|  | /* | 
|  | * Copyright (C) 2017 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #ifndef ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ | 
|  | #define ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ | 
|  |  | 
|  | // This #include should never be used by compilation, because this header file (nodes_vector.h) | 
|  | // is included in the header file nodes.h itself. However it gives editing tools better context. | 
|  | #include "nodes.h" | 
|  |  | 
|  | namespace art { | 
|  |  | 
|  | // Memory alignment, represented as an offset relative to a base, where 0 <= offset < base, | 
|  | // and base is a power of two. For example, the value Alignment(16, 0) means memory is | 
|  | // perfectly aligned at a 16-byte boundary, whereas the value Alignment(16, 4) means | 
|  | // memory is always exactly 4 bytes above such a boundary. | 
|  | class Alignment { | 
|  | public: | 
|  | Alignment(size_t base, size_t offset) : base_(base), offset_(offset) { | 
|  | DCHECK_LT(offset, base); | 
|  | DCHECK(IsPowerOfTwo(base)); | 
|  | } | 
|  |  | 
|  | // Returns true if memory is at least aligned at the given boundary. | 
|  | // Assumes requested base is power of two. | 
|  | bool IsAlignedAt(size_t base) const { | 
|  | DCHECK_NE(0u, base); | 
|  | DCHECK(IsPowerOfTwo(base)); | 
|  | return ((offset_ | base_) & (base - 1u)) == 0; | 
|  | } | 
|  |  | 
|  | size_t Base() const { return base_; } | 
|  |  | 
|  | size_t Offset() const { return offset_; } | 
|  |  | 
|  | std::string ToString() const { | 
|  | return "ALIGN(" + std::to_string(base_) + "," + std::to_string(offset_) + ")"; | 
|  | } | 
|  |  | 
|  | bool operator==(const Alignment& other) const { | 
|  | return base_ == other.base_ && offset_ == other.offset_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | size_t base_; | 
|  | size_t offset_; | 
|  | }; | 
|  |  | 
|  | // | 
|  | // Definitions of abstract vector operations in HIR. | 
|  | // | 
|  |  | 
|  | // Abstraction of a vector operation, i.e., an operation that performs | 
|  | // GetVectorLength() x GetPackedType() operations simultaneously. | 
|  | class HVecOperation : public HVariableInputSizeInstruction { | 
|  | public: | 
|  | // A SIMD operation looks like a FPU location. | 
|  | // TODO: we could introduce SIMD types in HIR. | 
|  | static constexpr DataType::Type kSIMDType = DataType::Type::kFloat64; | 
|  |  | 
|  | HVecOperation(InstructionKind kind, | 
|  | ArenaAllocator* allocator, | 
|  | DataType::Type packed_type, | 
|  | SideEffects side_effects, | 
|  | size_t number_of_inputs, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVariableInputSizeInstruction(kind, | 
|  | kSIMDType, | 
|  | side_effects, | 
|  | dex_pc, | 
|  | allocator, | 
|  | number_of_inputs, | 
|  | kArenaAllocVectorNode), | 
|  | vector_length_(vector_length) { | 
|  | SetPackedField<PackedTypeField>(packed_type); | 
|  | // By default vector operations are not predicated. | 
|  | SetPackedField<PredicationKindField>(PredicationKind::kNotPredicated); | 
|  | DCHECK_LT(1u, vector_length); | 
|  | } | 
|  |  | 
|  | // Predicated instructions execute a corresponding operation only on vector elements which are | 
|  | // active (governing predicate is true for that element); the following modes determine what | 
|  | // is happening with inactive elements. | 
|  | // | 
|  | // See HVecPredSetOperation. | 
|  | enum class PredicationKind { | 
|  | kNotPredicated,        // Instruction doesn't take any predicate as an input. | 
|  | kZeroingForm,          // Inactive elements are reset to zero. | 
|  | kMergingForm,          // Inactive elements keep their value. | 
|  | kLast = kMergingForm, | 
|  | }; | 
|  |  | 
|  | PredicationKind GetPredicationKind() const { return GetPackedField<PredicationKindField>(); } | 
|  |  | 
|  | // Returns whether the vector operation must be predicated in predicated SIMD mode | 
|  | // (see CodeGenerator::SupportsPredicatedSIMD). The method reflects semantics of | 
|  | // the instruction class rather than the state of a particular instruction instance. | 
|  | // | 
|  | // This property is introduced for robustness purpose - to maintain and check the invariant: | 
|  | // all instructions of the same vector operation class must be either all predicated or all | 
|  | // not predicated (depending on the predicated SIMD support) in a correct graph. | 
|  | virtual bool MustBePredicatedInPredicatedSIMDMode() { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool IsPredicated() const { | 
|  | return GetPredicationKind() != PredicationKind::kNotPredicated; | 
|  | } | 
|  |  | 
|  | // See HVecPredSetOperation. | 
|  | void SetGoverningPredicate(HInstruction* input, PredicationKind pred_kind) { | 
|  | DCHECK(!IsPredicated()); | 
|  | DCHECK(input->IsVecPredSetOperation()); | 
|  | AddInput(input); | 
|  | SetPackedField<PredicationKindField>(pred_kind); | 
|  | DCHECK(IsPredicated()); | 
|  | } | 
|  |  | 
|  | void SetMergingGoverningPredicate(HInstruction* input) { | 
|  | SetGoverningPredicate(input, PredicationKind::kMergingForm); | 
|  | } | 
|  | void SetZeroingGoverningPredicate(HInstruction* input) { | 
|  | SetGoverningPredicate(input, PredicationKind::kZeroingForm); | 
|  | } | 
|  |  | 
|  | // See HVecPredSetOperation. | 
|  | HVecPredSetOperation* GetGoverningPredicate() const { | 
|  | DCHECK(IsPredicated()); | 
|  | HInstruction* pred_input = InputAt(InputCount() - 1); | 
|  | DCHECK(pred_input->IsVecPredSetOperation()); | 
|  | return pred_input->AsVecPredSetOperation(); | 
|  | } | 
|  |  | 
|  | // Returns whether two vector operations are predicated by the same vector predicate | 
|  | // with the same predication type. | 
|  | static bool HaveSamePredicate(HVecOperation* instr0, HVecOperation* instr1) { | 
|  | HVecPredSetOperation* instr0_predicate = instr0->GetGoverningPredicate(); | 
|  | HVecOperation::PredicationKind instr0_predicate_kind = instr0->GetPredicationKind(); | 
|  | return instr1->GetGoverningPredicate() == instr0_predicate && | 
|  | instr1->GetPredicationKind() == instr0_predicate_kind; | 
|  | } | 
|  |  | 
|  | // Returns the number of elements packed in a vector. | 
