barrier for the previous class reference load. | 
|  | // intermediate/temporary reference and because the current | 
|  | // concurrent copying collector keeps the from-space memory | 
|  | // intact/accessible until the end of the marking phase (the | 
|  | // concurrent copying collector may not in the future). | 
|  | GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); | 
|  |  | 
|  | // If we're compiling baseline, update the inline cache. | 
|  | MaybeGenerateInlineCacheCheck(invoke, temp); | 
|  |  | 
|  | // temp = temp->GetMethodAt(method_offset); | 
|  | __ Ldr(temp, MemOperand(temp, method_offset)); | 
|  | // lr = temp->GetEntryPoint(); | 
|  | __ Ldr(lr, MemOperand(temp, entry_point.SizeValue())); | 
|  | { | 
|  | // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. | 
|  | ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); | 
|  | // lr(); | 
|  | __ blr(lr); | 
|  | RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) { | 
|  | if (!trg.IsValid()) { | 
|  | DCHECK(type == DataType::Type::kVoid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DCHECK_NE(type, DataType::Type::kVoid); | 
|  |  | 
|  | if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) { | 
|  | Register trg_reg = RegisterFrom(trg, type); | 
|  | Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type); | 
|  | __ Mov(trg_reg, res_reg, kDiscardForSameWReg); | 
|  | } else { | 
|  | VRegister trg_reg = FPRegisterFrom(trg, type); | 
|  | VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type); | 
|  | __ Fmov(trg_reg, res_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { | 
|  | IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); | 
|  | if (intrinsic.TryDispatch(invoke)) { | 
|  | return; | 
|  | } | 
|  | HandleInvoke(invoke); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { | 
|  | if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | return; | 
|  | } | 
|  | codegen_->GenerateInvokePolymorphicCall(invoke); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) { | 
|  | HandleInvoke(invoke); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) { | 
|  | codegen_->GenerateInvokeCustomCall(invoke); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch( | 
|  | uint32_t intrinsic_data, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | return NewPcRelativePatch( | 
|  | /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch( | 
|  | uint32_t boot_image_offset, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | return NewPcRelativePatch( | 
|  | /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch( | 
|  | MethodReference target_method, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | return NewPcRelativePatch( | 
|  | target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch( | 
|  | MethodReference target_method, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | return NewPcRelativePatch( | 
|  | target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch( | 
|  | const DexFile& dex_file, | 
|  | dex::TypeIndex type_index, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch( | 
|  | HLoadClass* load_class, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | const DexFile& dex_file = load_class->GetDexFile(); | 
|  | dex::TypeIndex type_index = load_class->GetTypeIndex(); | 
|  | ArenaDeque<PcRelativePatchInfo>* patches = nullptr; | 
|  | switch (load_class->GetLoadKind()) { | 
|  | case HLoadClass::LoadKind::kBssEntry: | 
|  | patches = &type_bss_entry_patches_; | 
|  | break; | 
|  | case HLoadClass::LoadKind::kBssEntryPublic: | 
|  | patches = &public_type_bss_entry_patches_; | 
|  | break; | 
|  | case HLoadClass::LoadKind::kBssEntryPackage: | 
|  | patches = &package_type_bss_entry_patches_; | 
|  | break; | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind(); | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, patches); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch( | 
|  | const DexFile& dex_file, | 
|  | dex::StringIndex string_index, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | return NewPcRelativePatch( | 
|  | &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch( | 
|  | const DexFile& dex_file, | 
|  | dex::StringIndex string_index, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageJniEntrypointPatch( | 
|  | MethodReference target_method, | 
|  | vixl::aarch64::Label* adrp_label) { | 
|  | return NewPcRelativePatch( | 
|  | target_method.dex_file, target_method.index, adrp_label, &boot_image_jni_entrypoint_patches_); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) { | 
|  | DCHECK(!__ AllowMacroInstructions());  // In ExactAssemblyScope. | 
|  | DCHECK(!GetCompilerOptions().IsJitCompiler()); | 
|  | call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value()); | 
|  | vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label; | 
|  | __ bind(bl_label); | 
|  | __ bl(static_cast<int64_t>(0));  // Placeholder, patched at link-time. | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) { | 
|  | DCHECK(!__ AllowMacroInstructions());  // In ExactAssemblyScope. | 
|  | if (GetCompilerOptions().IsJitCompiler()) { | 
|  | auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data); | 
|  | vixl::aarch64::Label* slow_path_entry = &it->second.label; | 
|  | __ cbnz(mr, slow_path_entry); | 
|  | } else { | 
|  | baker_read_barrier_patches_.emplace_back(custom_data); | 
|  | vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label; | 
|  | __ bind(cbnz_label); | 
|  | __ cbnz(mr, static_cast<int64_t>(0));  // Placeholder, patched at link-time. | 
|  | } | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch( | 
|  | const DexFile* dex_file, | 
|  | uint32_t offset_or_index, | 
|  | vixl::aarch64::Label* adrp_label, | 
|  | ArenaDeque<PcRelativePatchInfo>* patches) { | 
|  | // Add a patch entry and return the label. | 
|  | patches->emplace_back(dex_file, offset_or_index); | 
|  | PcRelativePatchInfo* info = &patches->back(); | 
|  | vixl::aarch64::Label* label = &info->label; | 
|  | // If adrp_label is null, this is the ADRP patch and needs to point to its own label. | 
|  | info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label; | 
|  | return label; | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral( | 
|  | uint64_t address) { | 
|  | return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address)); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral( | 
|  | const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) { | 
|  | ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); | 
|  | return jit_string_patches_.GetOrCreate( | 
|  | StringReference(&dex_file, string_index), | 
|  | [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); }); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral( | 
|  | const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) { | 
|  | ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); | 
|  | return jit_class_patches_.GetOrCreate( | 
|  | TypeReference(&dex_file, type_index), | 
|  | [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); }); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label, | 
|  | vixl::aarch64::Register reg) { | 
|  | DCHECK(reg.IsX()); | 
|  | SingleEmissionCheckScope guard(GetVIXLAssembler()); | 
|  | __ Bind(fixup_label); | 
|  | __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label, | 
|  | vixl::aarch64::Register out, | 
|  | vixl::aarch64::Register base) { | 
|  | DCHECK(out.IsX()); | 
|  | DCHECK(base.IsX()); | 
|  | SingleEmissionCheckScope guard(GetVIXLAssembler()); | 
|  | __ Bind(fixup_label); | 
|  | __ add(out, base, Operand(/* offset placeholder */ 0)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label, | 
|  | vixl::aarch64::Register out, | 
|  | vixl::aarch64::Register base) { | 
|  | DCHECK(base.IsX()); | 
|  | SingleEmissionCheckScope guard(GetVIXLAssembler()); | 
|  | __ Bind(fixup_label); | 
|  | __ ldr(out, MemOperand(base, /* offset placeholder */ 0)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::LoadBootImageRelRoEntry(vixl::aarch64::Register reg, | 
|  | uint32_t boot_image_offset) { | 
|  | DCHECK(reg.IsW()); | 
|  | // Add ADRP with its PC-relative .data.bimg.rel.ro patch. | 
|  | vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset); | 
|  | EmitAdrpPlaceholder(adrp_label, reg.X()); | 
|  | // Add LDR with its PC-relative .data.bimg.rel.ro patch. | 
|  | vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label); | 
|  | EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg, | 
|  | uint32_t boot_image_reference) { | 
|  | if (GetCompilerOptions().IsBootImage()) { | 
|  | // Add ADRP with its PC-relative type patch. | 
|  | vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference); | 
|  | EmitAdrpPlaceholder(adrp_label, reg.X()); | 
|  | // Add ADD with its PC-relative type patch. | 
|  | vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label); | 
|  | EmitAddPlaceholder(add_label, reg.X(), reg.X()); | 
|  | } else if (GetCompilerOptions().GetCompilePic()) { | 
|  | LoadBootImageRelRoEntry(reg, boot_image_reference); | 
|  | } else { | 
|  | DCHECK(GetCompilerOptions().IsJitCompiler()); | 
|  | gc::Heap* heap = Runtime::Current()->GetHeap(); | 
|  | DCHECK(!heap->GetBootImageSpaces().empty()); | 
|  | const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference; | 
|  | __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg, | 
|  | TypeReference target_type) { | 
|  | // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. | 
|  | DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); | 
|  | // Add ADRP with its PC-relative type patch. | 
|  | vixl::aarch64::Label* adrp_label = | 
|  | NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex()); | 
|  | EmitAdrpPlaceholder(adrp_label, reg.X()); | 
|  | // Add ADD with its PC-relative type patch. | 
|  | vixl::aarch64::Label* add_label = | 
|  | NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), adrp_label); | 
|  | EmitAddPlaceholder(add_label, reg.X(), reg.X()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke) { | 
|  | DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone); | 
|  | if (GetCompilerOptions().IsBootImage()) { | 
|  | MethodReference target_method = invoke->GetResolvedMethodReference(); | 
|  | dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; | 
|  | LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx)); | 
|  | } else { | 
|  | uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke); | 
|  | LoadBootImageAddress(reg, boot_image_offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::LoadClassRootForIntrinsic(vixl::aarch64::Register reg, | 
|  | ClassRoot class_root) { | 
|  | if (GetCompilerOptions().IsBootImage()) { | 
|  | ScopedObjectAccess soa(Thread::Current()); | 
|  | ObjPtr<mirror::Class> klass = GetClassRoot(class_root); | 
|  | TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex()); | 