|  | size_t GetVectorLength() const { | 
|  | return vector_length_; | 
|  | } | 
|  |  | 
|  | // Returns the number of bytes in a full vector. | 
|  | size_t GetVectorNumberOfBytes() const { | 
|  | return vector_length_ * DataType::Size(GetPackedType()); | 
|  | } | 
|  |  | 
|  | // Returns the true component type packed in a vector. | 
|  | DataType::Type GetPackedType() const { | 
|  | return GetPackedField<PackedTypeField>(); | 
|  | } | 
|  |  | 
|  | // Assumes vector nodes cannot be moved by default. Each concrete implementation | 
|  | // that can be moved should override this method and return true. | 
|  | // | 
|  | // Note: similar approach is used for instruction scheduling (if it is turned on for the target): | 
|  | // by default HScheduler::IsSchedulable returns false for a particular HVecOperation. | 
|  | // HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see | 
|  | // scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also | 
|  | // look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction. | 
|  | // | 
|  | // Note: For newly introduced vector instructions HScheduler${ARCH}::IsSchedulingBarrier must be | 
|  | // altered to return true if the instruction might reside outside the SIMD loop body since SIMD | 
|  | // registers are not kept alive across vector loop boundaries (yet). | 
|  | bool CanBeMoved() const override { return false; } | 
|  |  | 
|  | // Tests if all data of a vector node (vector length and packed type) is equal. | 
|  | // Each concrete implementation that adds more fields should test equality of | 
|  | // those fields in its own method *and* call all super methods. | 
|  | bool InstructionDataEquals(const HInstruction* other) const override { | 
|  | DCHECK(other->IsVecOperation()); | 
|  | const HVecOperation* o = other->AsVecOperation(); | 
|  | return GetVectorLength() == o->GetVectorLength() && GetPackedType() == o->GetPackedType(); | 
|  | } | 
|  |  | 
|  | // Maps an integral type to the same-size signed type and leaves other types alone. | 
|  | static DataType::Type ToSignedType(DataType::Type type) { | 
|  | switch (type) { | 
|  | case DataType::Type::kBool:  // 1-byte storage unit | 
|  | case DataType::Type::kUint8: | 
|  | return DataType::Type::kInt8; | 
|  | case DataType::Type::kUint16: | 
|  | return DataType::Type::kInt16; | 
|  | default: | 
|  | DCHECK(type != DataType::Type::kVoid && type != DataType::Type::kReference) << type; | 
|  | return type; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Maps an integral type to the same-size unsigned type and leaves other types alone. | 
|  | static DataType::Type ToUnsignedType(DataType::Type type) { | 
|  | switch (type) { | 
|  | case DataType::Type::kBool:  // 1-byte storage unit | 
|  | case DataType::Type::kInt8: | 
|  | return DataType::Type::kUint8; | 
|  | case DataType::Type::kInt16: | 
|  | return DataType::Type::kUint16; | 
|  | default: | 
|  | DCHECK(type != DataType::Type::kVoid && type != DataType::Type::kReference) << type; | 
|  | return type; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Maps an integral type to the same-size (un)signed type. Leaves other types alone. | 
|  | static DataType::Type ToProperType(DataType::Type type, bool is_unsigned) { | 
|  | return is_unsigned ? ToUnsignedType(type) : ToSignedType(type); | 
|  | } | 
|  |  | 
|  | // Helper method to determine if an instruction returns a SIMD value. | 
|  | // TODO: This method is needed until we introduce SIMD as proper type. | 
|  | static bool ReturnsSIMDValue(HInstruction* instruction) { | 
|  | if (instruction->IsVecOperation()) { | 
|  | return !instruction->IsVecExtractScalar();  // only scalar returning vec op | 
|  | } else if (instruction->IsPhi()) { | 
|  | // Vectorizer only uses Phis in reductions, so checking for a 2-way phi | 
|  | // with a direct vector operand as second argument suffices. | 
|  | return | 
|  | instruction->GetType() == kSIMDType && | 
|  | instruction->InputCount() == 2 && | 
|  | instruction->InputAt(1)->IsVecOperation(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(VecOperation); | 
|  |  | 
|  | protected: | 
|  | // Additional packed bits. | 
|  | static constexpr size_t kPredicationKind = HInstruction::kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kPredicationKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(PredicationKind::kLast)); | 
|  | static constexpr size_t kFieldPackedType = kPredicationKind + kPredicationKindSize; | 
|  | static constexpr size_t kFieldPackedTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); | 
|  | static constexpr size_t kNumberOfVectorOpPackedBits = kFieldPackedType + kFieldPackedTypeSize; | 
|  | static_assert(kNumberOfVectorOpPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using PackedTypeField = BitField<DataType::Type, kFieldPackedType, kFieldPackedTypeSize>; | 
|  | using PredicationKindField = BitField<PredicationKind, kPredicationKind, kPredicationKindSize>; | 
|  |  | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecOperation); | 
|  |  | 
|  | private: | 
|  | const size_t vector_length_; | 
|  | }; | 
|  |  | 
|  | // Abstraction of a unary vector operation. | 
|  | class HVecUnaryOperation : public HVecOperation { | 
|  | public: | 
|  | HVecUnaryOperation(InstructionKind kind, | 
|  | ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kind, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | /* number_of_inputs= */ 1, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | SetRawInputAt(0, input); | 
|  | } | 
|  |  | 
|  | HInstruction* GetInput() const { return InputAt(0); } | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(VecUnaryOperation); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecUnaryOperation); | 
|  | }; | 
|  |  | 
|  | // Abstraction of a binary vector operation. | 
|  | class HVecBinaryOperation : public HVecOperation { | 
|  | public: | 
|  | HVecBinaryOperation(InstructionKind kind, | 
|  | ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kind, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | /* number_of_inputs= */ 2, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | SetRawInputAt(0, left); | 