|  | LoadTypeForBootImageIntrinsic(reg, target_type); | 
|  | } else { | 
|  | uint32_t boot_image_offset = GetBootImageOffset(class_root); | 
|  | LoadBootImageAddress(reg, boot_image_offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> | 
|  | inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches( | 
|  | const ArenaDeque<PcRelativePatchInfo>& infos, | 
|  | ArenaVector<linker::LinkerPatch>* linker_patches) { | 
|  | for (const PcRelativePatchInfo& info : infos) { | 
|  | linker_patches->push_back(Factory(info.label.GetLocation(), | 
|  | info.target_dex_file, | 
|  | info.pc_insn_label->GetLocation(), | 
|  | info.offset_or_index)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)> | 
|  | linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, | 
|  | const DexFile* target_dex_file, | 
|  | uint32_t pc_insn_offset, | 
|  | uint32_t boot_image_offset) { | 
|  | DCHECK(target_dex_file == nullptr);  // Unused for these patches, should be null. | 
|  | return Factory(literal_offset, pc_insn_offset, boot_image_offset); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) { | 
|  | DCHECK(linker_patches->empty()); | 
|  | size_t size = | 
|  | boot_image_method_patches_.size() + | 
|  | method_bss_entry_patches_.size() + | 
|  | boot_image_type_patches_.size() + | 
|  | type_bss_entry_patches_.size() + | 
|  | public_type_bss_entry_patches_.size() + | 
|  | package_type_bss_entry_patches_.size() + | 
|  | boot_image_string_patches_.size() + | 
|  | string_bss_entry_patches_.size() + | 
|  | boot_image_jni_entrypoint_patches_.size() + | 
|  | boot_image_other_patches_.size() + | 
|  | call_entrypoint_patches_.size() + | 
|  | baker_read_barrier_patches_.size(); | 
|  | linker_patches->reserve(size); | 
|  | if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>( | 
|  | boot_image_method_patches_, linker_patches); | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>( | 
|  | boot_image_type_patches_, linker_patches); | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>( | 
|  | boot_image_string_patches_, linker_patches); | 
|  | } else { | 
|  | DCHECK(boot_image_method_patches_.empty()); | 
|  | DCHECK(boot_image_type_patches_.empty()); | 
|  | DCHECK(boot_image_string_patches_.empty()); | 
|  | } | 
|  | if (GetCompilerOptions().IsBootImage()) { | 
|  | EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>( | 
|  | boot_image_other_patches_, linker_patches); | 
|  | } else { | 
|  | EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>( | 
|  | boot_image_other_patches_, linker_patches); | 
|  | } | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>( | 
|  | method_bss_entry_patches_, linker_patches); | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>( | 
|  | type_bss_entry_patches_, linker_patches); | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>( | 
|  | public_type_bss_entry_patches_, linker_patches); | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>( | 
|  | package_type_bss_entry_patches_, linker_patches); | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>( | 
|  | string_bss_entry_patches_, linker_patches); | 
|  | EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>( | 
|  | boot_image_jni_entrypoint_patches_, linker_patches); | 
|  | for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) { | 
|  | DCHECK(info.target_dex_file == nullptr); | 
|  | linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch( | 
|  | info.label.GetLocation(), info.offset_or_index)); | 
|  | } | 
|  | for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { | 
|  | linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch( | 
|  | info.label.GetLocation(), info.custom_data)); | 
|  | } | 
|  | DCHECK_EQ(size, linker_patches->size()); | 
|  | } | 
|  |  | 
|  | bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const { | 
|  | return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint || | 
|  | patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch || | 
|  | patch.GetType() == linker::LinkerPatch::Type::kCallRelative; | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch, | 
|  | /*out*/ ArenaVector<uint8_t>* code, | 
|  | /*out*/ std::string* debug_name) { | 
|  | Arm64Assembler assembler(GetGraph()->GetAllocator()); | 
|  | switch (patch.GetType()) { | 
|  | case linker::LinkerPatch::Type::kCallRelative: { | 
|  | // The thunk just uses the entry point in the ArtMethod. This works even for calls | 
|  | // to the generic JNI and interpreter trampolines. | 
|  | Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset( | 
|  | kArm64PointerSize).Int32Value()); | 
|  | assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0)); | 
|  | if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { | 
|  | *debug_name = "MethodCallThunk"; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case linker::LinkerPatch::Type::kCallEntrypoint: { | 
|  | Offset offset(patch.EntrypointOffset()); | 
|  | assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0)); | 
|  | if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { | 
|  | *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case linker::LinkerPatch::Type::kBakerReadBarrierBranch: { | 
|  | DCHECK_EQ(patch.GetBakerCustomValue2(), 0u); | 
|  | CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected patch type " << patch.GetType(); | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | // Ensure we emit the literal pool if any. | 
|  | assembler.FinalizeCode(); | 
|  | code->resize(assembler.CodeSize()); | 
|  | MemoryRegion code_region(code->data(), code->size()); | 
|  | assembler.FinalizeInstructions(code_region); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) { | 
|  | return uint32_literals_.GetOrCreate( | 
|  | value, | 
|  | [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); }); | 
|  | } | 
|  |  | 
|  | vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) { | 
|  | return uint64_literals_.GetOrCreate( | 
|  | value, | 
|  | [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); }); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
|  | // Explicit clinit checks triggered by static invokes must have been pruned by | 
|  | // art::PrepareForRegisterAllocation. | 
|  | DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
|  |  | 
|  | if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | return; | 
|  | } | 
|  |  | 
|  | LocationSummary* locations = invoke->GetLocations(); | 
|  | codegen_->GenerateStaticOrDirectCall( | 
|  | invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); | 
|  |  | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
|  | if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | return; | 
|  | } | 
|  |  | 
|  | { | 
|  | // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there | 
|  | // are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes); | 
|  | codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); | 
|  | DCHECK(!codegen_->IsLeafMethod()); | 
|  | } | 
|  |  | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind( | 
|  | HLoadClass::LoadKind desired_class_load_kind) { | 
|  | switch (desired_class_load_kind) { | 
|  | case HLoadClass::LoadKind::kInvalid: | 
|  | LOG(FATAL) << "UNREACHABLE"; | 
|  | UNREACHABLE(); | 
|  | case HLoadClass::LoadKind::kReferrersClass: | 
|  | break; | 
|  | case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: | 
|  | case HLoadClass::LoadKind::kBootImageRelRo: | 
|  | case HLoadClass::LoadKind::kBssEntry: | 
|  | case HLoadClass::LoadKind::kBssEntryPublic: | 
|  | case HLoadClass::LoadKind::kBssEntryPackage: | 
|  | DCHECK(!GetCompilerOptions().IsJitCompiler()); | 
|  | break; | 
|  | case HLoadClass::LoadKind::kJitBootImageAddress: | 
|  | case HLoadClass::LoadKind::kJitTableAddress: | 
|  | DCHECK(GetCompilerOptions().IsJitCompiler()); | 
|  | break; | 
|  | case HLoadClass::LoadKind::kRuntimeCall: | 
|  | break; | 
|  | } | 
|  | return desired_class_load_kind; | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) { | 
|  | HLoadClass::LoadKind load_kind = cls->GetLoadKind(); | 
|  | if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( | 
|  | cls, | 
|  | LocationFrom(calling_convention.GetRegisterAt(0)), | 
|  | LocationFrom(vixl::aarch64::x0)); | 
|  | DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0)); | 
|  | return; | 
|  | } | 
|  | DCHECK_EQ(cls->NeedsAccessCheck(), | 
|  | load_kind == HLoadClass::LoadKind::kBssEntryPublic || | 
|  | load_kind == HLoadClass::LoadKind::kBssEntryPackage); | 
|  |  | 
|  | const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); | 
|  | LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) | 
|  | ? LocationSummary::kCallOnSlowPath | 
|  | : LocationSummary::kNoCall; | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); | 
|  | if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { | 
|  | locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
|  | } | 
|  |  | 
|  | if (load_kind == HLoadClass::LoadKind::kReferrersClass) { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) { | 
|  | if (!kUseReadBarrier || kUseBakerReadBarrier) { | 
|  | // Rely on the type resolution or initialization and marking to save everything we need. | 
|  | locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); | 
|  | } else { | 
|  | // For non-Baker read barrier we have a temp-clobbering call. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not | 
|  | // move. | 
|  | void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { | 
|  | HLoadClass::LoadKind load_kind = cls->GetLoadKind(); | 
|  | if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { | 
|  | codegen_->GenerateLoadClassRuntimeCall(cls); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | return; | 
|  | } | 
|  | DCHECK_EQ(cls->NeedsAccessCheck(), | 
|  | load_kind == HLoadClass::LoadKind::kBssEntryPublic || | 
|  | load_kind == HLoadClass::LoadKind::kBssEntryPackage); | 
|  |  | 
|  | Location out_loc = cls->GetLocations()->Out(); | 
|  | Register out = OutputRegister(cls); | 
|  |  | 
|  | const ReadBarrierOption read_barrier_option = cls->IsInBootImage() | 
|  | ? kWithoutReadBarrier | 
|  | : kCompilerReadBarrierOption; | 
|  | bool generate_null_check = false; | 
|  | switch (load_kind) { | 
|  | case HLoadClass::LoadKind::kReferrersClass: { | 
|  | DCHECK(!cls->CanCallRuntime()); | 
|  | DCHECK(!cls->MustGenerateClinitCheck()); | 
|  | // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ | 
|  | Register current_method = InputRegisterAt(cls, 0); | 
|  | codegen_->GenerateGcRootFieldLoad(cls, | 
|  | out_loc, | 
|  | current_method, | 
|  | ArtMethod::DeclaringClassOffset().Int32Value(), | 
|  | /* fixup_label= */ nullptr, | 
|  | read_barrier_option); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { | 
|  | DCHECK(codegen_->GetCompilerOptions().IsBootImage() || | 