|  | SetRawInputAt(1, right); | 
|  | } | 
|  |  | 
|  | HInstruction* GetLeft() const { return InputAt(0); } | 
|  | HInstruction* GetRight() const { return InputAt(1); } | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(VecBinaryOperation); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecBinaryOperation); | 
|  | }; | 
|  |  | 
|  | // Abstraction of a vector operation that references memory, with an alignment. | 
|  | // The Android runtime guarantees elements have at least natural alignment. | 
|  | class HVecMemoryOperation : public HVecOperation { | 
|  | public: | 
|  | HVecMemoryOperation(InstructionKind kind, | 
|  | ArenaAllocator* allocator, | 
|  | DataType::Type packed_type, | 
|  | SideEffects side_effects, | 
|  | size_t number_of_inputs, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kind, | 
|  | allocator, | 
|  | packed_type, | 
|  | side_effects, | 
|  | number_of_inputs, | 
|  | vector_length, | 
|  | dex_pc), | 
|  | alignment_(DataType::Size(packed_type), 0) { | 
|  | DCHECK_GE(number_of_inputs, 2u); | 
|  | } | 
|  |  | 
|  | void SetAlignment(Alignment alignment) { alignment_ = alignment; } | 
|  |  | 
|  | Alignment GetAlignment() const { return alignment_; } | 
|  |  | 
|  | HInstruction* GetArray() const { return InputAt(0); } | 
|  | HInstruction* GetIndex() const { return InputAt(1); } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const override { | 
|  | DCHECK(other->IsVecMemoryOperation()); | 
|  | const HVecMemoryOperation* o = other->AsVecMemoryOperation(); | 
|  | return HVecOperation::InstructionDataEquals(o) && GetAlignment() == o->GetAlignment(); | 
|  | } | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(VecMemoryOperation); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecMemoryOperation); | 
|  |  | 
|  | private: | 
|  | Alignment alignment_; | 
|  | }; | 
|  |  | 
|  | // Packed type consistency checker ("same vector length" integral types may mix freely). | 
|  | // Tests relaxed type consistency in which packed same-size integral types can co-exist, | 
|  | // but other type mixes are an error. | 
|  | inline static bool HasConsistentPackedTypes(HInstruction* input, DataType::Type type) { | 
|  | if (input->IsPhi()) { | 
|  | return input->GetType() == HVecOperation::kSIMDType;  // carries SIMD | 
|  | } | 
|  | DCHECK(input->IsVecOperation()); | 
|  | DataType::Type input_type = input->AsVecOperation()->GetPackedType(); | 
|  | DCHECK_EQ(HVecOperation::ToUnsignedType(input_type) == HVecOperation::ToUnsignedType(type), | 
|  | HVecOperation::ToSignedType(input_type) == HVecOperation::ToSignedType(type)); | 
|  | return HVecOperation::ToSignedType(input_type) == HVecOperation::ToSignedType(type); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Definitions of concrete unary vector operations in HIR. | 
|  | // | 
|  |  | 
|  | // Replicates the given scalar into a vector, | 
|  | // viz. replicate(x) = [ x, .. , x ]. | 
|  | class HVecReplicateScalar final : public HVecUnaryOperation { | 
|  | public: | 
|  | HVecReplicateScalar(ArenaAllocator* allocator, | 
|  | HInstruction* scalar, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecUnaryOperation( | 
|  | kVecReplicateScalar, allocator, scalar, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(!ReturnsSIMDValue(scalar)); | 
|  | } | 
|  |  | 
|  | // A replicate needs to stay in place, since SIMD registers are not | 
|  | // kept alive across vector loop boundaries (yet). | 
|  | bool CanBeMoved() const override { return false; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecReplicateScalar); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecReplicateScalar); | 
|  | }; | 
|  |  | 
|  | // Extracts a particular scalar from the given vector, | 
|  | // viz. extract[ x1, .. , xn ] = x_i. | 
|  | // | 
|  | // TODO: for now only i == 1 case supported. | 
|  | class HVecExtractScalar final : public HVecUnaryOperation { | 
|  | public: | 
|  | HVecExtractScalar(ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | size_t index, | 
|  | uint32_t dex_pc) | 
|  | : HVecUnaryOperation( | 
|  | kVecExtractScalar, allocator, input, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(input, packed_type)); | 
|  | DCHECK_LT(index, vector_length); | 
|  | DCHECK_EQ(index, 0u); | 
|  | // Yields a single component in the vector. | 
|  | // Overrides the kSIMDType set by the VecOperation constructor. | 
|  | SetPackedField<TypeField>(packed_type); | 
|  | } | 
|  |  | 
|  | // An extract needs to stay in place, since SIMD registers are not | 
|  | // kept alive across vector loop boundaries (yet). | 
|  | bool CanBeMoved() const override { return false; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecExtractScalar); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecExtractScalar); | 
|  | }; | 
|  |  | 
|  | // Reduces the given vector into the first element as sum/min/max, | 
|  | // viz. sum-reduce[ x1, .. , xn ] = [ y, ---- ], where y = sum xi | 
|  | // and the "-" denotes "don't care" (implementation dependent). | 
|  | class HVecReduce final : public HVecUnaryOperation { | 
|  | public: | 
|  | enum ReductionKind { | 
|  | kSum = 1, | 
|  | kMin = 2, | 
|  | kMax = 3 | 
|  | }; | 
|  |  | 
|  | HVecReduce(ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | ReductionKind reduction_kind, | 
|  | uint32_t dex_pc) | 
|  | : HVecUnaryOperation(kVecReduce, allocator, input, packed_type, vector_length, dex_pc), | 
|  | reduction_kind_(reduction_kind) { | 
|  | DCHECK(HasConsistentPackedTypes(input, packed_type)); | 
|  | } | 
|  |  | 
|  | ReductionKind GetReductionKind() const { return reduction_kind_; } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const override { | 
|  | DCHECK(other->IsVecReduce()); | 
|  | const HVecReduce* o = other->AsVecReduce(); | 
|  | return HVecOperation::InstructionDataEquals(o) && GetReductionKind() == o->GetReductionKind(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecReduce); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecReduce); | 
|  |  | 
|  | private: | 
|  | const ReductionKind reduction_kind_; | 
|  | }; | 
|  |  | 