|  | codegen_->GetCompilerOptions().IsBootImageExtension()); | 
|  | DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
|  | // Add ADRP with its PC-relative type patch. | 
|  | const DexFile& dex_file = cls->GetDexFile(); | 
|  | dex::TypeIndex type_index = cls->GetTypeIndex(); | 
|  | vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index); | 
|  | codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); | 
|  | // Add ADD with its PC-relative type patch. | 
|  | vixl::aarch64::Label* add_label = | 
|  | codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label); | 
|  | codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kBootImageRelRo: { | 
|  | DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
|  | uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls); | 
|  | codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kBssEntry: | 
|  | case HLoadClass::LoadKind::kBssEntryPublic: | 
|  | case HLoadClass::LoadKind::kBssEntryPackage: { | 
|  | // Add ADRP with its PC-relative Class .bss entry patch. | 
|  | vixl::aarch64::Register temp = XRegisterFrom(out_loc); | 
|  | vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(cls); | 
|  | codegen_->EmitAdrpPlaceholder(adrp_label, temp); | 
|  | // Add LDR with its PC-relative Class .bss entry patch. | 
|  | vixl::aarch64::Label* ldr_label = codegen_->NewBssEntryTypePatch(cls, adrp_label); | 
|  | // /* GcRoot<mirror::Class> */ out = *(base_address + offset)  /* PC-relative */ | 
|  | // All aligned loads are implicitly atomic consume operations on ARM64. | 
|  | codegen_->GenerateGcRootFieldLoad(cls, | 
|  | out_loc, | 
|  | temp, | 
|  | /* offset placeholder */ 0u, | 
|  | ldr_label, | 
|  | read_barrier_option); | 
|  | generate_null_check = true; | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kJitBootImageAddress: { | 
|  | DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
|  | uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get()); | 
|  | DCHECK_NE(address, 0u); | 
|  | __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kJitTableAddress: { | 
|  | __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), | 
|  | cls->GetTypeIndex(), | 
|  | cls->GetClass())); | 
|  | codegen_->GenerateGcRootFieldLoad(cls, | 
|  | out_loc, | 
|  | out.X(), | 
|  | /* offset= */ 0, | 
|  | /* fixup_label= */ nullptr, | 
|  | read_barrier_option); | 
|  | break; | 
|  | } | 
|  | case HLoadClass::LoadKind::kRuntimeCall: | 
|  | case HLoadClass::LoadKind::kInvalid: | 
|  | LOG(FATAL) << "UNREACHABLE"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | bool do_clinit = cls->MustGenerateClinitCheck(); | 
|  | if (generate_null_check || do_clinit) { | 
|  | DCHECK(cls->CanCallRuntime()); | 
|  | SlowPathCodeARM64* slow_path = | 
|  | new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | if (generate_null_check) { | 
|  | __ Cbz(out, slow_path->GetEntryLabel()); | 
|  | } | 
|  | if (cls->MustGenerateClinitCheck()) { | 
|  | GenerateClassInitializationCheck(slow_path, out); | 
|  | } else { | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | Location location = LocationFrom(calling_convention.GetRegisterAt(0)); | 
|  | CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) { | 
|  | codegen_->GenerateLoadMethodHandleRuntimeCall(load); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | Location location = LocationFrom(calling_convention.GetRegisterAt(0)); | 
|  | CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) { | 
|  | codegen_->GenerateLoadMethodTypeRuntimeCall(load); | 
|  | } | 
|  |  | 
|  | static MemOperand GetExceptionTlsAddress() { | 
|  | return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitLoadException(HLoadException* load) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) { | 
|  | __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitClearException(HClearException* clear) { | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { | 
|  | __ Str(wzr, GetExceptionTlsAddress()); | 
|  | } | 
|  |  | 
|  | HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind( | 
|  | HLoadString::LoadKind desired_string_load_kind) { | 
|  | switch (desired_string_load_kind) { | 
|  | case HLoadString::LoadKind::kBootImageLinkTimePcRelative: | 
|  | case HLoadString::LoadKind::kBootImageRelRo: | 
|  | case HLoadString::LoadKind::kBssEntry: | 
|  | DCHECK(!GetCompilerOptions().IsJitCompiler()); | 
|  | break; | 
|  | case HLoadString::LoadKind::kJitBootImageAddress: | 
|  | case HLoadString::LoadKind::kJitTableAddress: | 
|  | DCHECK(GetCompilerOptions().IsJitCompiler()); | 
|  | break; | 
|  | case HLoadString::LoadKind::kRuntimeCall: | 
|  | break; | 
|  | } | 
|  | return desired_string_load_kind; | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitLoadString(HLoadString* load) { | 
|  | LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); | 
|  | if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetOut(calling_convention.GetReturnLocation(load->GetType())); | 
|  | } else { | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) { | 
|  | if (!kUseReadBarrier || kUseBakerReadBarrier) { | 
|  | // Rely on the pResolveString and marking to save everything we need. | 
|  | locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); | 
|  | } else { | 
|  | // For non-Baker read barrier we have a temp-clobbering call. | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not | 
|  | // move. | 
|  | void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { | 
|  | Register out = OutputRegister(load); | 
|  | Location out_loc = load->GetLocations()->Out(); | 
|  |  | 
|  | switch (load->GetLoadKind()) { | 
|  | case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { | 
|  | DCHECK(codegen_->GetCompilerOptions().IsBootImage() || | 
|  | codegen_->GetCompilerOptions().IsBootImageExtension()); | 
|  | // Add ADRP with its PC-relative String patch. | 
|  | const DexFile& dex_file = load->GetDexFile(); | 
|  | const dex::StringIndex string_index = load->GetStringIndex(); | 
|  | vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index); | 
|  | codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); | 
|  | // Add ADD with its PC-relative String patch. | 
|  | vixl::aarch64::Label* add_label = | 
|  | codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label); | 
|  | codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); | 
|  | return; | 
|  | } | 
|  | case HLoadString::LoadKind::kBootImageRelRo: { | 
|  | DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
|  | uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load); | 
|  | codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset); | 
|  | return; | 
|  | } | 
|  | case HLoadString::LoadKind::kBssEntry: { | 
|  | // Add ADRP with its PC-relative String .bss entry patch. | 
|  | const DexFile& dex_file = load->GetDexFile(); | 
|  | const dex::StringIndex string_index = load->GetStringIndex(); | 
|  | Register temp = XRegisterFrom(out_loc); | 
|  | vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index); | 
|  | codegen_->EmitAdrpPlaceholder(adrp_label, temp); | 
|  | // Add LDR with its PC-relative String .bss entry patch. | 
|  | vixl::aarch64::Label* ldr_label = | 
|  | codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label); | 
|  | // /* GcRoot<mirror::String> */ out = *(base_address + offset)  /* PC-relative */ | 
|  | // All aligned loads are implicitly atomic consume operations on ARM64. | 
|  | codegen_->GenerateGcRootFieldLoad(load, | 
|  | out_loc, | 
|  | temp, | 
|  | /* offset placeholder */ 0u, | 
|  | ldr_label, | 
|  | kCompilerReadBarrierOption); | 
|  | SlowPathCodeARM64* slow_path = | 
|  | new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load); | 
|  | codegen_->AddSlowPath(slow_path); | 
|  | __ Cbz(out.X(), slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | return; | 
|  | } | 
|  | case HLoadString::LoadKind::kJitBootImageAddress: { | 
|  | uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get()); | 
|  | DCHECK_NE(address, 0u); | 
|  | __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); | 
|  | return; | 
|  | } | 
|  | case HLoadString::LoadKind::kJitTableAddress: { | 
|  | __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), | 
|  | load->GetStringIndex(), | 
|  | load->GetString())); | 
|  | codegen_->GenerateGcRootFieldLoad(load, | 
|  | out_loc, | 
|  | out.X(), | 
|  | /* offset= */ 0, | 
|  | /* fixup_label= */ nullptr, | 
|  | kCompilerReadBarrierOption); | 
|  | return; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TODO: Re-add the compiler code to do string dex cache lookup again. | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode()); | 
|  | __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_); | 
|  | codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
|  | locations->SetOut(Location::ConstantLocation(constant)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { | 
|  | // Will be generated at use site. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
|  | instruction, LocationSummary::kCallOnMainOnly); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) { | 
|  | codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, | 
|  | instruction, | 
|  | instruction->GetDexPc()); | 
|  | if (instruction->IsEnter()) { | 
|  | CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); | 
|  | } else { | 
|  | CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); | 
|  | } | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitMul(HMul* mul) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); | 
|  | switch (mul->GetResultType()) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetInAt(1, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) { | 
|  | switch (mul->GetResultType()) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1)); | 
|  | break; | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitNeg(HNeg* neg) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); | 
|  | switch (neg->GetResultType()) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg)); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) { | 
|  | switch (neg->GetResultType()) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | __ Neg(OutputRegister(neg), InputOperandAt(neg, 0)); | 
|  | break; | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
|  | instruction, LocationSummary::kCallOnMainOnly); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetOut(LocationFrom(x0)); | 
|  | locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
|  | locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) { | 
|  | // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference. | 
|  | QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction); | 
|  | codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
|  | instruction, LocationSummary::kCallOnMainOnly); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