|  | // Converts every component in the vector, | 
|  | // viz. cnv[ x1, .. , xn ]  = [ cnv(x1), .. , cnv(xn) ]. | 
|  | class HVecCnv final : public HVecUnaryOperation { | 
|  | public: | 
|  | HVecCnv(ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecUnaryOperation(kVecCnv, allocator, input, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(input->IsVecOperation()); | 
|  | DCHECK_NE(GetInputType(), GetResultType());  // actual convert | 
|  | } | 
|  |  | 
|  | DataType::Type GetInputType() const { return InputAt(0)->AsVecOperation()->GetPackedType(); } | 
|  | DataType::Type GetResultType() const { return GetPackedType(); } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecCnv); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecCnv); | 
|  | }; | 
|  |  | 
|  | // Negates every component in the vector, | 
|  | // viz. neg[ x1, .. , xn ]  = [ -x1, .. , -xn ]. | 
|  | class HVecNeg final : public HVecUnaryOperation { | 
|  | public: | 
|  | HVecNeg(ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecUnaryOperation(kVecNeg, allocator, input, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(input, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecNeg); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecNeg); | 
|  | }; | 
|  |  | 
|  | // Takes absolute value of every component in the vector, | 
|  | // viz. abs[ x1, .. , xn ]  = [ |x1|, .. , |xn| ] | 
|  | // for signed operand x. | 
|  | class HVecAbs final : public HVecUnaryOperation { | 
|  | public: | 
|  | HVecAbs(ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecUnaryOperation(kVecAbs, allocator, input, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(input, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecAbs); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecAbs); | 
|  | }; | 
|  |  | 
|  | // Bitwise- or boolean-nots every component in the vector, | 
|  | // viz. not[ x1, .. , xn ]  = [ ~x1, .. , ~xn ], or | 
|  | //      not[ x1, .. , xn ]  = [ !x1, .. , !xn ] for boolean. | 
|  | class HVecNot final : public HVecUnaryOperation { | 
|  | public: | 
|  | HVecNot(ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecUnaryOperation(kVecNot, allocator, input, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(input->IsVecOperation()); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecNot); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecNot); | 
|  | }; | 
|  |  | 
|  | // | 
|  | // Definitions of concrete binary vector operations in HIR. | 
|  | // | 
|  |  | 
|  | // Adds every component in the two vectors, | 
|  | // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 + y1, .. , xn + yn ]. | 
|  | class HVecAdd final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecAdd(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecAdd, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecAdd); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecAdd); | 
|  | }; | 
|  |  | 
|  | // Adds every component in the two vectors using saturation arithmetic, | 
|  | // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 +_sat y1, .. , xn +_sat yn ] | 
|  | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
|  | class HVecSaturationAdd final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecSaturationAdd(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation( | 
|  | kVecSaturationAdd, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecSaturationAdd); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecSaturationAdd); | 
|  | }; | 
|  |  | 
|  | // Performs halving add on every component in the two vectors, viz. | 
|  | // rounded   [ x1, .. , xn ] hradd [ y1, .. , yn ] = [ (x1 + y1 + 1) >> 1, .. , (xn + yn + 1) >> 1 ] | 
|  | // truncated [ x1, .. , xn ] hadd  [ y1, .. , yn ] = [ (x1 + y1)     >> 1, .. , (xn + yn )    >> 1 ] | 
|  | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
|  | class HVecHalvingAdd final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecHalvingAdd(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | bool is_rounded, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation( | 
|  | kVecHalvingAdd, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | SetPackedFlag<kFieldHAddIsRounded>(is_rounded); | 
|  | } | 
|  |  | 
|  | bool IsRounded() const { return GetPackedFlag<kFieldHAddIsRounded>(); } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const override { | 
|  | DCHECK(other->IsVecHalvingAdd()); | 
|  | const HVecHalvingAdd* o = other->AsVecHalvingAdd(); | 
|  | return HVecOperation::InstructionDataEquals(o) && IsRounded() == o->IsRounded(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecHalvingAdd); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecHalvingAdd); | 
|  |  | 
|  | private: | 
|  | // Additional packed bits. | 
|  | static constexpr size_t kFieldHAddIsRounded = HVecOperation::kNumberOfVectorOpPackedBits; | 
|  | static constexpr size_t kNumberOfHAddPackedBits = kFieldHAddIsRounded + 1; | 
|  | static_assert(kNumberOfHAddPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | }; | 
|  |  | 
|  | // Subtracts every component in the two vectors, | 
|  | // viz. [ x1, .. , xn ] - [ y1, .. , yn ] = [ x1 - y1, .. , xn - yn ]. | 
|  | class HVecSub final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecSub(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecSub, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecSub); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecSub); | 
|  | }; | 
|  |  | 
|  | // Subtracts every component in the two vectors using saturation arithmetic, | 
|  | // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 -_sat y1, .. , xn -_sat yn ] | 
|  | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
|  | class HVecSaturationSub final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecSaturationSub(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation( | 
|  | kVecSaturationSub, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecSaturationSub); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecSaturationSub); | 
|  | }; | 
|  |  | 
|  | // Multiplies every component in the two vectors, | 
|  | // viz. [ x1, .. , xn ] * [ y1, .. , yn ] = [ x1 * y1, .. , xn * yn ]. | 