|  | locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) { | 
|  | codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitNot(HNot* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) { | 
|  | switch (instruction->GetResultType()) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) { | 
|  | __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1)); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) { | 
|  | LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) { | 
|  | if (CanMoveNullCheckToUser(instruction)) { | 
|  | return; | 
|  | } | 
|  | { | 
|  | // Ensure that between load and RecordPcInfo there are no pools emitted. | 
|  | EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
|  | Location obj = instruction->GetLocations()->InAt(0); | 
|  | __ Ldr(wzr, HeapOperandFrom(obj, Offset(0))); | 
|  | RecordPcInfo(instruction, instruction->GetDexPc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) { | 
|  | SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction); | 
|  | AddSlowPath(slow_path); | 
|  |  | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Location obj = locations->InAt(0); | 
|  |  | 
|  | __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) { | 
|  | codegen_->GenerateNullCheck(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitOr(HOr* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) { | 
|  | if (instruction->GetNext()->IsSuspendCheck() && | 
|  | instruction->GetBlock()->GetLoopInformation() != nullptr) { | 
|  | HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); | 
|  | // The back edge will generate the suspend check. | 
|  | codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); | 
|  | } | 
|  |  | 
|  | codegen_->GetMoveResolver()->EmitNativeCode(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
|  | Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); | 
|  | if (location.IsStackSlot()) { | 
|  | location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
|  | } else if (location.IsDoubleStackSlot()) { | 
|  | location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
|  | } | 
|  | locations->SetOut(location); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitParameterValue( | 
|  | HParameterValue* instruction ATTRIBUTE_UNUSED) { | 
|  | // Nothing to do, the parameter is already at its location. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | locations->SetOut(LocationFrom(kArtMethodRegister)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitCurrentMethod( | 
|  | HCurrentMethod* instruction ATTRIBUTE_UNUSED) { | 
|  | // Nothing to do, the method is already at its location. | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitPhi(HPhi* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
|  | for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { | 
|  | locations->SetInAt(i, Location::Any()); | 
|  | } | 
|  | locations->SetOut(Location::Any()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitRem(HRem* rem) { | 
|  | DataType::Type type = rem->GetResultType(); | 
|  | LocationSummary::CallKind call_kind = | 
|  | DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly | 
|  | : LocationSummary::kNoCall; | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); | 
|  |  | 
|  | switch (type) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: { | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); | 
|  | locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); | 
|  | locations->SetOut(calling_convention.GetReturnLocation(type)); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected rem type " << type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) { | 
|  | int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); | 
|  | uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); | 
|  | DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm; | 
|  |  | 
|  | Register out = OutputRegister(instruction); | 
|  | Register dividend = InputRegisterAt(instruction, 0); | 
|  |  | 
|  | if (HasNonNegativeOrMinIntInputAt(instruction, 0)) { | 
|  | // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends. | 
|  | // NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends. | 
|  | // INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits | 
|  | // 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros. | 
|  | // So 'and' always produces zero. | 
|  | __ And(out, dividend, abs_imm - 1); | 
|  | } else { | 
|  | if (abs_imm == 2) { | 
|  | __ Cmp(dividend, 0); | 
|  | __ And(out, dividend, 1); | 
|  | __ Csneg(out, out, out, ge); | 
|  | } else { | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireSameSizeAs(out); | 
|  |  | 
|  | __ Negs(temp, dividend); | 
|  | __ And(out, dividend, abs_imm - 1); | 
|  | __ And(temp, temp, abs_imm - 1); | 
|  | __ Csneg(out, out, temp, mi); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) { | 
|  | int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); | 
|  |  | 
|  | if (imm == 0) { | 
|  | // Do not generate anything. | 
|  | // DivZeroCheck would prevent any code to be executed. | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (IsPowerOfTwo(AbsOrMin(imm))) { | 
|  | // Cases imm == -1 or imm == 1 are handled in constant folding by | 
|  | // InstructionWithAbsorbingInputSimplifier. | 
|  | // If the cases have survided till code generation they are handled in | 
|  | // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0). | 
|  | // The correct code is generated for them, just more instructions. | 
|  | GenerateIntRemForPower2Denom(instruction); | 
|  | } else { | 
|  | DCHECK(imm < -2 || imm > 2) << imm; | 
|  | GenerateDivRemWithAnyConstant(instruction, imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) { | 
|  | DCHECK(DataType::IsIntOrLongType(instruction->GetResultType())) | 
|  | << instruction->GetResultType(); | 
|  |  | 
|  | if (instruction->GetLocations()->InAt(1).IsConstant()) { | 
|  | GenerateIntRemForConstDenom(instruction); | 
|  | } else { | 
|  | Register out = OutputRegister(instruction); | 
|  | Register dividend = InputRegisterAt(instruction, 0); | 
|  | Register divisor = InputRegisterAt(instruction, 1); | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireSameSizeAs(out); | 
|  | __ Sdiv(temp, dividend, divisor); | 
|  | __ Msub(out, temp, divisor, dividend); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) { | 
|  | DataType::Type type = rem->GetResultType(); | 
|  |  | 
|  | switch (type) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: { | 
|  | GenerateIntRem(rem); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: { | 
|  | QuickEntrypointEnum entrypoint = | 
|  | (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod; | 
|  | codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc()); | 
|  | if (type == DataType::Type::kFloat32) { | 
|  | CheckEntrypointTypes<kQuickFmodf, float, float, float>(); | 
|  | } else { | 
|  | CheckEntrypointTypes<kQuickFmod, double, double, double>(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected rem type " << type; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitMin(HMin* min) { | 
|  | HandleBinaryOp(min); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitMin(HMin* min) { | 
|  | HandleBinaryOp(min); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitMax(HMax* max) { | 
|  | HandleBinaryOp(max); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitMax(HMax* max) { | 
|  | HandleBinaryOp(max); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitAbs(HAbs* abs) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); | 
|  | switch (abs->GetResultType()) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | break; | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) { | 
|  | switch (abs->GetResultType()) { | 
|  | case DataType::Type::kInt32: | 
|  | case DataType::Type::kInt64: { | 
|  | Register in_reg = InputRegisterAt(abs, 0); | 
|  | Register out_reg = OutputRegister(abs); | 
|  | __ Cmp(in_reg, Operand(0)); | 
|  | __ Cneg(out_reg, in_reg, lt); | 
|  | break; | 
|  | } | 
|  | case DataType::Type::kFloat32: | 
|  | case DataType::Type::kFloat64: { | 
|  | VRegister in_reg = InputFPRegisterAt(abs, 0); | 
|  | VRegister out_reg = OutputFPRegister(abs); | 
|  | __ Fabs(out_reg, in_reg); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) { | 
|  | constructor_fence->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitConstructorFence( | 
|  | HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { | 
|  | codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
|  | memory_barrier->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
|  | codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitReturn(HReturn* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
|  | DataType::Type return_type = instruction->InputAt(0)->GetType(); | 
|  | locations->SetInAt(0, ARM64ReturnLocation(return_type)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) { | 
|  | if (GetGraph()->IsCompilingOsr()) { | 
|  | // To simplify callers of an OSR method, we put the return value in both | 
|  | // floating point and core register. | 
|  | switch (ret->InputAt(0)->GetType()) { | 
|  | case DataType::Type::kFloat32: | 
|  | __ Fmov(w0, s0); | 
|  | break; | 
|  | case DataType::Type::kFloat64: | 
|  | __ Fmov(x0, d0); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | codegen_->GenerateFrameExit(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) { | 
|  | instruction->SetLocations(nullptr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) { | 
|  | codegen_->GenerateFrameExit(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitRor(HRor* ror) { | 
|  | HandleBinaryOp(ror); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) { | 
|  | HandleBinaryOp(ror); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitShl(HShl* shl) { | 
|  | HandleShift(shl); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) { | 
|  | HandleShift(shl); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitShr(HShr* shr) { | 
|  | HandleShift(shr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) { | 
|  | HandleShift(shr); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitSub(HSub* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
|  | HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
|  | HandleFieldSet(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
|  | HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { | 
|  | codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0)); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { | 
|  | __ Mov(w0, instruction->GetFormat()->GetValue()); | 
|  | codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet( | 
|  | HUnresolvedInstanceFieldGet* instruction) { | 
|  | FieldAccessCallingConventionARM64 calling_convention; | 
|  | codegen_->CreateUnresolvedFieldLocationSummary( | 