|  | class HVecMul final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecMul(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecMul, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecMul); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecMul); | 
|  | }; | 
|  |  | 
|  | // Divides every component in the two vectors, | 
|  | // viz. [ x1, .. , xn ] / [ y1, .. , yn ] = [ x1 / y1, .. , xn / yn ]. | 
|  | class HVecDiv final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecDiv(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecDiv, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecDiv); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecDiv); | 
|  | }; | 
|  |  | 
|  | // Takes minimum of every component in the two vectors, | 
|  | // viz. MIN( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ min(x1, y1), .. , min(xn, yn) ] | 
|  | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
|  | class HVecMin final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecMin(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecMin, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecMin); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecMin); | 
|  | }; | 
|  |  | 
|  | // Takes maximum of every component in the two vectors, | 
|  | // viz. MAX( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ max(x1, y1), .. , max(xn, yn) ] | 
|  | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
|  | class HVecMax final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecMax(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecMax, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecMax); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecMax); | 
|  | }; | 
|  |  | 
|  | // Bitwise-ands every component in the two vectors, | 
|  | // viz. [ x1, .. , xn ] & [ y1, .. , yn ] = [ x1 & y1, .. , xn & yn ]. | 
|  | class HVecAnd final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecAnd(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecAnd, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(left->IsVecOperation() && right->IsVecOperation()); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecAnd); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecAnd); | 
|  | }; | 
|  |  | 
|  | // Bitwise-and-nots every component in the two vectors, | 
|  | // viz. [ x1, .. , xn ] and-not [ y1, .. , yn ] = [ ~x1 & y1, .. , ~xn & yn ]. | 
|  | class HVecAndNot final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecAndNot(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation( | 
|  | kVecAndNot, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(left->IsVecOperation() && right->IsVecOperation()); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecAndNot); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecAndNot); | 
|  | }; | 
|  |  | 
|  | // Bitwise-ors every component in the two vectors, | 
|  | // viz. [ x1, .. , xn ] | [ y1, .. , yn ] = [ x1 | y1, .. , xn | yn ]. | 
|  | class HVecOr final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecOr(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecOr, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(left->IsVecOperation() && right->IsVecOperation()); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecOr); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecOr); | 
|  | }; | 
|  |  | 
|  | // Bitwise-xors every component in the two vectors, | 
|  | // viz. [ x1, .. , xn ] ^ [ y1, .. , yn ] = [ x1 ^ y1, .. , xn ^ yn ]. | 
|  | class HVecXor final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecXor(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecXor, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(left->IsVecOperation() && right->IsVecOperation()); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecXor); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecXor); | 
|  | }; | 
|  |  | 
|  | // Logically shifts every component in the vector left by the given distance, | 
|  | // viz. [ x1, .. , xn ] << d = [ x1 << d, .. , xn << d ]. | 
|  | class HVecShl final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecShl(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecShl, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecShl); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecShl); | 
|  | }; | 
|  |  | 
|  | // Arithmetically shifts every component in the vector right by the given distance, | 
|  | // viz. [ x1, .. , xn ] >> d = [ x1 >> d, .. , xn >> d ]. | 
|  | class HVecShr final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecShr(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecShr, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecShr); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecShr); | 
|  | }; | 
|  |  | 
|  | // Logically shifts every component in the vector right by the given distance, | 
|  | // viz. [ x1, .. , xn ] >>> d = [ x1 >>> d, .. , xn >>> d ]. | 
|  | class HVecUShr final : public HVecBinaryOperation { | 
|  | public: | 
|  | HVecUShr(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecBinaryOperation(kVecUShr, allocator, left, right, packed_type, vector_length, dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecUShr); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecUShr); | 
|  | }; | 
|  |  | 
|  | // | 
|  | // Definitions of concrete miscellaneous vector operations in HIR. | 
|  | // | 
|  |  | 
|  | // Assigns the given scalar elements to a vector, | 
|  | // viz. set( array(x1, .. , xn) ) = [ x1, .. ,            xn ] if n == m, | 
|  | //      set( array(x1, .. , xm) ) = [ x1, .. , xm, 0, .. , 0 ] if m <  n. | 
|  | class HVecSetScalars final : public HVecOperation { | 
|  | public: | 
|  | HVecSetScalars(ArenaAllocator* allocator, | 
|  | HInstruction* scalars[], | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | size_t number_of_scalars, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kVecSetScalars, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | number_of_scalars, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | for (size_t i = 0; i < number_of_scalars; i++) { | 
|  | DCHECK(!ReturnsSIMDValue(scalars[i])); | 