|  | instruction, instruction->GetFieldType(), calling_convention); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet( | 
|  | HUnresolvedInstanceFieldGet* instruction) { | 
|  | FieldAccessCallingConventionARM64 calling_convention; | 
|  | codegen_->GenerateUnresolvedFieldAccess(instruction, | 
|  | instruction->GetFieldType(), | 
|  | instruction->GetFieldIndex(), | 
|  | instruction->GetDexPc(), | 
|  | calling_convention); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet( | 
|  | HUnresolvedInstanceFieldSet* instruction) { | 
|  | FieldAccessCallingConventionARM64 calling_convention; | 
|  | codegen_->CreateUnresolvedFieldLocationSummary( | 
|  | instruction, instruction->GetFieldType(), calling_convention); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet( | 
|  | HUnresolvedInstanceFieldSet* instruction) { | 
|  | FieldAccessCallingConventionARM64 calling_convention; | 
|  | codegen_->GenerateUnresolvedFieldAccess(instruction, | 
|  | instruction->GetFieldType(), | 
|  | instruction->GetFieldIndex(), | 
|  | instruction->GetDexPc(), | 
|  | calling_convention); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet( | 
|  | HUnresolvedStaticFieldGet* instruction) { | 
|  | FieldAccessCallingConventionARM64 calling_convention; | 
|  | codegen_->CreateUnresolvedFieldLocationSummary( | 
|  | instruction, instruction->GetFieldType(), calling_convention); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet( | 
|  | HUnresolvedStaticFieldGet* instruction) { | 
|  | FieldAccessCallingConventionARM64 calling_convention; | 
|  | codegen_->GenerateUnresolvedFieldAccess(instruction, | 
|  | instruction->GetFieldType(), | 
|  | instruction->GetFieldIndex(), | 
|  | instruction->GetDexPc(), | 
|  | calling_convention); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet( | 
|  | HUnresolvedStaticFieldSet* instruction) { | 
|  | FieldAccessCallingConventionARM64 calling_convention; | 
|  | codegen_->CreateUnresolvedFieldLocationSummary( | 
|  | instruction, instruction->GetFieldType(), calling_convention); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet( | 
|  | HUnresolvedStaticFieldSet* instruction) { | 
|  | FieldAccessCallingConventionARM64 calling_convention; | 
|  | codegen_->GenerateUnresolvedFieldAccess(instruction, | 
|  | instruction->GetFieldType(), | 
|  | instruction->GetFieldIndex(), | 
|  | instruction->GetDexPc(), | 
|  | calling_convention); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
|  | instruction, LocationSummary::kCallOnSlowPath); | 
|  | // In suspend check slow path, usually there are no caller-save registers at all. | 
|  | // If SIMD instructions are present, however, we force spilling all live SIMD | 
|  | // registers in full width (since the runtime only saves/restores lower part). | 
|  | locations->SetCustomSlowPathCallerSaves( | 
|  | GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) { | 
|  | HBasicBlock* block = instruction->GetBlock(); | 
|  | if (block->GetLoopInformation() != nullptr) { | 
|  | DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); | 
|  | // The back edge will generate the suspend check. | 
|  | return; | 
|  | } | 
|  | if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { | 
|  | // The goto will generate the suspend check. | 
|  | return; | 
|  | } | 
|  | GenerateSuspendCheck(instruction, nullptr); | 
|  | codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitThrow(HThrow* instruction) { | 
|  | LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
|  | instruction, LocationSummary::kCallOnMainOnly); | 
|  | InvokeRuntimeCallingConvention calling_convention; | 
|  | locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) { | 
|  | codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); | 
|  | CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall); | 
|  | DataType::Type input_type = conversion->GetInputType(); | 
|  | DataType::Type result_type = conversion->GetResultType(); | 
|  | DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) | 
|  | << input_type << " -> " << result_type; | 
|  | if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) || | 
|  | (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) { | 
|  | LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; | 
|  | } | 
|  |  | 
|  | if (DataType::IsFloatingPointType(input_type)) { | 
|  | locations->SetInAt(0, Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | if (DataType::IsFloatingPointType(result_type)) { | 
|  | locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
|  | } else { | 
|  | locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) { | 
|  | DataType::Type result_type = conversion->GetResultType(); | 
|  | DataType::Type input_type = conversion->GetInputType(); | 
|  |  | 
|  | DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) | 
|  | << input_type << " -> " << result_type; | 
|  |  | 
|  | if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) { | 
|  | int result_size = DataType::Size(result_type); | 
|  | int input_size = DataType::Size(input_type); | 
|  | int min_size = std::min(result_size, input_size); | 
|  | Register output = OutputRegister(conversion); | 
|  | Register source = InputRegisterAt(conversion, 0); | 
|  | if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) { | 
|  | // 'int' values are used directly as W registers, discarding the top | 
|  | // bits, so we don't need to sign-extend and can just perform a move. | 
|  | // We do not pass the `kDiscardForSameWReg` argument to force clearing the | 
|  | // top 32 bits of the target register. We theoretically could leave those | 
|  | // bits unchanged, but we would have to make sure that no code uses a | 
|  | // 32bit input value as a 64bit value assuming that the top 32 bits are | 
|  | // zero. | 
|  | __ Mov(output.W(), source.W()); | 
|  | } else if (DataType::IsUnsignedType(result_type) || | 
|  | (DataType::IsUnsignedType(input_type) && input_size < result_size)) { | 
|  | __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte); | 
|  | } else { | 
|  | __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte); | 
|  | } | 
|  | } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) { | 
|  | __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0)); | 
|  | } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) { | 
|  | CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64); | 
|  | __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0)); | 
|  | } else if (DataType::IsFloatingPointType(result_type) && | 
|  | DataType::IsFloatingPointType(input_type)) { | 
|  | __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0)); | 
|  | } else { | 
|  | LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type | 
|  | << " to " << result_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitUShr(HUShr* ushr) { | 
|  | HandleShift(ushr); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) { | 
|  | HandleShift(ushr); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitXor(HXor* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) { | 
|  | HandleBinaryOp(instruction); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
|  | // Nothing to do, this should be removed during prepare for register allocator. | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
|  | // Nothing to do, this should be removed during prepare for register allocator. | 
|  | LOG(FATAL) << "Unreachable"; | 
|  | } | 
|  |  | 
|  | // Simple implementation of packed switch - generate cascaded compare/jumps. | 
|  | void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
|  | int32_t lower_bound = switch_instr->GetStartValue(); | 
|  | uint32_t num_entries = switch_instr->GetNumEntries(); | 
|  | Register value_reg = InputRegisterAt(switch_instr, 0); | 
|  | HBasicBlock* default_block = switch_instr->GetDefaultBlock(); | 
|  |  | 
|  | // Roughly set 16 as max average assemblies generated per HIR in a graph. | 
|  | static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize; | 
|  | // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to | 
|  | // make sure we don't emit it if the target may run out of range. | 
|  | // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR | 
|  | // ranges and emit the tables only as required. | 
|  | static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction; | 
|  |  | 
|  | if (num_entries <= kPackedSwitchCompareJumpThreshold || | 
|  | // Current instruction id is an upper bound of the number of HIRs in the graph. | 
|  | GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) { | 
|  | // Create a series of compare/jumps. | 
|  | UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); | 
|  | Register temp = temps.AcquireW(); | 
|  | __ Subs(temp, value_reg, Operand(lower_bound)); | 
|  |  | 
|  | const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); | 
|  | // Jump to successors[0] if value == lower_bound. | 
|  | __ B(eq, codegen_->GetLabelOf(successors[0])); | 
|  | int32_t last_index = 0; | 
|  | for (; num_entries - last_index > 2; last_index += 2) { | 
|  | __ Subs(temp, temp, Operand(2)); | 
|  | // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. | 
|  | __ B(lo, codegen_->GetLabelOf(successors[last_index + 1])); | 
|  | // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. | 
|  | __ B(eq, codegen_->GetLabelOf(successors[last_index + 2])); | 
|  | } | 
|  | if (num_entries - last_index == 2) { | 
|  | // The last missing case_value. | 
|  | __ Cmp(temp, Operand(1)); | 
|  | __ B(eq, codegen_->GetLabelOf(successors[last_index + 1])); | 
|  | } | 
|  |  | 
|  | // And the default for any other value. | 
|  | if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { | 
|  | __ B(codegen_->GetLabelOf(default_block)); | 
|  | } | 
|  | } else { | 
|  | JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr); | 
|  |  | 
|  | UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); | 
|  |  | 
|  | // Below instructions should use at most one blocked register. Since there are two blocked | 
|  | // registers, we are free to block one. | 
|  | Register temp_w = temps.AcquireW(); | 
|  | Register index; | 
|  | // Remove the bias. | 
|  | if (lower_bound != 0) { | 
|  | index = temp_w; | 
|  | __ Sub(index, value_reg, Operand(lower_bound)); | 
|  | } else { | 
|  | index = value_reg; | 
|  | } | 
|  |  | 
|  | // Jump to default block if index is out of the range. | 
|  | __ Cmp(index, Operand(num_entries)); | 
|  | __ B(hs, codegen_->GetLabelOf(default_block)); | 
|  |  | 
|  | // In current VIXL implementation, it won't require any blocked registers to encode the | 
|  | // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the | 
|  | // register pressure. | 
|  | Register table_base = temps.AcquireX(); | 
|  | // Load jump offset from the table. | 
|  | __ Adr(table_base, jump_table->GetTableStartLabel()); | 