|  | SetRawInputAt(0, scalars[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Setting scalars needs to stay in place, since SIMD registers are not | 
|  | // kept alive across vector loop boundaries (yet). | 
|  | bool CanBeMoved() const override { return false; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecSetScalars); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecSetScalars); | 
|  | }; | 
|  |  | 
|  | // Multiplies every component in the two vectors, adds the result vector to the accumulator vector, | 
|  | // viz. [ a1, .. , an ] + [ x1, .. , xn ] * [ y1, .. , yn ] = [ a1 + x1 * y1, .. , an + xn * yn ]. | 
|  | // For floating point types, Java rounding behavior must be preserved; the products are rounded to | 
|  | // the proper precision before being added. "Fused" multiply-add operations available on several | 
|  | // architectures are not usable since they would violate Java language rules. | 
|  | class HVecMultiplyAccumulate final : public HVecOperation { | 
|  | public: | 
|  | HVecMultiplyAccumulate(ArenaAllocator* allocator, | 
|  | InstructionKind op, | 
|  | HInstruction* accumulator, | 
|  | HInstruction* mul_left, | 
|  | HInstruction* mul_right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kVecMultiplyAccumulate, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | /* number_of_inputs= */ 3, | 
|  | vector_length, | 
|  | dex_pc), | 
|  | op_kind_(op) { | 
|  | DCHECK(op == InstructionKind::kAdd || op == InstructionKind::kSub); | 
|  | DCHECK(HasConsistentPackedTypes(accumulator, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(mul_left, packed_type)); | 
|  | DCHECK(HasConsistentPackedTypes(mul_right, packed_type)); | 
|  | // Remove the following if we add an architecture that supports floating point multiply-add | 
|  | // with Java-compatible rounding. | 
|  | DCHECK(DataType::IsIntegralType(packed_type)); | 
|  | SetRawInputAt(0, accumulator); | 
|  | SetRawInputAt(1, mul_left); | 
|  | SetRawInputAt(2, mul_right); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const override { | 
|  | DCHECK(other->IsVecMultiplyAccumulate()); | 
|  | const HVecMultiplyAccumulate* o = other->AsVecMultiplyAccumulate(); | 
|  | return HVecOperation::InstructionDataEquals(o) && GetOpKind() == o->GetOpKind(); | 
|  | } | 
|  |  | 
|  | InstructionKind GetOpKind() const { return op_kind_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecMultiplyAccumulate); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecMultiplyAccumulate); | 
|  |  | 
|  | private: | 
|  | // Indicates if this is a MADD or MSUB. | 
|  | const InstructionKind op_kind_; | 
|  | }; | 
|  |  | 
|  | // Takes the absolute difference of two vectors, and adds the results to | 
|  | // same-precision or wider-precision components in the accumulator, | 
|  | // viz. SAD([ a1, .. , am ], [ x1, .. , xn ], [ y1, .. , yn ]) = | 
|  | //          [ a1 + sum abs(xi-yi), .. , am + sum abs(xj-yj) ], | 
|  | //      for m <= n, non-overlapping sums, and signed operands x, y. | 
|  | class HVecSADAccumulate final : public HVecOperation { | 
|  | public: | 
|  | HVecSADAccumulate(ArenaAllocator* allocator, | 
|  | HInstruction* accumulator, | 
|  | HInstruction* sad_left, | 
|  | HInstruction* sad_right, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kVecSADAccumulate, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | /* number_of_inputs= */ 3, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(accumulator, packed_type)); | 
|  | DCHECK(sad_left->IsVecOperation()); | 
|  | DCHECK(sad_right->IsVecOperation()); | 
|  | DCHECK_EQ(ToSignedType(sad_left->AsVecOperation()->GetPackedType()), | 
|  | ToSignedType(sad_right->AsVecOperation()->GetPackedType())); | 
|  | SetRawInputAt(0, accumulator); | 
|  | SetRawInputAt(1, sad_left); | 
|  | SetRawInputAt(2, sad_right); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecSADAccumulate); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecSADAccumulate); | 
|  | }; | 
|  |  | 
|  | // Performs dot product of two vectors and adds the result to wider precision components in | 
|  | // the accumulator. | 
|  | // | 
|  | // viz. DOT_PRODUCT([ a1, .. , am], [ x1, .. , xn ], [ y1, .. , yn ]) = | 
|  | //                  [ a1 + sum(xi * yi), .. , am + sum(xj * yj) ], | 
|  | //      for m <= n, non-overlapping sums, | 
|  | //      for either both signed or both unsigned operands x, y. | 
|  | // | 
|  | // Notes: | 
|  | //   - packed type reflects the type of sum reduction, not the type of the operands. | 
|  | //   - IsZeroExtending() is used to determine the kind of signed/zero extension to be | 
|  | //     performed for the operands. | 
|  | // | 
|  | // TODO: Support types other than kInt32 for packed type. | 
|  | class HVecDotProd final : public HVecOperation { | 
|  | public: | 
|  | HVecDotProd(ArenaAllocator* allocator, | 
|  | HInstruction* accumulator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | DataType::Type packed_type, | 
|  | bool is_zero_extending, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kVecDotProd, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | /* number_of_inputs= */ 3, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(accumulator, packed_type)); | 
|  | DCHECK(DataType::IsIntegralType(packed_type)); | 
|  | DCHECK(left->IsVecOperation()); | 
|  | DCHECK(right->IsVecOperation()); | 
|  | DCHECK_EQ(ToSignedType(left->AsVecOperation()->GetPackedType()), | 
|  | ToSignedType(right->AsVecOperation()->GetPackedType())); | 
|  | SetRawInputAt(0, accumulator); | 
|  | SetRawInputAt(1, left); | 
|  | SetRawInputAt(2, right); | 
|  | SetPackedFlag<kFieldHDotProdIsZeroExtending>(is_zero_extending); | 
|  | } | 
|  |  | 
|  | bool IsZeroExtending() const { return GetPackedFlag<kFieldHDotProdIsZeroExtending>(); } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecDotProd); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecDotProd); | 
|  |  | 
|  | private: | 
|  | // Additional packed bits. | 
|  | static constexpr size_t kFieldHDotProdIsZeroExtending = | 
|  | HVecOperation::kNumberOfVectorOpPackedBits; | 