|  | Register jump_offset = temp_w; | 
|  | __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2)); | 
|  |  | 
|  | // Jump to target block by branching to table_base(pc related) + offset. | 
|  | Register target_address = table_base; | 
|  | __ Add(target_address, table_base, Operand(jump_offset, SXTW)); | 
|  | __ Br(target_address); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister( | 
|  | HInstruction* instruction, | 
|  | Location out, | 
|  | uint32_t offset, | 
|  | Location maybe_temp, | 
|  | ReadBarrierOption read_barrier_option) { | 
|  | DataType::Type type = DataType::Type::kReference; | 
|  | Register out_reg = RegisterFrom(out, type); | 
|  | if (read_barrier_option == kWithReadBarrier) { | 
|  | CHECK(kEmitCompilerReadBarrier); | 
|  | if (kUseBakerReadBarrier) { | 
|  | // Load with fast path based Baker's read barrier. | 
|  | // /* HeapReference<Object> */ out = *(out + offset) | 
|  | codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
|  | out, | 
|  | out_reg, | 
|  | offset, | 
|  | maybe_temp, | 
|  | /* needs_null_check= */ false, | 
|  | /* use_load_acquire= */ false); | 
|  | } else { | 
|  | // Load with slow path based read barrier. | 
|  | // Save the value of `out` into `maybe_temp` before overwriting it | 
|  | // in the following move operation, as we will need it for the | 
|  | // read barrier below. | 
|  | Register temp_reg = RegisterFrom(maybe_temp, type); | 
|  | __ Mov(temp_reg, out_reg); | 
|  | // /* HeapReference<Object> */ out = *(out + offset) | 
|  | __ Ldr(out_reg, HeapOperand(out_reg, offset)); | 
|  | codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); | 
|  | } | 
|  | } else { | 
|  | // Plain load with no read barrier. | 
|  | // /* HeapReference<Object> */ out = *(out + offset) | 
|  | __ Ldr(out_reg, HeapOperand(out_reg, offset)); | 
|  | GetAssembler()->MaybeUnpoisonHeapReference(out_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters( | 
|  | HInstruction* instruction, | 
|  | Location out, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location maybe_temp, | 
|  | ReadBarrierOption read_barrier_option) { | 
|  | DataType::Type type = DataType::Type::kReference; | 
|  | Register out_reg = RegisterFrom(out, type); | 
|  | Register obj_reg = RegisterFrom(obj, type); | 
|  | if (read_barrier_option == kWithReadBarrier) { | 
|  | CHECK(kEmitCompilerReadBarrier); | 
|  | if (kUseBakerReadBarrier) { | 
|  | // Load with fast path based Baker's read barrier. | 
|  | // /* HeapReference<Object> */ out = *(obj + offset) | 
|  | codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
|  | out, | 
|  | obj_reg, | 
|  | offset, | 
|  | maybe_temp, | 
|  | /* needs_null_check= */ false, | 
|  | /* use_load_acquire= */ false); | 
|  | } else { | 
|  | // Load with slow path based read barrier. | 
|  | // /* HeapReference<Object> */ out = *(obj + offset) | 
|  | __ Ldr(out_reg, HeapOperand(obj_reg, offset)); | 
|  | codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); | 
|  | } | 
|  | } else { | 
|  | // Plain load with no read barrier. | 
|  | // /* HeapReference<Object> */ out = *(obj + offset) | 
|  | __ Ldr(out_reg, HeapOperand(obj_reg, offset)); | 
|  | GetAssembler()->MaybeUnpoisonHeapReference(out_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateGcRootFieldLoad( | 
|  | HInstruction* instruction, | 
|  | Location root, | 
|  | Register obj, | 
|  | uint32_t offset, | 
|  | vixl::aarch64::Label* fixup_label, | 
|  | ReadBarrierOption read_barrier_option) { | 
|  | DCHECK(fixup_label == nullptr || offset == 0u); | 
|  | Register root_reg = RegisterFrom(root, DataType::Type::kReference); | 
|  | if (read_barrier_option == kWithReadBarrier) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | if (kUseBakerReadBarrier) { | 
|  | // Fast path implementation of art::ReadBarrier::BarrierForRoot when | 
|  | // Baker's read barrier are used. | 
|  |  | 
|  | // Query `art::Thread::Current()->GetIsGcMarking()` (stored in | 
|  | // the Marking Register) to decide whether we need to enter | 
|  | // the slow path to mark the GC root. | 
|  | // | 
|  | // We use shared thunks for the slow path; shared within the method | 
|  | // for JIT, across methods for AOT. That thunk checks the reference | 
|  | // and jumps to the entrypoint if needed. | 
|  | // | 
|  | //     lr = &return_address; | 
|  | //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load. | 
|  | //     if (mr) {  // Thread::Current()->GetIsGcMarking() | 
|  | //       goto gc_root_thunk<root_reg>(lr) | 
|  | //     } | 
|  | //   return_address: | 
|  |  | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | DCHECK(temps.IsAvailable(ip0)); | 
|  | DCHECK(temps.IsAvailable(ip1)); | 
|  | temps.Exclude(ip0, ip1); | 
|  | uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode()); | 
|  |  | 
|  | ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); | 
|  | vixl::aarch64::Label return_address; | 
|  | __ adr(lr, &return_address); | 
|  | if (fixup_label != nullptr) { | 
|  | __ bind(fixup_label); | 
|  | } | 
|  | static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, | 
|  | "GC root LDR must be 2 instructions (8B) before the return address label."); | 
|  | __ ldr(root_reg, MemOperand(obj.X(), offset)); | 
|  | EmitBakerReadBarrierCbnz(custom_data); | 
|  | __ bind(&return_address); | 
|  | } else { | 
|  | // GC root loaded through a slow path for read barriers other | 
|  | // than Baker's. | 
|  | // /* GcRoot<mirror::Object>* */ root = obj + offset | 
|  | if (fixup_label == nullptr) { | 
|  | __ Add(root_reg.X(), obj.X(), offset); | 
|  | } else { | 
|  | EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X()); | 
|  | } | 
|  | // /* mirror::Object* */ root = root->Read() | 
|  | GenerateReadBarrierForRootSlow(instruction, root, root); | 
|  | } | 
|  | } else { | 
|  | // Plain GC root load with no read barrier. | 
|  | // /* GcRoot<mirror::Object> */ root = *(obj + offset) | 
|  | if (fixup_label == nullptr) { | 
|  | __ Ldr(root_reg, MemOperand(obj, offset)); | 
|  | } else { | 
|  | EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X()); | 
|  | } | 
|  | // Note that GC roots are not affected by heap poisoning, thus we | 
|  | // do not have to unpoison `root_reg` here. | 
|  | } | 
|  | MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateIntrinsicCasMoveWithBakerReadBarrier( | 
|  | vixl::aarch64::Register marked_old_value, | 
|  | vixl::aarch64::Register old_value) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | DCHECK(kUseBakerReadBarrier); | 
|  |  | 
|  | // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR. | 
|  | uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode()); | 
|  |  | 
|  | ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); | 
|  | vixl::aarch64::Label return_address; | 
|  | __ adr(lr, &return_address); | 
|  | static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, | 
|  | "GC root LDR must be 2 instructions (8B) before the return address label."); | 
|  | __ mov(marked_old_value, old_value); | 
|  | EmitBakerReadBarrierCbnz(custom_data); | 
|  | __ bind(&return_address); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, | 
|  | Location ref, | 
|  | vixl::aarch64::Register obj, | 
|  | const vixl::aarch64::MemOperand& src, | 
|  | bool needs_null_check, | 
|  | bool use_load_acquire) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | DCHECK(kUseBakerReadBarrier); | 
|  |  | 
|  | // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the | 
|  | // Marking Register) to decide whether we need to enter the slow | 
|  | // path to mark the reference. Then, in the slow path, check the | 
|  | // gray bit in the lock word of the reference's holder (`obj`) to | 
|  | // decide whether to mark `ref` or not. | 
|  | // | 
|  | // We use shared thunks for the slow path; shared within the method | 
|  | // for JIT, across methods for AOT. That thunk checks the holder | 
|  | // and jumps to the entrypoint if needed. If the holder is not gray, | 
|  | // it creates a fake dependency and returns to the LDR instruction. | 
|  | // | 
|  | //     lr = &gray_return_address; | 
|  | //     if (mr) {  // Thread::Current()->GetIsGcMarking() | 
|  | //       goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr) | 
|  | //     } | 
|  | //   not_gray_return_address: | 
|  | //     // Original reference load. If the offset is too large to fit | 
|  | //     // into LDR, we use an adjusted base register here. | 
|  | //     HeapReference<mirror::Object> reference = *(obj+offset); | 
|  | //   gray_return_address: | 
|  |  | 
|  | DCHECK(src.GetAddrMode() == vixl::aarch64::Offset); | 
|  | DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>)); | 
|  |  | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | DCHECK(temps.IsAvailable(ip0)); | 
|  | DCHECK(temps.IsAvailable(ip1)); | 
|  | temps.Exclude(ip0, ip1); | 
|  | uint32_t custom_data = use_load_acquire | 
|  | ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode()) | 
|  | : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode()); | 
|  |  | 
|  | { | 
|  | ExactAssemblyScope guard(GetVIXLAssembler(), | 
|  | (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); | 
|  | vixl::aarch64::Label return_address; | 
|  | __ adr(lr, &return_address); | 
|  | EmitBakerReadBarrierCbnz(custom_data); | 
|  | static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), | 
|  | "Field LDR must be 1 instruction (4B) before the return address label; " | 
|  | " 2 instructions (8B) for heap poisoning."); | 
|  | Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); | 
|  | if (use_load_acquire) { | 
|  | DCHECK_EQ(src.GetOffset(), 0); | 
|  | __ ldar(ref_reg, src); | 
|  | } else { | 
|  | __ ldr(ref_reg, src); | 
|  | } | 
|  | if (needs_null_check) { | 
|  | MaybeRecordImplicitNullCheck(instruction); | 
|  | } | 
|  | // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses | 
|  | // macro instructions disallowed in ExactAssemblyScope. | 
|  | if (kPoisonHeapReferences) { | 
|  | __ neg(ref_reg, Operand(ref_reg)); | 
|  | } | 
|  | __ bind(&return_address); | 
|  | } | 
|  | MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, | 
|  | Location ref, | 
|  | Register obj, | 
|  | uint32_t offset, | 
|  | Location maybe_temp, | 
|  | bool needs_null_check, | 
|  | bool use_load_acquire) { | 
|  | DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>)); | 
|  | Register base = obj; | 
|  | if (use_load_acquire) { | 
|  | DCHECK(maybe_temp.IsRegister()); | 
|  | base = WRegisterFrom(maybe_temp); | 
|  | __ Add(base, obj, offset); | 
|  | offset = 0u; | 
|  | } else if (offset >= kReferenceLoadMinFarOffset) { | 
|  | DCHECK(maybe_temp.IsRegister()); | 
|  | base = WRegisterFrom(maybe_temp); | 
|  | static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2."); | 
|  | __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u))); | 
|  | offset &= (kReferenceLoadMinFarOffset - 1u); | 
|  | } | 
|  | MemOperand src(base.X(), offset); | 
|  | GenerateFieldLoadWithBakerReadBarrier( | 
|  | instruction, ref, obj, src, needs_null_check, use_load_acquire); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction, | 
|  | Location ref, | 
|  | Register obj, | 
|  | uint32_t data_offset, | 
|  | Location index, | 
|  | bool needs_null_check) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  | DCHECK(kUseBakerReadBarrier); | 
|  |  | 
|  | static_assert( | 
|  | sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
|  | "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
|  | size_t scale_factor = DataType::SizeShift(DataType::Type::kReference); | 
|  |  | 
|  | // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the | 
|  | // Marking Register) to decide whether we need to enter the slow | 
|  | // path to mark the reference. Then, in the slow path, check the | 
|  | // gray bit in the lock word of the reference's holder (`obj`) to | 
|  | // decide whether to mark `ref` or not. | 
|  | // | 
|  | // We use shared thunks for the slow path; shared within the method | 
|  | // for JIT, across methods for AOT. That thunk checks the holder | 
|  | // and jumps to the entrypoint if needed. If the holder is not gray, | 
|  | // it creates a fake dependency and returns to the LDR instruction. | 
|  | // | 
|  | //     lr = &gray_return_address; | 
|  | //     if (mr) {  // Thread::Current()->GetIsGcMarking() | 
|  | //       goto array_thunk<base_reg>(lr) | 
|  | //     } | 
|  | //   not_gray_return_address: | 
|  | //     // Original reference load. If the offset is too large to fit | 
|  | //     // into LDR, we use an adjusted base register here. | 
|  | //     HeapReference<mirror::Object> reference = data[index]; | 
|  | //   gray_return_address: | 
|  |  | 
|  | DCHECK(index.IsValid()); | 
|  | Register index_reg = RegisterFrom(index, DataType::Type::kInt32); | 
|  | Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); | 
|  |  | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | DCHECK(temps.IsAvailable(ip0)); | 
|  | DCHECK(temps.IsAvailable(ip1)); | 
|  | temps.Exclude(ip0, ip1); | 
|  |  | 
|  | Register temp; | 
|  | if (instruction->GetArray()->IsIntermediateAddress()) { | 
|  | // We do not need to compute the intermediate address from the array: the | 
|  | // input instruction has done it already. See the comment in | 
|  | // `TryExtractArrayAccessAddress()`. | 
|  | if (kIsDebugBuild) { | 
|  | HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); | 
|  | DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); | 
|  | } | 
|  | temp = obj; | 
|  | } else { | 
|  | temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0)); | 
|  | __ Add(temp.X(), obj.X(), Operand(data_offset)); | 
|  | } | 
|  |  | 
|  | uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode()); | 
|  |  | 
|  | { | 
|  | ExactAssemblyScope guard(GetVIXLAssembler(), | 
|  | (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); | 
|  | vixl::aarch64::Label return_address; | 
|  | __ adr(lr, &return_address); | 
|  | EmitBakerReadBarrierCbnz(custom_data); | 
|  | static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), | 
|  | "Array LDR must be 1 instruction (4B) before the return address label; " | 
|  | " 2 instructions (8B) for heap poisoning."); | 
|  | __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor)); | 
|  | DCHECK(!needs_null_check);  // The thunk cannot handle the null check. | 
|  | // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses | 
|  | // macro instructions disallowed in ExactAssemblyScope. | 
|  | if (kPoisonHeapReferences) { | 
|  | __ neg(ref_reg, Operand(ref_reg)); | 
|  | } | 
|  | __ bind(&return_address); | 
|  | } | 
|  | MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) { | 
|  | // The following condition is a compile-time one, so it does not have a run-time cost. | 
|  | if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) { | 
|  | // The following condition is a run-time one; it is executed after the | 
|  | // previous compile-time test, to avoid penalizing non-debug builds. | 
|  | if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) { | 
|  | UseScratchRegisterScope temps(GetVIXLAssembler()); | 
|  | Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW(); | 
|  | GetAssembler()->GenerateMarkingRegisterCheck(temp, code); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SlowPathCodeARM64* CodeGeneratorARM64::AddReadBarrierSlowPath(HInstruction* instruction, | 
|  | Location out, | 
|  | Location ref, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location index) { | 
|  | SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) | 
|  | ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index); | 
|  | AddSlowPath(slow_path); | 
|  | return slow_path; | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction, | 
|  | Location out, | 
|  | Location ref, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location index) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  |  | 
|  | // Insert a slow path based read barrier *after* the reference load. | 
|  | // | 
|  | // If heap poisoning is enabled, the unpoisoning of the loaded | 
|  | // reference will be carried out by the runtime within the slow | 
|  | // path. | 
|  | // | 
|  | // Note that `ref` currently does not get unpoisoned (when heap | 
|  | // poisoning is enabled), which is alright as the `ref` argument is | 
|  | // not used by the artReadBarrierSlow entry point. | 
|  | // | 
|  | // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. | 
|  | SlowPathCodeARM64* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index); | 
|  |  | 
|  | __ B(slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, | 
|  | Location out, | 
|  | Location ref, | 
|  | Location obj, | 
|  | uint32_t offset, | 
|  | Location index) { | 
|  | if (kEmitCompilerReadBarrier) { | 
|  | // Baker's read barriers shall be handled by the fast path | 
|  | // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier). | 
|  | DCHECK(!kUseBakerReadBarrier); | 
|  | // If heap poisoning is enabled, unpoisoning will be taken care of | 
|  | // by the runtime within the slow path. | 
|  | GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); | 
|  | } else if (kPoisonHeapReferences) { | 
|  | GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction, | 
|  | Location out, | 
|  | Location root) { | 
|  | DCHECK(kEmitCompilerReadBarrier); | 
|  |  | 
|  | // Insert a slow path based read barrier *after* the GC root load. | 
|  | // | 
|  | // Note that GC roots are not affected by heap poisoning, so we do | 
|  | // not need to do anything special for this here. | 
|  | SlowPathCodeARM64* slow_path = | 
|  | new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root); | 
|  | AddSlowPath(slow_path); | 
|  |  | 
|  | __ B(slow_path->GetEntryLabel()); | 
|  | __ Bind(slow_path->GetExitLabel()); | 
|  | } | 
|  |  | 
|  | void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) { | 
|  | LocationSummary* locations = | 
|  | new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
|  | locations->SetInAt(0, Location::RequiresRegister()); | 
|  | locations->SetOut(Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { | 
|  | uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
|  | instruction->GetIndex(), kArm64PointerSize).SizeValue(); | 
|  | __ Ldr(XRegisterFrom(locations->Out()), | 
|  | MemOperand(XRegisterFrom(locations->InAt(0)), method_offset)); | 
|  | } else { | 
|  | uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( | 
|  | instruction->GetIndex(), kArm64PointerSize)); | 
|  | __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)), | 
|  | mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); | 
|  | __ Ldr(XRegisterFrom(locations->Out()), | 
|  | MemOperand(XRegisterFrom(locations->Out()), method_offset)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void PatchJitRootUse(uint8_t* code, | 
|  | const uint8_t* roots_data, | 
|  | vixl::aarch64::Literal<uint32_t>* literal, | 
|  | uint64_t index_in_table) { | 
|  | uint32_t literal_offset = literal->GetOffset(); | 
|  | uintptr_t address = | 
|  | reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); | 
|  | uint8_t* data = code + literal_offset; | 
|  | reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { | 
|  | for (const auto& entry : jit_string_patches_) { | 
|  | const StringReference& string_reference = entry.first; | 
|  | vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second; | 
|  | uint64_t index_in_table = GetJitStringRootIndex(string_reference); | 
|  | PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); | 
|  | } | 
|  | for (const auto& entry : jit_class_patches_) { | 
|  | const TypeReference& type_reference = entry.first; | 
|  | vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second; | 
|  | uint64_t index_in_table = GetJitClassRootIndex(type_reference); | 
|  | PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); | 
|  | } | 
|  | } | 
|  |  | 
|  | MemOperand InstructionCodeGeneratorARM64::VecNEONAddress( | 
|  | HVecMemoryOperation* instruction, | 
|  | UseScratchRegisterScope* temps_scope, | 
|  | size_t size, | 
|  | bool is_string_char_at, | 
|  | /*out*/ Register* scratch) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Register base = InputRegisterAt(instruction, 0); | 
|  |  | 
|  | if (instruction->InputAt(1)->IsIntermediateAddressIndex()) { | 
|  | DCHECK(!is_string_char_at); | 
|  | return MemOperand(base.X(), InputRegisterAt(instruction, 1).X()); | 
|  | } | 
|  |  | 
|  | Location index = locations->InAt(1); | 
|  | uint32_t offset = is_string_char_at | 
|  | ? mirror::String::ValueOffset().Uint32Value() | 
|  | : mirror::Array::DataOffset(size).Uint32Value(); | 
|  | size_t shift = ComponentSizeShiftWidth(size); | 
|  |  | 
|  | // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet. | 
|  | DCHECK(!instruction->InputAt(0)->IsIntermediateAddress()); | 
|  |  | 
|  | if (index.IsConstant()) { | 
|  | offset += Int64FromLocation(index) << shift; | 
|  | return HeapOperand(base, offset); | 
|  | } else { | 
|  | *scratch = temps_scope->AcquireSameSizeAs(base); | 
|  | __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift)); | 
|  | return HeapOperand(*scratch, offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | SVEMemOperand InstructionCodeGeneratorARM64::VecSVEAddress( | 
|  | HVecMemoryOperation* instruction, | 
|  | UseScratchRegisterScope* temps_scope, | 
|  | size_t size, | 
|  | bool is_string_char_at, | 
|  | /*out*/ Register* scratch) { | 
|  | LocationSummary* locations = instruction->GetLocations(); | 
|  | Register base = InputRegisterAt(instruction, 0); | 