|  | static constexpr size_t kNumberOfHDotProdPackedBits = kFieldHDotProdIsZeroExtending + 1; | 
|  | static_assert(kNumberOfHDotProdPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | }; | 
|  |  | 
|  | // Loads a vector from memory, viz. load(mem, 1) | 
|  | // yield the vector [ mem(1), .. , mem(n) ]. | 
|  | class HVecLoad final : public HVecMemoryOperation { | 
|  | public: | 
|  | HVecLoad(ArenaAllocator* allocator, | 
|  | HInstruction* base, | 
|  | HInstruction* index, | 
|  | DataType::Type packed_type, | 
|  | SideEffects side_effects, | 
|  | size_t vector_length, | 
|  | bool is_string_char_at, | 
|  | uint32_t dex_pc) | 
|  | : HVecMemoryOperation(kVecLoad, | 
|  | allocator, | 
|  | packed_type, | 
|  | side_effects, | 
|  | /* number_of_inputs= */ 2, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | SetRawInputAt(0, base); | 
|  | SetRawInputAt(1, index); | 
|  | SetPackedFlag<kFieldIsStringCharAt>(is_string_char_at); | 
|  | } | 
|  |  | 
|  | bool IsStringCharAt() const { return GetPackedFlag<kFieldIsStringCharAt>(); } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const override { | 
|  | DCHECK(other->IsVecLoad()); | 
|  | const HVecLoad* o = other->AsVecLoad(); | 
|  | return HVecMemoryOperation::InstructionDataEquals(o) && IsStringCharAt() == o->IsStringCharAt(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecLoad); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecLoad); | 
|  |  | 
|  | private: | 
|  | // Additional packed bits. | 
|  | static constexpr size_t kFieldIsStringCharAt = HVecOperation::kNumberOfVectorOpPackedBits; | 
|  | static constexpr size_t kNumberOfVecLoadPackedBits = kFieldIsStringCharAt + 1; | 
|  | static_assert(kNumberOfVecLoadPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | }; | 
|  |  | 
|  | // Stores a vector to memory, viz. store(m, 1, [x1, .. , xn] ) | 
|  | // sets mem(1) = x1, .. , mem(n) = xn. | 
|  | class HVecStore final : public HVecMemoryOperation { | 
|  | public: | 
|  | HVecStore(ArenaAllocator* allocator, | 
|  | HInstruction* base, | 
|  | HInstruction* index, | 
|  | HInstruction* value, | 
|  | DataType::Type packed_type, | 
|  | SideEffects side_effects, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecMemoryOperation(kVecStore, | 
|  | allocator, | 
|  | packed_type, | 
|  | side_effects, | 
|  | /* number_of_inputs= */ 3, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | DCHECK(HasConsistentPackedTypes(value, packed_type)); | 
|  | SetRawInputAt(0, base); | 
|  | SetRawInputAt(1, index); | 
|  | SetRawInputAt(2, value); | 
|  | } | 
|  |  | 
|  | // A store needs to stay in place. | 
|  | bool CanBeMoved() const override { return false; } | 
|  |  | 
|  | HInstruction* GetValue() const { return InputAt(2); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecStore); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecStore) | 
|  | }; | 
|  |  | 
|  | // | 
|  | // 'Predicate-setting' instructions. | 
|  | // | 
|  |  | 
|  | // An abstract class for instructions for which the output value is a vector predicate - | 
|  | // a special kind of vector value: | 
|  | // | 
|  | //    viz. [ p1, .. , pn ], where p_i is from { 0, 1 }. | 
|  | // | 
|  | // A VecOperation OP executes the same operation (e.g. ADD) on multiple elements of the vector. | 
|  | // It can be either unpredicated (operation is done on ALL of the elements) or predicated (only | 
|  | // on SOME elements, determined by a special extra input - vector predicate). | 
|  | // Implementations can vary depending on the ISA; the general idea is that for each element of the | 
|  | // regular vector a vector predicate has a corresponding element with either 0 or 1. | 
|  | // The value determines whether a vector element will be involved in OP calculations or not | 
|  | // (active or inactive). A vector predicate is referred as governing one if it is used to | 
|  | // control the execution of a predicated instruction. | 
|  | // | 
|  | // Note: vector predicate value type is introduced alongside existing vectors of booleans and | 
|  | // vectors of bytes to reflect their special semantics. | 
|  | // | 
|  | // TODO: we could introduce SIMD types in HIR. | 
|  | class HVecPredSetOperation : public HVecOperation { | 
|  | public: | 
|  | // A vector predicate-setting operation looks like a Int64 location. | 
|  | // TODO: we could introduce vector types in HIR. | 
|  | static constexpr DataType::Type kSIMDPredType = DataType::Type::kInt64; | 
|  |  | 
|  | HVecPredSetOperation(InstructionKind kind, | 
|  | ArenaAllocator* allocator, | 
|  | DataType::Type packed_type, | 
|  | SideEffects side_effects, | 
|  | size_t number_of_inputs, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kind, | 
|  | allocator, | 
|  | packed_type, | 
|  | side_effects, | 
|  | number_of_inputs, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | // Overrides the kSIMDType set by the VecOperation constructor. | 
|  | SetPackedField<TypeField>(kSIMDPredType); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const override { return true; } | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(VecPredSetOperation); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecPredSetOperation); | 
|  | }; | 
|  |  | 
|  | // Sets all the vector predicate elements as active or inactive. | 
|  | // | 
|  | // viz. [ p1, .. , pn ]  = [ val, .. , val ] where val is from { 1, 0 }. | 
|  | class HVecPredSetAll final : public HVecPredSetOperation { | 
|  | public: | 
|  | HVecPredSetAll(ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) : | 
|  | HVecPredSetOperation(kVecPredSetAll, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | /* number_of_inputs= */ 1, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | DCHECK(input->IsIntConstant()); | 
|  | SetRawInputAt(0, input); | 
|  | MarkEmittedAtUseSite(); | 
|  | } | 
|  |  | 
|  | // Having governing predicate doesn't make sense for set all TRUE/FALSE instruction. | 
|  | bool MustBePredicatedInPredicatedSIMDMode() override { return false; } | 
|  |  | 
|  | bool IsSetTrue() const { return InputAt(0)->AsIntConstant()->IsTrue(); } | 
|  |  | 
|  | // Vector predicates are not kept alive across vector loop boundaries. | 