|  | Location index = locations->InAt(1); | 
|  |  | 
|  | DCHECK(!instruction->InputAt(1)->IsIntermediateAddressIndex()); | 
|  | DCHECK(!index.IsConstant()); | 
|  |  | 
|  | uint32_t offset = is_string_char_at | 
|  | ? mirror::String::ValueOffset().Uint32Value() | 
|  | : mirror::Array::DataOffset(size).Uint32Value(); | 
|  | size_t shift = ComponentSizeShiftWidth(size); | 
|  |  | 
|  | if (instruction->InputAt(0)->IsIntermediateAddress()) { | 
|  | return SVEMemOperand(base.X(), XRegisterFrom(index), LSL, shift); | 
|  | } | 
|  |  | 
|  | *scratch = temps_scope->AcquireSameSizeAs(base); | 
|  | __ Add(*scratch, base, offset); | 
|  | return SVEMemOperand(scratch->X(), XRegisterFrom(index), LSL, shift); | 
|  | } | 
|  |  | 
|  | #undef __ | 
|  | #undef QUICK_ENTRY_POINT | 
|  |  | 
|  | #define __ assembler.GetVIXLAssembler()-> | 
|  |  | 
|  | static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler, | 
|  | vixl::aarch64::Register base_reg, | 
|  | vixl::aarch64::MemOperand& lock_word, | 
|  | vixl::aarch64::Label* slow_path, | 
|  | vixl::aarch64::Label* throw_npe = nullptr) { | 
|  | // Load the lock word containing the rb_state. | 
|  | __ Ldr(ip0.W(), lock_word); | 
|  | // Given the numeric representation, it's enough to check the low bit of the rb_state. | 
|  | static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); | 
|  | static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); | 
|  | __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path); | 
|  | static_assert( | 
|  | BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET, | 
|  | "Field and array LDR offsets must be the same to reuse the same code."); | 
|  | // To throw NPE, we return to the fast path; the artificial dependence below does not matter. | 
|  | if (throw_npe != nullptr) { | 
|  | __ Bind(throw_npe); | 
|  | } | 
|  | // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning). | 
|  | static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), | 
|  | "Field LDR must be 1 instruction (4B) before the return address label; " | 
|  | " 2 instructions (8B) for heap poisoning."); | 
|  | __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); | 
|  | // Introduce a dependency on the lock_word including rb_state, | 
|  | // to prevent load-load reordering, and without using | 
|  | // a memory barrier (which would be more expensive). | 
|  | __ Add(base_reg, base_reg, Operand(ip0, LSR, 32)); | 
|  | __ Br(lr);          // And return back to the function. | 
|  | // Note: The fake dependency is unnecessary for the slow path. | 
|  | } | 
|  |  | 
|  | // Load the read barrier introspection entrypoint in register `entrypoint`. | 
|  | static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler, | 
|  | vixl::aarch64::Register entrypoint) { | 
|  | // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. | 
|  | DCHECK_EQ(ip0.GetCode(), 16u); | 
|  | const int32_t entry_point_offset = | 
|  | Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode()); | 
|  | __ Ldr(entrypoint, MemOperand(tr, entry_point_offset)); | 
|  | } | 
|  |  | 
|  | void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler, | 
|  | uint32_t encoded_data, | 
|  | /*out*/ std::string* debug_name) { | 
|  | BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); | 
|  | switch (kind) { | 
|  | case BakerReadBarrierKind::kField: | 
|  | case BakerReadBarrierKind::kAcquire: { | 
|  | Register base_reg = | 
|  | vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); | 
|  | CheckValidReg(base_reg.GetCode()); | 
|  | Register holder_reg = | 
|  | vixl::aarch64::XRegister(BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
|  | CheckValidReg(holder_reg.GetCode()); | 
|  | UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); | 
|  | temps.Exclude(ip0, ip1); | 
|  | // In the case of a field load (with relaxed semantic), if `base_reg` differs from | 
|  | // `holder_reg`, the offset was too large and we must have emitted (during the construction | 
|  | // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved | 
|  | // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before | 
|  | // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do | 
|  | // not necessarily do that check before going to the thunk. | 
|  | // | 
|  | // In the case of a field load with load-acquire semantics (where `base_reg` always differs | 
|  | // from `holder_reg`), we also need an explicit null check when implicit null checks are | 
|  | // allowed, as we do not emit one before going to the thunk. | 
|  | vixl::aarch64::Label throw_npe_label; | 
|  | vixl::aarch64::Label* throw_npe = nullptr; | 
|  | if (GetCompilerOptions().GetImplicitNullChecks() && | 
|  | (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) { | 
|  | throw_npe = &throw_npe_label; | 
|  | __ Cbz(holder_reg.W(), throw_npe); | 
|  | } | 
|  | // Check if the holder is gray and, if not, add fake dependency to the base register | 
|  | // and return to the LDR instruction to load the reference. Otherwise, use introspection | 
|  | // to load the reference and call the entrypoint that performs further checks on the | 
|  | // reference and marks it if needed. | 
|  | vixl::aarch64::Label slow_path; | 
|  | MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value()); | 
|  | EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe); | 
|  | __ Bind(&slow_path); | 
|  | if (kind == BakerReadBarrierKind::kField) { | 
|  | MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); | 
|  | __ Ldr(ip0.W(), ldr_address);         // Load the LDR (immediate) unsigned offset. | 
|  | LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); | 
|  | __ Ubfx(ip0.W(), ip0.W(), 10, 12);    // Extract the offset. | 
|  | __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2));   // Load the reference. | 
|  | } else { | 
|  | DCHECK(kind == BakerReadBarrierKind::kAcquire); | 
|  | DCHECK(!base_reg.Is(holder_reg)); | 
|  | LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); | 
|  | __ Ldar(ip0.W(), MemOperand(base_reg)); | 
|  | } | 
|  | // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference. | 
|  | __ Br(ip1);                           // Jump to the entrypoint. | 
|  | break; | 
|  | } | 
|  | case BakerReadBarrierKind::kArray: { | 
|  | Register base_reg = | 
|  | vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); | 
|  | CheckValidReg(base_reg.GetCode()); | 
|  | DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, | 
|  | BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
|  | UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); | 
|  | temps.Exclude(ip0, ip1); | 
|  | vixl::aarch64::Label slow_path; | 
|  | int32_t data_offset = | 
|  | mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value(); | 
|  | MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset); | 
|  | DCHECK_LT(lock_word.GetOffset(), 0); | 
|  | EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path); | 
|  | __ Bind(&slow_path); | 
|  | MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET); | 
|  | __ Ldr(ip0.W(), ldr_address);         // Load the LDR (register) unsigned offset. | 
|  | LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); | 
|  | __ Ubfx(ip0, ip0, 16, 6);             // Extract the index register, plus 32 (bit 21 is set). | 
|  | __ Bfi(ip1, ip0, 3, 6);               // Insert ip0 to the entrypoint address to create | 
|  | // a switch case target based on the index register. | 
|  | __ Mov(ip0, base_reg);                // Move the base register to ip0. | 
|  | __ Br(ip1);                           // Jump to the entrypoint's array switch case. | 
|  | break; | 
|  | } | 
|  | case BakerReadBarrierKind::kGcRoot: { | 
|  | // Check if the reference needs to be marked and if so (i.e. not null, not marked yet | 
|  | // and it does not have a forwarding address), call the correct introspection entrypoint; | 
|  | // otherwise return the reference (or the extracted forwarding address). | 
|  | // There is no gray bit check for GC roots. | 
|  | Register root_reg = | 
|  | vixl::aarch64::WRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); | 
|  | CheckValidReg(root_reg.GetCode()); | 
|  | DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, | 
|  | BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
|  | UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); | 
|  | temps.Exclude(ip0, ip1); | 
|  | vixl::aarch64::Label return_label, not_marked, forwarding_address; | 
|  | __ Cbz(root_reg, &return_label); | 
|  | MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value()); | 
|  | __ Ldr(ip0.W(), lock_word); | 
|  | __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked); | 
|  | __ Bind(&return_label); | 
|  | __ Br(lr); | 
|  | __ Bind(¬_marked); | 
|  | __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1)); | 
|  | __ B(&forwarding_address, mi); | 
|  | LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); | 
|  | // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to | 
|  | // art_quick_read_barrier_mark_introspection_gc_roots. | 
|  | __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET)); | 
|  | __ Mov(ip0.W(), root_reg); | 
|  | __ Br(ip1); | 
|  | __ Bind(&forwarding_address); | 
|  | __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift); | 
|  | __ Br(lr); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind); | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | // For JIT, the slow path is considered part of the compiled method, | 
|  | // so JIT should pass null as `debug_name`. | 
|  | DCHECK_IMPLIES(GetCompilerOptions().IsJitCompiler(), debug_name == nullptr); | 
|  | if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { | 
|  | std::ostringstream oss; | 
|  | oss << "BakerReadBarrierThunk"; | 
|  | switch (kind) { | 
|  | case BakerReadBarrierKind::kField: | 
|  | oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) | 
|  | << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); | 
|  | break; | 
|  | case BakerReadBarrierKind::kAcquire: | 
|  | oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) | 
|  | << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); | 
|  | break; | 
|  | case BakerReadBarrierKind::kArray: | 
|  | oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); | 
|  | DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, | 
|  | BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
|  | break; | 
|  | case BakerReadBarrierKind::kGcRoot: | 
|  | oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); | 
|  | DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, | 
|  | BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
|  | break; | 
|  | } | 
|  | *debug_name = oss.str(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef __ | 
|  |  | 
|  | }  // namespace arm64 | 
|  | }  // namespace art |