|  | bool CanBeMoved() const override { return false; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecPredSetAll); | 
|  |  | 
|  | protected: | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecPredSetAll); | 
|  | }; | 
|  |  | 
|  | // | 
|  | // Arm64 SVE-specific instructions. | 
|  | // | 
|  | // Classes of instructions which are specific to Arm64 SVE (though could be adopted | 
|  | // by other targets, possibly being lowered to a number of ISA instructions) and | 
|  | // implement SIMD loop predicated execution idiom. | 
|  | // | 
|  |  | 
|  | // Takes two scalar values x and y, creates a vector S: s(n) = x + n, compares (OP) each s(n) | 
|  | // with y and set the corresponding element of the predicate register to the result of the | 
|  | // comparison. | 
|  | // | 
|  | // viz. [ p1, .. , pn ]  = [ x OP y , (x + 1) OP y, .. , (x + n) OP y ] where OP is CondKind | 
|  | // condition. | 
|  | class HVecPredWhile final : public HVecPredSetOperation { | 
|  | public: | 
|  | enum class CondKind { | 
|  | kLE,   // signed less than or equal. | 
|  | kLO,   // unsigned lower. | 
|  | kLS,   // unsigned lower or same. | 
|  | kLT,   // signed less. | 
|  | kLast = kLT, | 
|  | }; | 
|  |  | 
|  | HVecPredWhile(ArenaAllocator* allocator, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | CondKind cond, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) : | 
|  | HVecPredSetOperation(kVecPredWhile, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | /* number_of_inputs= */ 2, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | DCHECK(!left->IsVecOperation()); | 
|  | DCHECK(!left->IsVecPredSetOperation()); | 
|  | DCHECK(!right->IsVecOperation()); | 
|  | DCHECK(!right->IsVecPredSetOperation()); | 
|  | DCHECK(DataType::IsIntegralType(left->GetType())); | 
|  | DCHECK(DataType::IsIntegralType(right->GetType())); | 
|  | SetRawInputAt(0, left); | 
|  | SetRawInputAt(1, right); | 
|  | SetPackedField<CondKindField>(cond); | 
|  | } | 
|  |  | 
|  | // This is a special loop control instruction which must not be predicated. | 
|  | bool MustBePredicatedInPredicatedSIMDMode() override { return false; } | 
|  |  | 
|  | CondKind GetCondKind() const { | 
|  | return GetPackedField<CondKindField>(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecPredWhile); | 
|  |  | 
|  | protected: | 
|  | // Additional packed bits. | 
|  | static constexpr size_t kCondKind = HVecOperation::kNumberOfVectorOpPackedBits; | 
|  | static constexpr size_t kCondKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(CondKind::kLast)); | 
|  | static constexpr size_t kNumberOfVecPredConditionPackedBits = kCondKind + kCondKindSize; | 
|  | static_assert(kNumberOfVecPredConditionPackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using CondKindField = BitField<CondKind, kCondKind, kCondKindSize>; | 
|  |  | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecPredWhile); | 
|  | }; | 
|  |  | 
|  | // Evaluates the predicate condition (PCondKind) for a vector predicate; outputs | 
|  | // a scalar boolean value result. | 
|  | // | 
|  | // Note: as VecPredCondition can be also predicated, only active elements (determined by the | 
|  | // instruction's governing predicate) of the input vector predicate are used for condition | 
|  | // evaluation. | 
|  | // | 
|  | // Note: this instruction is currently used as a workaround for the fact that IR instructions | 
|  | // can't have more than one output. | 
|  | class HVecPredCondition final : public HVecOperation { | 
|  | public: | 
|  | // To get more info on the condition kinds please see "2.2 Process state, PSTATE" section of | 
|  | // "ARM Architecture Reference Manual Supplement. The Scalable Vector Extension (SVE), | 
|  | // for ARMv8-A". | 
|  | enum class PCondKind { | 
|  | kNone,    // No active elements were TRUE. | 
|  | kAny,     // An active element was TRUE. | 
|  | kNLast,   // The last active element was not TRUE. | 
|  | kLast,    // The last active element was TRUE. | 
|  | kFirst,   // The first active element was TRUE. | 
|  | kNFirst,  // The first active element was not TRUE. | 
|  | kPMore,   // An active element was TRUE but not the last active element. | 
|  | kPLast,   // The last active element was TRUE or no active elements were TRUE. | 
|  | kEnumLast = kPLast | 
|  | }; | 
|  |  | 
|  | HVecPredCondition(ArenaAllocator* allocator, | 
|  | HInstruction* input, | 
|  | PCondKind pred_cond, | 
|  | DataType::Type packed_type, | 
|  | size_t vector_length, | 
|  | uint32_t dex_pc) | 
|  | : HVecOperation(kVecPredCondition, | 
|  | allocator, | 
|  | packed_type, | 
|  | SideEffects::None(), | 
|  | /* number_of_inputs */ 1, | 
|  | vector_length, | 
|  | dex_pc) { | 
|  | DCHECK(input->IsVecPredSetOperation()); | 
|  | SetRawInputAt(0, input); | 
|  | // Overrides the kSIMDType set by the VecOperation constructor. | 
|  | SetPackedField<TypeField>(DataType::Type::kBool); | 
|  | SetPackedField<CondKindField>(pred_cond); | 
|  | } | 
|  |  | 
|  | // This instruction is currently used only as a special loop control instruction | 
|  | // which must not be predicated. | 
|  | // TODO: Remove the constraint. | 
|  | bool MustBePredicatedInPredicatedSIMDMode() override { return false; } | 
|  |  | 
|  | PCondKind GetPCondKind() const { | 
|  | return GetPackedField<CondKindField>(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(VecPredCondition); | 
|  |  | 
|  | protected: | 
|  | // Additional packed bits. | 
|  | static constexpr size_t kCondKind = HVecOperation::kNumberOfVectorOpPackedBits; | 
|  | static constexpr size_t kCondKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(PCondKind::kEnumLast)); | 
|  | static constexpr size_t kNumberOfVecPredConditionPackedBits = kCondKind + kCondKindSize; | 
|  | static_assert(kNumberOfVecPredConditionPackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using CondKindField = BitField<PCondKind, kCondKind, kCondKindSize>; | 
|  |  | 
|  | DEFAULT_COPY_CONSTRUCTOR(VecPredCondition); | 
|  | }; | 
|  |  | 
|  | }  // namespace art | 
|  |  | 
|  | #endif  // ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |