|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "inliner.h" | 
|  |  | 
|  | #include "art_method-inl.h" | 
|  | #include "base/enums.h" | 
|  | #include "base/logging.h" | 
|  | #include "builder.h" | 
|  | #include "class_linker.h" | 
|  | #include "class_root-inl.h" | 
|  | #include "constant_folding.h" | 
|  | #include "data_type-inl.h" | 
|  | #include "dead_code_elimination.h" | 
|  | #include "dex/inline_method_analyser.h" | 
|  | #include "driver/compiler_options.h" | 
|  | #include "driver/dex_compilation_unit.h" | 
|  | #include "instruction_simplifier.h" | 
|  | #include "intrinsics.h" | 
|  | #include "jit/jit.h" | 
|  | #include "jit/jit_code_cache.h" | 
|  | #include "mirror/class_loader.h" | 
|  | #include "mirror/dex_cache.h" | 
|  | #include "mirror/object_array-alloc-inl.h" | 
|  | #include "mirror/object_array-inl.h" | 
|  | #include "nodes.h" | 
|  | #include "reference_type_propagation.h" | 
|  | #include "register_allocator_linear_scan.h" | 
|  | #include "scoped_thread_state_change-inl.h" | 
|  | #include "sharpening.h" | 
|  | #include "ssa_builder.h" | 
|  | #include "ssa_phi_elimination.h" | 
|  | #include "thread.h" | 
|  | #include "verifier/verifier_compiler_binding.h" | 
|  |  | 
|  | namespace art { | 
|  |  | 
|  | // Instruction limit to control memory. | 
|  | static constexpr size_t kMaximumNumberOfTotalInstructions = 1024; | 
|  |  | 
|  | // Maximum number of instructions for considering a method small, | 
|  | // which we will always try to inline if the other non-instruction limits | 
|  | // are not reached. | 
|  | static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3; | 
|  |  | 
|  | // Limit the number of dex registers that we accumulate while inlining | 
|  | // to avoid creating large amount of nested environments. | 
|  | static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32; | 
|  |  | 
|  | // Limit recursive call inlining, which do not benefit from too | 
|  | // much inlining compared to code locality. | 
|  | static constexpr size_t kMaximumNumberOfRecursiveCalls = 4; | 
|  |  | 
|  | // Limit recursive polymorphic call inlining to prevent code bloat, since it can quickly get out of | 
|  | // hand in the presence of multiple Wrapper classes. We set this to 0 to disallow polymorphic | 
|  | // recursive calls at all. | 
|  | static constexpr size_t kMaximumNumberOfPolymorphicRecursiveCalls = 0; | 
|  |  | 
|  | // Controls the use of inline caches in AOT mode. | 
|  | static constexpr bool kUseAOTInlineCaches = true; | 
|  |  | 
|  | // We check for line numbers to make sure the DepthString implementation | 
|  | // aligns the output nicely. | 
|  | #define LOG_INTERNAL(msg) \ | 
|  | static_assert(__LINE__ > 10, "Unhandled line number"); \ | 
|  | static_assert(__LINE__ < 10000, "Unhandled line number"); \ | 
|  | VLOG(compiler) << DepthString(__LINE__) << msg | 
|  |  | 
|  | #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ") | 
|  | #define LOG_NOTE() LOG_INTERNAL("Note: ") | 
|  | #define LOG_SUCCESS() LOG_INTERNAL("Success: ") | 
|  | #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ") | 
|  | #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ") | 
|  |  | 
|  | std::string HInliner::DepthString(int line) const { | 
|  | std::string value; | 
|  | // Indent according to the inlining depth. | 
|  | size_t count = depth_; | 
|  | // Line numbers get printed in the log, so add a space if the log's line is less | 
|  | // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright. | 
|  | if (!kIsTargetBuild) { | 
|  | if (line < 100) { | 
|  | value += " "; | 
|  | } | 
|  | if (line < 1000) { | 
|  | value += " "; | 
|  | } | 
|  | // Safeguard if this file reaches more than 10000 lines. | 
|  | DCHECK_LT(line, 10000); | 
|  | } | 
|  | for (size_t i = 0; i < count; ++i) { | 
|  | value += "  "; | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static size_t CountNumberOfInstructions(HGraph* graph) { | 
|  | size_t number_of_instructions = 0; | 
|  | for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) { | 
|  | for (HInstructionIterator instr_it(block->GetInstructions()); | 
|  | !instr_it.Done(); | 
|  | instr_it.Advance()) { | 
|  | ++number_of_instructions; | 
|  | } | 
|  | } | 
|  | return number_of_instructions; | 
|  | } | 
|  |  | 
|  | void HInliner::UpdateInliningBudget() { | 
|  | if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) { | 
|  | // Always try to inline small methods. | 
|  | inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod; | 
|  | } else { | 
|  | inlining_budget_ = std::max( | 
|  | kMaximumNumberOfInstructionsForSmallMethod, | 
|  | kMaximumNumberOfTotalInstructions - total_number_of_instructions_); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HInliner::Run() { | 
|  | if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) { | 
|  | // Inlining effectively disabled. | 
|  | return false; | 
|  | } else if (graph_->IsDebuggable()) { | 
|  | // For simplicity, we currently never inline when the graph is debuggable. This avoids | 
|  | // doing some logic in the runtime to discover if a method could have been inlined. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool did_inline = false; | 
|  | bool did_set_always_throws = false; | 
|  |  | 
|  | // Initialize the number of instructions for the method being compiled. Recursive calls | 
|  | // to HInliner::Run have already updated the instruction count. | 
|  | if (outermost_graph_ == graph_) { | 
|  | total_number_of_instructions_ = CountNumberOfInstructions(graph_); | 
|  | } | 
|  |  | 
|  | UpdateInliningBudget(); | 
|  | DCHECK_NE(total_number_of_instructions_, 0u); | 
|  | DCHECK_NE(inlining_budget_, 0u); | 
|  |  | 
|  | // If we're compiling tests, honor inlining directives in method names: | 
|  | // - if a method's name contains the substring "$noinline$", do not | 
|  | //   inline that method; | 
|  | // - if a method's name contains the substring "$inline$", ensure | 
|  | //   that this method is actually inlined. | 
|  | // We limit the latter to AOT compilation, as the JIT may or may not inline | 
|  | // depending on the state of classes at runtime. | 
|  | const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompileArtTest(); | 
|  | const bool honor_inline_directives = | 
|  | honor_noinline_directives && Runtime::Current()->IsAotCompiler(); | 
|  |  | 
|  | // Keep a copy of all blocks when starting the visit. | 
|  | ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder(); | 
|  | DCHECK(!blocks.empty()); | 
|  | // Because we are changing the graph when inlining, | 
|  | // we just iterate over the blocks of the outer method. | 
|  | // This avoids doing the inlining work again on the inlined blocks. | 
|  | for (HBasicBlock* block : blocks) { | 
|  | for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { | 
|  | HInstruction* next = instruction->GetNext(); | 
|  | HInvoke* call = instruction->AsInvoke(); | 
|  | // As long as the call is not intrinsified, it is worth trying to inline. | 
|  | if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) { | 
|  | if (honor_noinline_directives) { | 
|  | // Debugging case: directives in method names control or assert on inlining. | 
|  | std::string callee_name = | 
|  | call->GetMethodReference().PrettyMethod(/* with_signature= */ false); | 
|  | // Tests prevent inlining by having $noinline$ in their method names. | 
|  | if (callee_name.find("$noinline$") == std::string::npos) { | 
|  | if (TryInline(call, &did_set_always_throws)) { | 
|  | did_inline = true; | 
|  | } else if (honor_inline_directives) { | 
|  | bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos); | 
|  | CHECK(!should_have_inlined) << "Could not inline " << callee_name; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | DCHECK(!honor_inline_directives); | 
|  | // Normal case: try to inline. | 
|  | if (TryInline(call, &did_set_always_throws)) { | 
|  | did_inline = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | instruction = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | return did_inline || did_set_always_throws; | 
|  | } | 
|  |  | 
|  | static bool IsMethodOrDeclaringClassFinal(ArtMethod* method) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | return method->IsFinal() || method->GetDeclaringClass()->IsFinal(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Given the `resolved_method` looked up in the dex cache, try to find | 
|  | * the actual runtime target of an interface or virtual call. | 
|  | * Return nullptr if the runtime target cannot be proven. | 
|  | */ | 
|  | static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | ArtMethod* resolved_method = invoke->GetResolvedMethod(); | 
|  | if (IsMethodOrDeclaringClassFinal(resolved_method)) { | 
|  | // No need to lookup further, the resolved method will be the target. | 
|  | return resolved_method; | 
|  | } | 
|  |  | 
|  | HInstruction* receiver = invoke->InputAt(0); | 
|  | if (receiver->IsNullCheck()) { | 
|  | // Due to multiple levels of inlining within the same pass, it might be that | 
|  | // null check does not have the reference type of the actual receiver. | 
|  | receiver = receiver->InputAt(0); | 
|  | } | 
|  | ReferenceTypeInfo info = receiver->GetReferenceTypeInfo(); | 
|  | DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName(); | 
|  | if (!info.IsExact()) { | 
|  | // We currently only support inlining with known receivers. | 
|  | // TODO: Remove this check, we should be able to inline final methods | 
|  | // on unknown receivers. | 
|  | return nullptr; | 
|  | } else if (info.GetTypeHandle()->IsInterface()) { | 
|  | // Statically knowing that the receiver has an interface type cannot | 
|  | // help us find what is the target method. | 
|  | return nullptr; | 
|  | } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) { | 
|  | // The method that we're trying to call is not in the receiver's class or super classes. | 
|  | return nullptr; | 
|  | } else if (info.GetTypeHandle()->IsErroneous()) { | 
|  | // If the type is erroneous, do not go further, as we are going to query the vtable or | 
|  | // imt table, that we can only safely do on non-erroneous classes. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ClassLinker* cl = Runtime::Current()->GetClassLinker(); | 
|  | PointerSize pointer_size = cl->GetImagePointerSize(); | 
|  | if (invoke->IsInvokeInterface()) { | 
|  | resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface( | 
|  | resolved_method, pointer_size); | 
|  | } else { | 
|  | DCHECK(invoke->IsInvokeVirtual()); | 
|  | resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual( | 
|  | resolved_method, pointer_size); | 
|  | } | 
|  |  | 
|  | if (resolved_method == nullptr) { | 
|  | // The information we had on the receiver was not enough to find | 
|  | // the target method. Since we check above the exact type of the receiver, | 
|  | // the only reason this can happen is an IncompatibleClassChangeError. | 
|  | return nullptr; | 
|  | } else if (!resolved_method->IsInvokable()) { | 
|  | // The information we had on the receiver was not enough to find | 
|  | // the target method. Since we check above the exact type of the receiver, | 
|  | // the only reason this can happen is an IncompatibleClassChangeError. | 
|  | return nullptr; | 
|  | } else if (IsMethodOrDeclaringClassFinal(resolved_method)) { | 
|  | // A final method has to be the target method. | 
|  | return resolved_method; | 
|  | } else if (info.IsExact()) { | 
|  | // If we found a method and the receiver's concrete type is statically | 
|  | // known, we know for sure the target. | 
|  | return resolved_method; | 
|  | } else { | 
|  | // Even if we did find a method, the receiver type was not enough to | 
|  | // statically find the runtime target. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t FindMethodIndexIn(ArtMethod* method, | 
|  | const DexFile& dex_file, | 
|  | uint32_t name_and_signature_index) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | if (IsSameDexFile(*method->GetDexFile(), dex_file)) { | 
|  | return method->GetDexMethodIndex(); | 
|  | } else { | 
|  | return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index); | 
|  | } | 
|  | } | 
|  |  | 
|  | static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls, | 
|  | const DexCompilationUnit& compilation_unit) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | const DexFile& dex_file = *compilation_unit.GetDexFile(); | 
|  | dex::TypeIndex index; | 
|  | if (cls->GetDexCache() == nullptr) { | 
|  | DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); | 
|  | index = cls->FindTypeIndexInOtherDexFile(dex_file); | 
|  | } else if (!cls->GetDexTypeIndex().IsValid()) { | 
|  | DCHECK(cls->IsProxyClass()) << cls->PrettyClass(); | 
|  | // TODO: deal with proxy classes. | 
|  | } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) { | 
|  | DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get()); | 
|  | index = cls->GetDexTypeIndex(); | 
|  | } else { | 
|  | index = cls->FindTypeIndexInOtherDexFile(dex_file); | 
|  | // We cannot guarantee the entry will resolve to the same class, | 
|  | // as there may be different class loaders. So only return the index if it's | 
|  | // the right class already resolved with the class loader. | 
|  | if (index.IsValid()) { | 
|  | ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType( | 
|  | index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); | 
|  | if (resolved != cls) { | 
|  | index = dex::TypeIndex::Invalid(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return index; | 
|  | } | 
|  |  | 
|  | HInliner::InlineCacheType HInliner::GetInlineCacheType( | 
|  | const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) { | 
|  | DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); | 
|  | uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); | 
|  | if (number_of_types == 0) { | 
|  | return kInlineCacheUninitialized; | 
|  | } else if (number_of_types == 1) { | 
|  | return kInlineCacheMonomorphic; | 
|  | } else if (number_of_types == InlineCache::kIndividualCacheSize) { | 
|  | return kInlineCacheMegamorphic; | 
|  | } else { | 
|  | return kInlineCachePolymorphic; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline ObjPtr<mirror::Class> GetMonomorphicType( | 
|  | const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(classes.GetReference(0) != nullptr); | 
|  | return classes.GetReference(0)->AsClass(); | 
|  | } | 
|  |  | 
|  | ArtMethod* HInliner::FindMethodFromCHA(ArtMethod* resolved_method) { | 
|  | if (!resolved_method->HasSingleImplementation()) { | 
|  | return nullptr; | 
|  | } | 
|  | if (Runtime::Current()->IsAotCompiler()) { | 
|  | // No CHA-based devirtulization for AOT compiler (yet). | 
|  | return nullptr; | 
|  | } | 
|  | if (Runtime::Current()->IsZygote()) { | 
|  | // No CHA-based devirtulization for Zygote, as it compiles with | 
|  | // offline information. | 
|  | return nullptr; | 
|  | } | 
|  | if (outermost_graph_->IsCompilingOsr()) { | 
|  | // We do not support HDeoptimize in OSR methods. | 
|  | return nullptr; | 
|  | } | 
|  | PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize(); | 
|  | ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size); | 
|  | if (single_impl == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | if (single_impl->IsProxyMethod()) { | 
|  | // Proxy method is a generic invoker that's not worth | 
|  | // devirtualizing/inlining. It also causes issues when the proxy | 
|  | // method is in another dex file if we try to rewrite invoke-interface to | 
|  | // invoke-virtual because a proxy method doesn't have a real dex file. | 
|  | return nullptr; | 
|  | } | 
|  | if (!single_impl->GetDeclaringClass()->IsResolved()) { | 
|  | // There's a race with the class loading, which updates the CHA info | 
|  | // before setting the class to resolved. So we just bail for this | 
|  | // rare occurence. | 
|  | return nullptr; | 
|  | } | 
|  | return single_impl; | 
|  | } | 
|  |  | 
|  | static bool IsMethodVerified(ArtMethod* method) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | if (method->GetDeclaringClass()->IsVerified()) { | 
|  | return true; | 
|  | } | 
|  | // For AOT, we check if the class has a verification status that allows us to | 
|  | // inline / analyze. | 
|  | // At runtime, we know this is cold code if the class is not verified, so don't | 
|  | // bother analyzing. | 
|  | if (Runtime::Current()->IsAotCompiler()) { | 
|  | if (method->GetDeclaringClass()->IsVerifiedNeedsAccessChecks() || | 
|  | method->GetDeclaringClass()->ShouldVerifyAtRuntime()) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool AlwaysThrows(ArtMethod* method) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(method != nullptr); | 
|  | // Skip non-compilable and unverified methods. | 
|  | if (!method->IsCompilable() || !IsMethodVerified(method)) { | 
|  | return false; | 
|  | } | 
|  | // Skip native methods, methods with try blocks, and methods that are too large. | 
|  | CodeItemDataAccessor accessor(method->DexInstructionData()); | 
|  | if (!accessor.HasCodeItem() || | 
|  | accessor.TriesSize() != 0 || | 
|  | accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) { | 
|  | return false; | 
|  | } | 
|  | // Scan for exits. | 
|  | bool throw_seen = false; | 
|  | for (const DexInstructionPcPair& pair : accessor) { | 
|  | switch (pair.Inst().Opcode()) { | 
|  | case Instruction::RETURN: | 
|  | case Instruction::RETURN_VOID: | 
|  | case Instruction::RETURN_WIDE: | 
|  | case Instruction::RETURN_OBJECT: | 
|  | return false;  // found regular control flow back | 
|  | case Instruction::THROW: | 
|  | throw_seen = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return throw_seen; | 
|  | } | 
|  |  | 
|  | bool HInliner::TryInline(HInvoke* invoke_instruction, /*inout*/ bool* did_set_always_throws) { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kTryInline); | 
|  |  | 
|  | // Don't bother to move further if we know the method is unresolved or the invocation is | 
|  | // polymorphic (invoke-{polymorphic,custom}). | 
|  | if (invoke_instruction->IsInvokeUnresolved()) { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedUnresolved); | 
|  | return false; | 
|  | } else if (invoke_instruction->IsInvokePolymorphic()) { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedPolymorphic); | 
|  | return false; | 
|  | } else if (invoke_instruction->IsInvokeCustom()) { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedCustom); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ScopedObjectAccess soa(Thread::Current()); | 
|  | LOG_TRY() << invoke_instruction->GetMethodReference().PrettyMethod(); | 
|  |  | 
|  | ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); | 
|  | if (resolved_method == nullptr) { | 
|  | DCHECK(invoke_instruction->IsInvokeStaticOrDirect()); | 
|  | DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()); | 
|  | LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ArtMethod* actual_method = invoke_instruction->IsInvokeStaticOrDirect() | 
|  | ? invoke_instruction->GetResolvedMethod() | 
|  | : FindVirtualOrInterfaceTarget(invoke_instruction); | 
|  |  | 
|  | if (actual_method != nullptr) { | 
|  | // Single target. | 
|  | bool result = TryInlineAndReplace(invoke_instruction, | 
|  | actual_method, | 
|  | ReferenceTypeInfo::CreateInvalid(), | 
|  | /* do_rtp= */ true); | 
|  | if (result) { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface); | 
|  | if (outermost_graph_ == graph_) { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvokeVirtualOrInterface); | 
|  | } | 
|  | } else { | 
|  | HInvoke* invoke_to_analyze = nullptr; | 
|  | if (TryDevirtualize(invoke_instruction, actual_method, &invoke_to_analyze)) { | 
|  | // Consider devirtualization as inlining. | 
|  | result = true; | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kDevirtualized); | 
|  | } else { | 
|  | invoke_to_analyze = invoke_instruction; | 
|  | } | 
|  | // Set always throws property for non-inlined method call with single | 
|  | // target. | 
|  | if (AlwaysThrows(actual_method)) { | 
|  | invoke_to_analyze->SetAlwaysThrows(true); | 
|  | *did_set_always_throws = true; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | DCHECK(!invoke_instruction->IsInvokeStaticOrDirect()); | 
|  |  | 
|  | if (TryInlineFromCHA(invoke_instruction)) { | 
|  | return true; | 
|  | } | 
|  | return TryInlineFromInlineCache(invoke_instruction); | 
|  | } | 
|  |  | 
|  | bool HInliner::TryInlineFromCHA(HInvoke* invoke_instruction) { | 
|  | ArtMethod* method = FindMethodFromCHA(invoke_instruction->GetResolvedMethod()); | 
|  | if (method == nullptr) { | 
|  | return false; | 
|  | } | 
|  | LOG_NOTE() << "Try CHA-based inlining of " << method->PrettyMethod(); | 
|  |  | 
|  | uint32_t dex_pc = invoke_instruction->GetDexPc(); | 
|  | HInstruction* cursor = invoke_instruction->GetPrevious(); | 
|  | HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); | 
|  | if (!TryInlineAndReplace(invoke_instruction, | 
|  | method, | 
|  | ReferenceTypeInfo::CreateInvalid(), | 
|  | /* do_rtp= */ true)) { | 
|  | return false; | 
|  | } | 
|  | AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor); | 
|  | // Add dependency due to devirtualization: we are assuming the resolved method | 
|  | // has a single implementation. | 
|  | outermost_graph_->AddCHASingleImplementationDependency(invoke_instruction->GetResolvedMethod()); | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() { | 
|  | // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and | 
|  | // do not generate a deopt. | 
|  | // | 
|  | // For AOT: | 
|  | //    Generating a deopt does not ensure that we will actually capture the new types; | 
|  | //    and the danger is that we could be stuck in a loop with "forever" deoptimizations. | 
|  | //    Take for example the following scenario: | 
|  | //      - we capture the inline cache in one run | 
|  | //      - the next run, we deoptimize because we miss a type check, but the method | 
|  | //        never becomes hot again | 
|  | //    In this case, the inline cache will not be updated in the profile and the AOT code | 
|  | //    will keep deoptimizing. | 
|  | //    Another scenario is if we use profile compilation for a process which is not allowed | 
|  | //    to JIT (e.g. system server). If we deoptimize we will run interpreted code for the | 
|  | //    rest of the lifetime. | 
|  | // TODO(calin): | 
|  | //    This is a compromise because we will most likely never update the inline cache | 
|  | //    in the profile (unless there's another reason to deopt). So we might be stuck with | 
|  | //    a sub-optimal inline cache. | 
|  | //    We could be smarter when capturing inline caches to mitigate this. | 
|  | //    (e.g. by having different thresholds for new and old methods). | 
|  | // | 
|  | // For OSR: | 
|  | //     We may come from the interpreter and it may have seen different receiver types. | 
|  | return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr(); | 
|  | } | 
|  | bool HInliner::TryInlineFromInlineCache(HInvoke* invoke_instruction) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StackHandleScope<InlineCache::kIndividualCacheSize> classes(Thread::Current()); | 
|  | // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches | 
|  | // for it. | 
|  | InlineCacheType inline_cache_type = | 
|  | (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote()) | 
|  | ? GetInlineCacheAOT(invoke_instruction, &classes) | 
|  | : GetInlineCacheJIT(invoke_instruction, &classes); | 
|  |  | 
|  | switch (inline_cache_type) { | 
|  | case kInlineCacheNoData: { | 
|  | LOG_FAIL_NO_STAT() | 
|  | << "No inline cache information for call to " | 
|  | << invoke_instruction->GetMethodReference().PrettyMethod(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case kInlineCacheUninitialized: { | 
|  | LOG_FAIL_NO_STAT() | 
|  | << "Interface or virtual call to " | 
|  | << invoke_instruction->GetMethodReference().PrettyMethod() | 
|  | << " is not hit and not inlined"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case kInlineCacheMonomorphic: { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall); | 
|  | if (UseOnlyPolymorphicInliningWithNoDeopt()) { | 
|  | return TryInlinePolymorphicCall(invoke_instruction, classes); | 
|  | } else { | 
|  | return TryInlineMonomorphicCall(invoke_instruction, classes); | 
|  | } | 
|  | } | 
|  |  | 
|  | case kInlineCachePolymorphic: { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall); | 
|  | return TryInlinePolymorphicCall(invoke_instruction, classes); | 
|  | } | 
|  |  | 
|  | case kInlineCacheMegamorphic: { | 
|  | LOG_FAIL_NO_STAT() | 
|  | << "Interface or virtual call to " | 
|  | << invoke_instruction->GetMethodReference().PrettyMethod() | 
|  | << " is megamorphic and not inlined"; | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case kInlineCacheMissingTypes: { | 
|  | LOG_FAIL_NO_STAT() | 
|  | << "Interface or virtual call to " | 
|  | << invoke_instruction->GetMethodReference().PrettyMethod() | 
|  | << " is missing types and not inlined"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | HInliner::InlineCacheType HInliner::GetInlineCacheJIT( | 
|  | HInvoke* invoke_instruction, | 
|  | /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) { | 
|  | DCHECK(codegen_->GetCompilerOptions().IsJitCompiler()); | 
|  |  | 
|  | ArtMethod* caller = graph_->GetArtMethod(); | 
|  | // Under JIT, we should always know the caller. | 
|  | DCHECK(caller != nullptr); | 
|  | ProfilingInfo* profiling_info = graph_->GetProfilingInfo(); | 
|  | if (profiling_info == nullptr) { | 
|  | return kInlineCacheNoData; | 
|  | } | 
|  |  | 
|  | Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto( | 
|  | *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()), | 
|  | classes); | 
|  | return GetInlineCacheType(*classes); | 
|  | } | 
|  |  | 
|  | HInliner::InlineCacheType HInliner::GetInlineCacheAOT( | 
|  | HInvoke* invoke_instruction, | 
|  | /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) { | 
|  | DCHECK_EQ(classes->NumberOfReferences(), InlineCache::kIndividualCacheSize); | 
|  | DCHECK_EQ(classes->RemainingSlots(), InlineCache::kIndividualCacheSize); | 
|  |  | 
|  | const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo(); | 
|  | if (pci == nullptr) { | 
|  | return kInlineCacheNoData; | 
|  | } | 
|  |  | 
|  | ProfileCompilationInfo::MethodHotness hotness = pci->GetMethodHotness(MethodReference( | 
|  | caller_compilation_unit_.GetDexFile(), caller_compilation_unit_.GetDexMethodIndex())); | 
|  | if (!hotness.IsHot()) { | 
|  | return kInlineCacheNoData;  // no profile information for this invocation. | 
|  | } | 
|  |  | 
|  | const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap(); | 
|  | DCHECK(inline_caches != nullptr); | 
|  | const auto it = inline_caches->find(invoke_instruction->GetDexPc()); | 
|  | if (it == inline_caches->end()) { | 
|  | return kInlineCacheUninitialized; | 
|  | } | 
|  |  | 
|  | const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second; | 
|  | if (dex_pc_data.is_missing_types) { | 
|  | return kInlineCacheMissingTypes; | 
|  | } | 
|  | if (dex_pc_data.is_megamorphic) { | 
|  | return kInlineCacheMegamorphic; | 
|  | } | 
|  | DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize); | 
|  |  | 
|  | // Walk over the class descriptors and look up the actual classes. | 
|  | // If we cannot find a type we return kInlineCacheMissingTypes. | 
|  | ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); | 
|  | for (const dex::TypeIndex& type_index : dex_pc_data.classes) { | 
|  | const DexFile* dex_file = caller_compilation_unit_.GetDexFile(); | 
|  | const char* descriptor = pci->GetTypeDescriptor(dex_file, type_index); | 
|  | ObjPtr<mirror::ClassLoader> class_loader = caller_compilation_unit_.GetClassLoader().Get(); | 
|  | ObjPtr<mirror::Class> clazz = class_linker->LookupResolvedType(descriptor, class_loader); | 
|  | if (clazz == nullptr) { | 
|  | VLOG(compiler) << "Could not find class from inline cache in AOT mode " | 
|  | << invoke_instruction->GetMethodReference().PrettyMethod() | 
|  | << " : " | 
|  | << descriptor; | 
|  | return kInlineCacheMissingTypes; | 
|  | } | 
|  | DCHECK_NE(classes->RemainingSlots(), 0u); | 
|  | classes->NewHandle(clazz); | 
|  | } | 
|  |  | 
|  | return GetInlineCacheType(*classes); | 
|  | } | 
|  |  | 
|  | HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker, | 
|  | HInstruction* receiver, | 
|  | uint32_t dex_pc) const { | 
|  | ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0); | 
|  | DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); | 
|  | HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet( | 
|  | receiver, | 
|  | field, | 
|  | DataType::Type::kReference, | 
|  | field->GetOffset(), | 
|  | field->IsVolatile(), | 
|  | field->GetDexFieldIndex(), | 
|  | field->GetDeclaringClass()->GetDexClassDefIndex(), | 
|  | *field->GetDexFile(), | 
|  | dex_pc); | 
|  | // The class of a field is effectively final, and does not have any memory dependencies. | 
|  | result->SetSideEffects(SideEffects::None()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass, | 
|  | HInvoke* invoke_instruction, | 
|  | PointerSize pointer_size) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); | 
|  | if (Runtime::Current()->IsAotCompiler()) { | 
|  | // We can get unrelated types when working with profiles (corruption, | 
|  | // systme updates, or anyone can write to it). So first check if the class | 
|  | // actually implements the declaring class of the method that is being | 
|  | // called in bytecode. | 
|  | // Note: the lookup methods used below require to have assignable types. | 
|  | if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Also check whether the type in the inline cache is an interface or an | 
|  | // abstract class. We only expect concrete classes in inline caches, so this | 
|  | // means the class was changed. | 
|  | if (klass->IsAbstract() || klass->IsInterface()) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (invoke_instruction->IsInvokeInterface()) { | 
|  | resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size); | 
|  | } else { | 
|  | DCHECK(invoke_instruction->IsInvokeVirtual()); | 
|  | resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size); | 
|  | } | 
|  | // Even if the class exists we can still not have the function the | 
|  | // inline-cache targets if the profile is from far enough in the past/future. | 
|  | // We need to allow this since we don't update boot-profiles very often. This | 
|  | // can occur in boot-profiles with inline-caches. | 
|  | DCHECK(Runtime::Current()->IsAotCompiler() || resolved_method != nullptr); | 
|  | return resolved_method; | 
|  | } | 
|  |  | 
|  | bool HInliner::TryInlineMonomorphicCall( | 
|  | HInvoke* invoke_instruction, | 
|  | const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) { | 
|  | DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) | 
|  | << invoke_instruction->DebugName(); | 
|  |  | 
|  | dex::TypeIndex class_index = FindClassIndexIn( | 
|  | GetMonomorphicType(classes), caller_compilation_unit_); | 
|  | if (!class_index.IsValid()) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheInaccessibleToCaller) | 
|  | << "Call to " << ArtMethod::PrettyMethod(invoke_instruction->GetResolvedMethod()) | 
|  | << " from inline cache is not inlined because its class is not" | 
|  | << " accessible to the caller"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); | 
|  | PointerSize pointer_size = class_linker->GetImagePointerSize(); | 
|  | Handle<mirror::Class> monomorphic_type = | 
|  | graph_->GetHandleCache()->NewHandle(GetMonomorphicType(classes)); | 
|  | ArtMethod* resolved_method = ResolveMethodFromInlineCache( | 
|  | monomorphic_type, invoke_instruction, pointer_size); | 
|  | if (resolved_method == nullptr) { | 
|  | // Bogus AOT profile, bail. | 
|  | DCHECK(Runtime::Current()->IsAotCompiler()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod(); | 
|  | HInstruction* receiver = invoke_instruction->InputAt(0); | 
|  | HInstruction* cursor = invoke_instruction->GetPrevious(); | 
|  | HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); | 
|  | if (!TryInlineAndReplace(invoke_instruction, | 
|  | resolved_method, | 
|  | ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true), | 
|  | /* do_rtp= */ false)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We successfully inlined, now add a guard. | 
|  | AddTypeGuard(receiver, | 
|  | cursor, | 
|  | bb_cursor, | 
|  | class_index, | 
|  | monomorphic_type, | 
|  | invoke_instruction, | 
|  | /* with_deoptimization= */ true); | 
|  |  | 
|  | // Run type propagation to get the guard typed, and eventually propagate the | 
|  | // type of the receiver. | 
|  | ReferenceTypePropagation rtp_fixup(graph_, | 
|  | outer_compilation_unit_.GetClassLoader(), | 
|  | outer_compilation_unit_.GetDexCache(), | 
|  | /* is_first_run= */ false); | 
|  | rtp_fixup.Run(); | 
|  |  | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HInliner::AddCHAGuard(HInstruction* invoke_instruction, | 
|  | uint32_t dex_pc, | 
|  | HInstruction* cursor, | 
|  | HBasicBlock* bb_cursor) { | 
|  | HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator()) | 
|  | HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc); | 
|  | // ShouldDeoptimizeFlag is used to perform a deoptimization because of a CHA | 
|  | // invalidation or for debugging reasons. It is OK to just check for non-zero | 
|  | // value here instead of the specific CHA value. When a debugging deopt is | 
|  | // requested we deoptimize before we execute any code and hence we shouldn't | 
|  | // see that case here. | 
|  | HInstruction* compare = new (graph_->GetAllocator()) HNotEqual( | 
|  | deopt_flag, graph_->GetIntConstant(0, dex_pc)); | 
|  | HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize( | 
|  | graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc); | 
|  |  | 
|  | if (cursor != nullptr) { | 
|  | bb_cursor->InsertInstructionAfter(deopt_flag, cursor); | 
|  | } else { | 
|  | bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction()); | 
|  | } | 
|  | bb_cursor->InsertInstructionAfter(compare, deopt_flag); | 
|  | bb_cursor->InsertInstructionAfter(deopt, compare); | 
|  |  | 
|  | // Add receiver as input to aid CHA guard optimization later. | 
|  | deopt_flag->AddInput(invoke_instruction->InputAt(0)); | 
|  | DCHECK_EQ(deopt_flag->InputCount(), 1u); | 
|  | deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); | 
|  | outermost_graph_->IncrementNumberOfCHAGuards(); | 
|  | } | 
|  |  | 
|  | HInstruction* HInliner::AddTypeGuard(HInstruction* receiver, | 
|  | HInstruction* cursor, | 
|  | HBasicBlock* bb_cursor, | 
|  | dex::TypeIndex class_index, | 
|  | Handle<mirror::Class> klass, | 
|  | HInstruction* invoke_instruction, | 
|  | bool with_deoptimization) { | 
|  | ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); | 
|  | HInstanceFieldGet* receiver_class = BuildGetReceiverClass( | 
|  | class_linker, receiver, invoke_instruction->GetDexPc()); | 
|  | if (cursor != nullptr) { | 
|  | bb_cursor->InsertInstructionAfter(receiver_class, cursor); | 
|  | } else { | 
|  | bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); | 
|  | } | 
|  |  | 
|  | const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); | 
|  | bool is_referrer; | 
|  | ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod(); | 
|  | if (outermost_art_method == nullptr) { | 
|  | DCHECK(Runtime::Current()->IsAotCompiler()); | 
|  | // We are in AOT mode and we don't have an ART method to determine | 
|  | // if the inlined method belongs to the referrer. Assume it doesn't. | 
|  | is_referrer = false; | 
|  | } else { | 
|  | is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass(); | 
|  | } | 
|  |  | 
|  | // Note that we will just compare the classes, so we don't need Java semantics access checks. | 
|  | // Note that the type index and the dex file are relative to the method this type guard is | 
|  | // inlined into. | 
|  | HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(), | 
|  | class_index, | 
|  | caller_dex_file, | 
|  | klass, | 
|  | is_referrer, | 
|  | invoke_instruction->GetDexPc(), | 
|  | /* needs_access_check= */ false); | 
|  | HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind( | 
|  | load_class, codegen_, caller_compilation_unit_); | 
|  | DCHECK(kind != HLoadClass::LoadKind::kInvalid) | 
|  | << "We should always be able to reference a class for inline caches"; | 
|  | // Load kind must be set before inserting the instruction into the graph. | 
|  | load_class->SetLoadKind(kind); | 
|  | bb_cursor->InsertInstructionAfter(load_class, receiver_class); | 
|  | // In AOT mode, we will most likely load the class from BSS, which will involve a call | 
|  | // to the runtime. In this case, the load instruction will need an environment so copy | 
|  | // it from the invoke instruction. | 
|  | if (load_class->NeedsEnvironment()) { | 
|  | DCHECK(Runtime::Current()->IsAotCompiler()); | 
|  | load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); | 
|  | } | 
|  |  | 
|  | HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class); | 
|  | bb_cursor->InsertInstructionAfter(compare, load_class); | 
|  | if (with_deoptimization) { | 
|  | HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( | 
|  | graph_->GetAllocator(), | 
|  | compare, | 
|  | receiver, | 
|  | Runtime::Current()->IsAotCompiler() | 
|  | ? DeoptimizationKind::kAotInlineCache | 
|  | : DeoptimizationKind::kJitInlineCache, | 
|  | invoke_instruction->GetDexPc()); | 
|  | bb_cursor->InsertInstructionAfter(deoptimize, compare); | 
|  | deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); | 
|  | DCHECK_EQ(invoke_instruction->InputAt(0), receiver); | 
|  | receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); | 
|  | deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); | 
|  | } | 
|  | return compare; | 
|  | } | 
|  |  | 
|  | static void MaybeReplaceAndRemove(HInstruction* new_instruction, HInstruction* old_instruction) { | 
|  | DCHECK(new_instruction != old_instruction); | 
|  | if (new_instruction != nullptr) { | 
|  | old_instruction->ReplaceWith(new_instruction); | 
|  | } | 
|  | old_instruction->GetBlock()->RemoveInstruction(old_instruction); | 
|  | } | 
|  |  | 
|  | bool HInliner::TryInlinePolymorphicCall( | 
|  | HInvoke* invoke_instruction, | 
|  | const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) { | 
|  | DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) | 
|  | << invoke_instruction->DebugName(); | 
|  |  | 
|  | if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, classes)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); | 
|  | PointerSize pointer_size = class_linker->GetImagePointerSize(); | 
|  |  | 
|  | bool all_targets_inlined = true; | 
|  | bool one_target_inlined = false; | 
|  | DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); | 
|  | uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); | 
|  | for (size_t i = 0; i != number_of_types; ++i) { | 
|  | DCHECK(classes.GetReference(i) != nullptr); | 
|  | Handle<mirror::Class> handle = | 
|  | graph_->GetHandleCache()->NewHandle(classes.GetReference(i)->AsClass()); | 
|  | ArtMethod* method = ResolveMethodFromInlineCache(handle, invoke_instruction, pointer_size); | 
|  | if (method == nullptr) { | 
|  | DCHECK(Runtime::Current()->IsAotCompiler()); | 
|  | // AOT profile is bogus. This loop expects to iterate over all entries, | 
|  | // so just just continue. | 
|  | all_targets_inlined = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | HInstruction* receiver = invoke_instruction->InputAt(0); | 
|  | HInstruction* cursor = invoke_instruction->GetPrevious(); | 
|  | HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); | 
|  |  | 
|  | dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_); | 
|  | HInstruction* return_replacement = nullptr; | 
|  |  | 
|  | // In monomorphic cases when UseOnlyPolymorphicInliningWithNoDeopt() is true, we call | 
|  | // `TryInlinePolymorphicCall` even though we are monomorphic. | 
|  | const bool actually_monomorphic = number_of_types == 1; | 
|  | DCHECK_IMPLIES(actually_monomorphic, UseOnlyPolymorphicInliningWithNoDeopt()); | 
|  |  | 
|  | // We only want to limit recursive polymorphic cases, not monomorphic ones. | 
|  | const bool too_many_polymorphic_recursive_calls = | 
|  | !actually_monomorphic && | 
|  | CountRecursiveCallsOf(method) > kMaximumNumberOfPolymorphicRecursiveCalls; | 
|  | if (too_many_polymorphic_recursive_calls) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedPolymorphicRecursiveBudget) | 
|  | << "Method " << method->PrettyMethod() | 
|  | << " is not inlined because it has reached its polymorphic recursive call budget."; | 
|  | } else if (class_index.IsValid()) { | 
|  | LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod(); | 
|  | } | 
|  |  | 
|  | if (too_many_polymorphic_recursive_calls || | 
|  | !class_index.IsValid() || | 
|  | !TryBuildAndInline(invoke_instruction, | 
|  | method, | 
|  | ReferenceTypeInfo::Create(handle, /* is_exact= */ true), | 
|  | &return_replacement)) { | 
|  | all_targets_inlined = false; | 
|  | } else { | 
|  | one_target_inlined = true; | 
|  |  | 
|  | LOG_SUCCESS() << "Polymorphic call to " | 
|  | << invoke_instruction->GetMethodReference().PrettyMethod() | 
|  | << " has inlined " << ArtMethod::PrettyMethod(method); | 
|  |  | 
|  | // If we have inlined all targets before, and this receiver is the last seen, | 
|  | // we deoptimize instead of keeping the original invoke instruction. | 
|  | bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() && | 
|  | all_targets_inlined && | 
|  | (i + 1 == number_of_types); | 
|  |  | 
|  | HInstruction* compare = AddTypeGuard(receiver, | 
|  | cursor, | 
|  | bb_cursor, | 
|  | class_index, | 
|  | handle, | 
|  | invoke_instruction, | 
|  | deoptimize); | 
|  | if (deoptimize) { | 
|  | MaybeReplaceAndRemove(return_replacement, invoke_instruction); | 
|  | } else { | 
|  | CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!one_target_inlined) { | 
|  | LOG_FAIL_NO_STAT() | 
|  | << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod() | 
|  | << " from inline cache is not inlined because none" | 
|  | << " of its targets could be inlined"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); | 
|  |  | 
|  | // Run type propagation to get the guards typed. | 
|  | ReferenceTypePropagation rtp_fixup(graph_, | 
|  | outer_compilation_unit_.GetClassLoader(), | 
|  | outer_compilation_unit_.GetDexCache(), | 
|  | /* is_first_run= */ false); | 
|  | rtp_fixup.Run(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare, | 
|  | HInstruction* return_replacement, | 
|  | HInstruction* invoke_instruction) { | 
|  | uint32_t dex_pc = invoke_instruction->GetDexPc(); | 
|  | HBasicBlock* cursor_block = compare->GetBlock(); | 
|  | HBasicBlock* original_invoke_block = invoke_instruction->GetBlock(); | 
|  | ArenaAllocator* allocator = graph_->GetAllocator(); | 
|  |  | 
|  | // Spit the block after the compare: `cursor_block` will now be the start of the diamond, | 
|  | // and the returned block is the start of the then branch (that could contain multiple blocks). | 
|  | HBasicBlock* then = cursor_block->SplitAfterForInlining(compare); | 
|  |  | 
|  | // Split the block containing the invoke before and after the invoke. The returned block | 
|  | // of the split before will contain the invoke and will be the otherwise branch of | 
|  | // the diamond. The returned block of the split after will be the merge block | 
|  | // of the diamond. | 
|  | HBasicBlock* end_then = invoke_instruction->GetBlock(); | 
|  | HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction); | 
|  | HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction); | 
|  |  | 
|  | // If the methods we are inlining return a value, we create a phi in the merge block | 
|  | // that will have the `invoke_instruction and the `return_replacement` as inputs. | 
|  | if (return_replacement != nullptr) { | 
|  | HPhi* phi = new (allocator) HPhi( | 
|  | allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc); | 
|  | merge->AddPhi(phi); | 
|  | invoke_instruction->ReplaceWith(phi); | 
|  | phi->AddInput(return_replacement); | 
|  | phi->AddInput(invoke_instruction); | 
|  | } | 
|  |  | 
|  | // Add the control flow instructions. | 
|  | otherwise->AddInstruction(new (allocator) HGoto(dex_pc)); | 
|  | end_then->AddInstruction(new (allocator) HGoto(dex_pc)); | 
|  | cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc)); | 
|  |  | 
|  | // Add the newly created blocks to the graph. | 
|  | graph_->AddBlock(then); | 
|  | graph_->AddBlock(otherwise); | 
|  | graph_->AddBlock(merge); | 
|  |  | 
|  | // Set up successor (and implictly predecessor) relations. | 
|  | cursor_block->AddSuccessor(otherwise); | 
|  | cursor_block->AddSuccessor(then); | 
|  | end_then->AddSuccessor(merge); | 
|  | otherwise->AddSuccessor(merge); | 
|  |  | 
|  | // Set up dominance information. | 
|  | then->SetDominator(cursor_block); | 
|  | cursor_block->AddDominatedBlock(then); | 
|  | otherwise->SetDominator(cursor_block); | 
|  | cursor_block->AddDominatedBlock(otherwise); | 
|  | merge->SetDominator(cursor_block); | 
|  | cursor_block->AddDominatedBlock(merge); | 
|  |  | 
|  | // Update the revert post order. | 
|  | size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block); | 
|  | MakeRoomFor(&graph_->reverse_post_order_, 1, index); | 
|  | graph_->reverse_post_order_[++index] = then; | 
|  | index = IndexOfElement(graph_->reverse_post_order_, end_then); | 
|  | MakeRoomFor(&graph_->reverse_post_order_, 2, index); | 
|  | graph_->reverse_post_order_[++index] = otherwise; | 
|  | graph_->reverse_post_order_[++index] = merge; | 
|  |  | 
|  |  | 
|  | graph_->UpdateLoopAndTryInformationOfNewBlock( | 
|  | then, original_invoke_block, /* replace_if_back_edge= */ false); | 
|  | graph_->UpdateLoopAndTryInformationOfNewBlock( | 
|  | otherwise, original_invoke_block, /* replace_if_back_edge= */ false); | 
|  |  | 
|  | // In case the original invoke location was a back edge, we need to update | 
|  | // the loop to now have the merge block as a back edge. | 
|  | graph_->UpdateLoopAndTryInformationOfNewBlock( | 
|  | merge, original_invoke_block, /* replace_if_back_edge= */ true); | 
|  | } | 
|  |  | 
|  | bool HInliner::TryInlinePolymorphicCallToSameTarget( | 
|  | HInvoke* invoke_instruction, | 
|  | const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) { | 
|  | // This optimization only works under JIT for now. | 
|  | if (!codegen_->GetCompilerOptions().IsJitCompiler()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); | 
|  | PointerSize pointer_size = class_linker->GetImagePointerSize(); | 
|  |  | 
|  | ArtMethod* actual_method = nullptr; | 
|  | size_t method_index = invoke_instruction->IsInvokeVirtual() | 
|  | ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex() | 
|  | : invoke_instruction->AsInvokeInterface()->GetImtIndex(); | 
|  |  | 
|  | // Check whether we are actually calling the same method among | 
|  | // the different types seen. | 
|  | DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); | 
|  | uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); | 
|  | for (size_t i = 0; i != number_of_types; ++i) { | 
|  | DCHECK(classes.GetReference(i) != nullptr); | 
|  | ArtMethod* new_method = nullptr; | 
|  | if (invoke_instruction->IsInvokeInterface()) { | 
|  | new_method = classes.GetReference(i)->AsClass()->GetImt(pointer_size)->Get( | 
|  | method_index, pointer_size); | 
|  | if (new_method->IsRuntimeMethod()) { | 
|  | // Bail out as soon as we see a conflict trampoline in one of the target's | 
|  | // interface table. | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | DCHECK(invoke_instruction->IsInvokeVirtual()); | 
|  | new_method = | 
|  | classes.GetReference(i)->AsClass()->GetEmbeddedVTableEntry(method_index, pointer_size); | 
|  | } | 
|  | DCHECK(new_method != nullptr); | 
|  | if (actual_method == nullptr) { | 
|  | actual_method = new_method; | 
|  | } else if (actual_method != new_method) { | 
|  | // Different methods, bailout. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | HInstruction* receiver = invoke_instruction->InputAt(0); | 
|  | HInstruction* cursor = invoke_instruction->GetPrevious(); | 
|  | HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); | 
|  |  | 
|  | HInstruction* return_replacement = nullptr; | 
|  | if (!TryBuildAndInline(invoke_instruction, | 
|  | actual_method, | 
|  | ReferenceTypeInfo::CreateInvalid(), | 
|  | &return_replacement)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We successfully inlined, now add a guard. | 
|  | HInstanceFieldGet* receiver_class = BuildGetReceiverClass( | 
|  | class_linker, receiver, invoke_instruction->GetDexPc()); | 
|  |  | 
|  | DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet()) | 
|  | ? DataType::Type::kInt64 | 
|  | : DataType::Type::kInt32; | 
|  | HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet( | 
|  | receiver_class, | 
|  | type, | 
|  | invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable | 
|  | : HClassTableGet::TableKind::kIMTable, | 
|  | method_index, | 
|  | invoke_instruction->GetDexPc()); | 
|  |  | 
|  | HConstant* constant; | 
|  | if (type == DataType::Type::kInt64) { | 
|  | constant = graph_->GetLongConstant( | 
|  | reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); | 
|  | } else { | 
|  | constant = graph_->GetIntConstant( | 
|  | reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); | 
|  | } | 
|  |  | 
|  | HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant); | 
|  | if (cursor != nullptr) { | 
|  | bb_cursor->InsertInstructionAfter(receiver_class, cursor); | 
|  | } else { | 
|  | bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); | 
|  | } | 
|  | bb_cursor->InsertInstructionAfter(class_table_get, receiver_class); | 
|  | bb_cursor->InsertInstructionAfter(compare, class_table_get); | 
|  |  | 
|  | if (outermost_graph_->IsCompilingOsr()) { | 
|  | CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); | 
|  | } else { | 
|  | HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( | 
|  | graph_->GetAllocator(), | 
|  | compare, | 
|  | receiver, | 
|  | DeoptimizationKind::kJitSameTarget, | 
|  | invoke_instruction->GetDexPc()); | 
|  | bb_cursor->InsertInstructionAfter(deoptimize, compare); | 
|  | deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); | 
|  | MaybeReplaceAndRemove(return_replacement, invoke_instruction); | 
|  | receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); | 
|  | deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); | 
|  | } | 
|  |  | 
|  | // Run type propagation to get the guard typed. | 
|  | ReferenceTypePropagation rtp_fixup(graph_, | 
|  | outer_compilation_unit_.GetClassLoader(), | 
|  | outer_compilation_unit_.GetDexCache(), | 
|  | /* is_first_run= */ false); | 
|  | rtp_fixup.Run(); | 
|  |  | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); | 
|  |  | 
|  | LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HInliner::MaybeRunReferenceTypePropagation(HInstruction* replacement, | 
|  | HInvoke* invoke_instruction) { | 
|  | if (ReturnTypeMoreSpecific(replacement, invoke_instruction)) { | 
|  | // Actual return value has a more specific type than the method's declared | 
|  | // return type. Run RTP again on the outer graph to propagate it. | 
|  | ReferenceTypePropagation(graph_, | 
|  | outer_compilation_unit_.GetClassLoader(), | 
|  | outer_compilation_unit_.GetDexCache(), | 
|  | /* is_first_run= */ false).Run(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HInliner::TryDevirtualize(HInvoke* invoke_instruction, | 
|  | ArtMethod* method, | 
|  | HInvoke** replacement) { | 
|  | DCHECK(invoke_instruction != *replacement); | 
|  | if (!invoke_instruction->IsInvokeInterface() && !invoke_instruction->IsInvokeVirtual()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Don't bother trying to call directly a default conflict method. It | 
|  | // doesn't have a proper MethodReference, but also `GetCanonicalMethod` | 
|  | // will return an actual default implementation. | 
|  | if (method->IsDefaultConflicting()) { | 
|  | return false; | 
|  | } | 
|  | DCHECK(!method->IsProxyMethod()); | 
|  | ClassLinker* cl = Runtime::Current()->GetClassLinker(); | 
|  | PointerSize pointer_size = cl->GetImagePointerSize(); | 
|  | // The sharpening logic assumes the caller isn't passing a copied method. | 
|  | method = method->GetCanonicalMethod(pointer_size); | 
|  | uint32_t dex_method_index = FindMethodIndexIn( | 
|  | method, | 
|  | *invoke_instruction->GetMethodReference().dex_file, | 
|  | invoke_instruction->GetMethodReference().index); | 
|  | if (dex_method_index == dex::kDexNoIndex) { | 
|  | return false; | 
|  | } | 
|  | HInvokeStaticOrDirect::DispatchInfo dispatch_info = | 
|  | HSharpening::SharpenLoadMethod(method, | 
|  | /* has_method_id= */ true, | 
|  | /* for_interface_call= */ false, | 
|  | codegen_); | 
|  | DCHECK_NE(dispatch_info.code_ptr_location, CodePtrLocation::kCallCriticalNative); | 
|  | if (dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall) { | 
|  | // If sharpening returns that we need to load the method at runtime, keep | 
|  | // the virtual/interface call which will be faster. | 
|  | // Also, the entrypoints for runtime calls do not handle devirtualized | 
|  | // calls. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | HInvokeStaticOrDirect* new_invoke = new (graph_->GetAllocator()) HInvokeStaticOrDirect( | 
|  | graph_->GetAllocator(), | 
|  | invoke_instruction->GetNumberOfArguments(), | 
|  | invoke_instruction->GetType(), | 
|  | invoke_instruction->GetDexPc(), | 
|  | MethodReference(invoke_instruction->GetMethodReference().dex_file, dex_method_index), | 
|  | method, | 
|  | dispatch_info, | 
|  | kDirect, | 
|  | MethodReference(method->GetDexFile(), method->GetDexMethodIndex()), | 
|  | HInvokeStaticOrDirect::ClinitCheckRequirement::kNone); | 
|  | HInputsRef inputs = invoke_instruction->GetInputs(); | 
|  | DCHECK_EQ(inputs.size(), invoke_instruction->GetNumberOfArguments()); | 
|  | for (size_t index = 0; index != inputs.size(); ++index) { | 
|  | new_invoke->SetArgumentAt(index, inputs[index]); | 
|  | } | 
|  | if (HInvokeStaticOrDirect::NeedsCurrentMethodInput(dispatch_info)) { | 
|  | new_invoke->SetRawInputAt(new_invoke->GetCurrentMethodIndexUnchecked(), | 
|  | graph_->GetCurrentMethod()); | 
|  | } | 
|  | invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); | 
|  | new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); | 
|  | if (invoke_instruction->GetType() == DataType::Type::kReference) { | 
|  | new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo()); | 
|  | } | 
|  | *replacement = new_invoke; | 
|  |  | 
|  | MaybeReplaceAndRemove(*replacement, invoke_instruction); | 
|  | // No need to call MaybeRunReferenceTypePropagation, as we know the return type | 
|  | // cannot be more specific. | 
|  | DCHECK(!ReturnTypeMoreSpecific(*replacement, invoke_instruction)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, | 
|  | ArtMethod* method, | 
|  | ReferenceTypeInfo receiver_type, | 
|  | bool do_rtp) { | 
|  | DCHECK(!invoke_instruction->IsIntrinsic()); | 
|  | HInstruction* return_replacement = nullptr; | 
|  |  | 
|  | if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MaybeReplaceAndRemove(return_replacement, invoke_instruction); | 
|  | FixUpReturnReferenceType(method, return_replacement); | 
|  | if (do_rtp) { | 
|  | MaybeRunReferenceTypePropagation(return_replacement, invoke_instruction); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const { | 
|  | const HInliner* current = this; | 
|  | size_t count = 0; | 
|  | do { | 
|  | if (current->graph_->GetArtMethod() == method) { | 
|  | ++count; | 
|  | } | 
|  | current = current->parent_; | 
|  | } while (current != nullptr); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static inline bool MayInline(const CompilerOptions& compiler_options, | 
|  | const DexFile& inlined_from, | 
|  | const DexFile& inlined_into) { | 
|  | // We're not allowed to inline across dex files if we're the no-inline-from dex file. | 
|  | if (!IsSameDexFile(inlined_from, inlined_into) && | 
|  | ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns whether inlining is allowed based on ART semantics. | 
|  | bool HInliner::IsInliningAllowed(ArtMethod* method, const CodeItemDataAccessor& accessor) const { | 
|  | if (!accessor.HasCodeItem()) { | 
|  | LOG_FAIL_NO_STAT() | 
|  | << "Method " << method->PrettyMethod() << " is not inlined because it is native"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!method->IsCompilable()) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotCompilable) | 
|  | << "Method " << method->PrettyMethod() | 
|  | << " has soft failures un-handled by the compiler, so it cannot be inlined"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsMethodVerified(method)) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified) | 
|  | << "Method " << method->PrettyMethod() | 
|  | << " couldn't be verified, so it cannot be inlined"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns whether ART supports inlining this method. | 
|  | // | 
|  | // Some methods are not supported because they have features for which inlining | 
|  | // is not implemented. For example, we do not currently support inlining throw | 
|  | // instructions into a try block. | 
|  | bool HInliner::IsInliningSupported(const HInvoke* invoke_instruction, | 
|  | ArtMethod* method, | 
|  | const CodeItemDataAccessor& accessor) const { | 
|  | if (method->IsProxyMethod()) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy) | 
|  | << "Method " << method->PrettyMethod() | 
|  | << " is not inlined because of unimplemented inline support for proxy methods."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (accessor.TriesSize() != 0) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchCallee) | 
|  | << "Method " << method->PrettyMethod() << " is not inlined because of try block"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (invoke_instruction->IsInvokeStaticOrDirect() && | 
|  | invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) { | 
|  | // Case of a static method that cannot be inlined because it implicitly | 
|  | // requires an initialization check of its declaring class. | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheClinitCheck) | 
|  | << "Method " << method->PrettyMethod() | 
|  | << " is not inlined because it is static and requires a clinit" | 
|  | << " check that cannot be emitted due to Dex cache limitations"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns whether our resource limits allow inlining this method. | 
|  | bool HInliner::IsInliningBudgetAvailable(ArtMethod* method, | 
|  | const CodeItemDataAccessor& accessor) const { | 
|  | if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget) | 
|  | << "Method " | 
|  | << method->PrettyMethod() | 
|  | << " is not inlined because it has reached its recursive call budget."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits(); | 
|  | if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem) | 
|  | << "Method " << method->PrettyMethod() | 
|  | << " is not inlined because its code item is too big: " | 
|  | << accessor.InsnsSizeInCodeUnits() | 
|  | << " > " | 
|  | << inline_max_code_units; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction, | 
|  | ArtMethod* method, | 
|  | ReferenceTypeInfo receiver_type, | 
|  | HInstruction** return_replacement) { | 
|  | // If invoke_instruction is devirtualized to a different method, give intrinsics | 
|  | // another chance before we try to inline it. | 
|  | if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized); | 
|  | // For simplicity, always create a new instruction to replace the existing | 
|  | // invoke. | 
|  | HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual( | 
|  | graph_->GetAllocator(), | 
|  | invoke_instruction->GetNumberOfArguments(), | 
|  | invoke_instruction->GetType(), | 
|  | invoke_instruction->GetDexPc(), | 
|  | invoke_instruction->GetMethodReference(),  // Use existing invoke's method's reference. | 
|  | method, | 
|  | MethodReference(method->GetDexFile(), method->GetDexMethodIndex()), | 
|  | method->GetMethodIndex()); | 
|  | DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone); | 
|  | HInputsRef inputs = invoke_instruction->GetInputs(); | 
|  | for (size_t index = 0; index != inputs.size(); ++index) { | 
|  | new_invoke->SetArgumentAt(index, inputs[index]); | 
|  | } | 
|  | invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); | 
|  | new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); | 
|  | if (invoke_instruction->GetType() == DataType::Type::kReference) { | 
|  | new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo()); | 
|  | } | 
|  | *return_replacement = new_invoke; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check whether we're allowed to inline. The outermost compilation unit is the relevant | 
|  | // dex file here (though the transitivity of an inline chain would allow checking the caller). | 
|  | if (!MayInline(codegen_->GetCompilerOptions(), | 
|  | *method->GetDexFile(), | 
|  | *outer_compilation_unit_.GetDexFile())) { | 
|  | if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) { | 
|  | LOG_SUCCESS() << "Successfully replaced pattern of invoke " | 
|  | << method->PrettyMethod(); | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern); | 
|  | return true; | 
|  | } | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont) | 
|  | << "Won't inline " << method->PrettyMethod() << " in " | 
|  | << outer_compilation_unit_.GetDexFile()->GetLocation() << " (" | 
|  | << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from " | 
|  | << method->GetDexFile()->GetLocation(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CodeItemDataAccessor accessor(method->DexInstructionData()); | 
|  |  | 
|  | if (!IsInliningAllowed(method, accessor)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsInliningSupported(invoke_instruction, method, accessor)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsInliningBudgetAvailable(method, accessor)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!TryBuildAndInlineHelper( | 
|  | invoke_instruction, method, receiver_type, return_replacement)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LOG_SUCCESS() << method->PrettyMethod(); | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke); | 
|  | if (outermost_graph_ == graph_) { | 
|  | MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvoke); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction, | 
|  | size_t arg_vreg_index) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | size_t input_index = 0; | 
|  | for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) { | 
|  | DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); | 
|  | if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) { | 
|  | ++i; | 
|  | DCHECK_NE(i, arg_vreg_index); | 
|  | } | 
|  | } | 
|  | DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); | 
|  | return invoke_instruction->InputAt(input_index); | 
|  | } | 
|  |  | 
|  | // Try to recognize known simple patterns and replace invoke call with appropriate instructions. | 
|  | bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction, | 
|  | ArtMethod* method, | 
|  | HInstruction** return_replacement) { | 
|  | InlineMethod inline_method; | 
|  | if (!InlineMethodAnalyser::AnalyseMethodCode(method, &inline_method)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (inline_method.opcode) { | 
|  | case kInlineOpNop: | 
|  | DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid); | 
|  | *return_replacement = nullptr; | 
|  | break; | 
|  | case kInlineOpReturnArg: | 
|  | *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, | 
|  | inline_method.d.return_data.arg); | 
|  | break; | 
|  | case kInlineOpNonWideConst: { | 
|  | char shorty0 = method->GetShorty()[0]; | 
|  | if (shorty0 == 'L') { | 
|  | DCHECK_EQ(inline_method.d.data, 0u); | 
|  | *return_replacement = graph_->GetNullConstant(); | 
|  | } else if (shorty0 == 'F') { | 
|  | *return_replacement = graph_->GetFloatConstant( | 
|  | bit_cast<float, int32_t>(static_cast<int32_t>(inline_method.d.data))); | 
|  | } else { | 
|  | *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case kInlineOpIGet: { | 
|  | const InlineIGetIPutData& data = inline_method.d.ifield_data; | 
|  | if (data.method_is_static || data.object_arg != 0u) { | 
|  | // TODO: Needs null check. | 
|  | return false; | 
|  | } | 
|  | HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); | 
|  | HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, method, obj); | 
|  | DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset); | 
|  | DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile); | 
|  | invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction); | 
|  | *return_replacement = iget; | 
|  | break; | 
|  | } | 
|  | case kInlineOpIPut: { | 
|  | const InlineIGetIPutData& data = inline_method.d.ifield_data; | 
|  | if (data.method_is_static || data.object_arg != 0u) { | 
|  | // TODO: Needs null check. | 
|  | return false; | 
|  | } | 
|  | HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); | 
|  | HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg); | 
|  | HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, method, obj, value); | 
|  | DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset); | 
|  | DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile); | 
|  | invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); | 
|  | if (data.return_arg_plus1 != 0u) { | 
|  | size_t return_arg = data.return_arg_plus1 - 1u; | 
|  | *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case kInlineOpConstructor: { | 
|  | const InlineConstructorData& data = inline_method.d.constructor_data; | 
|  | // Get the indexes to arrays for easier processing. | 
|  | uint16_t iput_field_indexes[] = { | 
|  | data.iput0_field_index, data.iput1_field_index, data.iput2_field_index | 
|  | }; | 
|  | uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg }; | 
|  | static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch"); | 
|  | // Count valid field indexes. | 
|  | size_t number_of_iputs = 0u; | 
|  | while (number_of_iputs != arraysize(iput_field_indexes) && | 
|  | iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) { | 
|  | // Check that there are no duplicate valid field indexes. | 
|  | DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1, | 
|  | iput_field_indexes + arraysize(iput_field_indexes), | 
|  | iput_field_indexes[number_of_iputs])); | 
|  | ++number_of_iputs; | 
|  | } | 
|  | // Check that there are no valid field indexes in the rest of the array. | 
|  | DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs, | 
|  | iput_field_indexes + arraysize(iput_field_indexes), | 
|  | [](uint16_t index) { return index != DexFile::kDexNoIndex16; })); | 
|  |  | 
|  | // Create HInstanceFieldSet for each IPUT that stores non-zero data. | 
|  | HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, | 
|  | /* arg_vreg_index= */ 0u); | 
|  | bool needs_constructor_barrier = false; | 
|  | for (size_t i = 0; i != number_of_iputs; ++i) { | 
|  | HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]); | 
|  | if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) { | 
|  | uint16_t field_index = iput_field_indexes[i]; | 
|  | bool is_final; | 
|  | HInstanceFieldSet* iput = | 
|  | CreateInstanceFieldSet(field_index, method, obj, value, &is_final); | 
|  | invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); | 
|  |  | 
|  | // Check whether the field is final. If it is, we need to add a barrier. | 
|  | if (is_final) { | 
|  | needs_constructor_barrier = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (needs_constructor_barrier) { | 
|  | // See DexCompilationUnit::RequiresConstructorBarrier for more details. | 
|  | DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence"; | 
|  |  | 
|  | HConstructorFence* constructor_fence = | 
|  | new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator()); | 
|  | invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence, | 
|  | invoke_instruction); | 
|  | } | 
|  | *return_replacement = nullptr; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | LOG(FATAL) << "UNREACHABLE"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index, | 
|  | ArtMethod* referrer, | 
|  | HInstruction* obj) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); | 
|  | ArtField* resolved_field = | 
|  | class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); | 
|  | DCHECK(resolved_field != nullptr); | 
|  | HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet( | 
|  | obj, | 
|  | resolved_field, | 
|  | DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), | 
|  | resolved_field->GetOffset(), | 
|  | resolved_field->IsVolatile(), | 
|  | field_index, | 
|  | resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), | 
|  | *referrer->GetDexFile(), | 
|  | // Read barrier generates a runtime call in slow path and we need a valid | 
|  | // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. | 
|  | /* dex_pc= */ 0); | 
|  | if (iget->GetType() == DataType::Type::kReference) { | 
|  | // Use the same dex_cache that we used for field lookup as the hint_dex_cache. | 
|  | Handle<mirror::DexCache> dex_cache = | 
|  | graph_->GetHandleCache()->NewHandle(referrer->GetDexCache()); | 
|  | ReferenceTypePropagation rtp(graph_, | 
|  | outer_compilation_unit_.GetClassLoader(), | 
|  | dex_cache, | 
|  | /* is_first_run= */ false); | 
|  | rtp.Visit(iget); | 
|  | } | 
|  | return iget; | 
|  | } | 
|  |  | 
|  | HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index, | 
|  | ArtMethod* referrer, | 
|  | HInstruction* obj, | 
|  | HInstruction* value, | 
|  | bool* is_final) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); | 
|  | ArtField* resolved_field = | 
|  | class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); | 
|  | DCHECK(resolved_field != nullptr); | 
|  | if (is_final != nullptr) { | 
|  | // This information is needed only for constructors. | 
|  | DCHECK(referrer->IsConstructor()); | 
|  | *is_final = resolved_field->IsFinal(); | 
|  | } | 
|  | HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet( | 
|  | obj, | 
|  | value, | 
|  | resolved_field, | 
|  | DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), | 
|  | resolved_field->GetOffset(), | 
|  | resolved_field->IsVolatile(), | 
|  | field_index, | 
|  | resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), | 
|  | *referrer->GetDexFile(), | 
|  | // Read barrier generates a runtime call in slow path and we need a valid | 
|  | // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. | 
|  | /* dex_pc= */ 0); | 
|  | return iput; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object, Handle<T> hint, HGraph* graph) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | return (object != hint.Get()) ? graph->GetHandleCache()->NewHandle(object) : hint; | 
|  | } | 
|  |  | 
|  | static bool CanEncodeInlinedMethodInStackMap(const DexFile& outer_dex_file, | 
|  | ArtMethod* callee, | 
|  | const CodeGenerator* codegen, | 
|  | bool* out_needs_bss_check) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | if (!Runtime::Current()->IsAotCompiler()) { | 
|  | // JIT can always encode methods in stack maps. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const DexFile* dex_file = callee->GetDexFile(); | 
|  | if (IsSameDexFile(outer_dex_file, *dex_file)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Inline across dexfiles if the callee's DexFile is: | 
|  | // 1) in the bootclasspath, or | 
|  | if (callee->GetDeclaringClass()->IsBootStrapClassLoaded()) { | 
|  | // In multi-image, each BCP DexFile has their own OatWriter. Since they don't cooperate with | 
|  | // each other, we request the BSS check for them. | 
|  | // TODO(solanes, 154012332): Add .bss support for BCP multi-image. | 
|  | *out_needs_bss_check = codegen->GetCompilerOptions().IsMultiImage(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // 2) is a non-BCP dexfile with the OatFile we are compiling. | 
|  | if (codegen->GetCompilerOptions().WithinOatFile(dex_file)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO(solanes): Support more AOT cases for inlining: | 
|  | // - methods in class loader context's DexFiles | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Substitutes parameters in the callee graph with their values from the caller. | 
|  | void HInliner::SubstituteArguments(HGraph* callee_graph, | 
|  | HInvoke* invoke_instruction, | 
|  | ReferenceTypeInfo receiver_type, | 
|  | const DexCompilationUnit& dex_compilation_unit) { | 
|  | ArtMethod* const resolved_method = callee_graph->GetArtMethod(); | 
|  | size_t parameter_index = 0; | 
|  | bool run_rtp = false; | 
|  | for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions()); | 
|  | !instructions.Done(); | 
|  | instructions.Advance()) { | 
|  | HInstruction* current = instructions.Current(); | 
|  | if (current->IsParameterValue()) { | 
|  | HInstruction* argument = invoke_instruction->InputAt(parameter_index); | 
|  | if (argument->IsNullConstant()) { | 
|  | current->ReplaceWith(callee_graph->GetNullConstant()); | 
|  | } else if (argument->IsIntConstant()) { | 
|  | current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue())); | 
|  | } else if (argument->IsLongConstant()) { | 
|  | current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue())); | 
|  | } else if (argument->IsFloatConstant()) { | 
|  | current->ReplaceWith( | 
|  | callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue())); | 
|  | } else if (argument->IsDoubleConstant()) { | 
|  | current->ReplaceWith( | 
|  | callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue())); | 
|  | } else if (argument->GetType() == DataType::Type::kReference) { | 
|  | if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) { | 
|  | run_rtp = true; | 
|  | current->SetReferenceTypeInfo(receiver_type); | 
|  | } else { | 
|  | current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo()); | 
|  | } | 
|  | current->AsParameterValue()->SetCanBeNull(argument->CanBeNull()); | 
|  | } | 
|  | ++parameter_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We have replaced formal arguments with actual arguments. If actual types | 
|  | // are more specific than the declared ones, run RTP again on the inner graph. | 
|  | if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) { | 
|  | ReferenceTypePropagation(callee_graph, | 
|  | outer_compilation_unit_.GetClassLoader(), | 
|  | dex_compilation_unit.GetDexCache(), | 
|  | /* is_first_run= */ false).Run(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns whether we can inline the callee_graph into the target_block. | 
|  | // | 
|  | // This performs a combination of semantics checks, compiler support checks, and | 
|  | // resource limit checks. | 
|  | // | 
|  | // If this function returns true, it will also set out_number_of_instructions to | 
|  | // the number of instructions in the inlined body. | 
|  | bool HInliner::CanInlineBody(const HGraph* callee_graph, | 
|  | const HBasicBlock* target_block, | 
|  | size_t* out_number_of_instructions) const { | 
|  | ArtMethod* const resolved_method = callee_graph->GetArtMethod(); | 
|  |  | 
|  | HBasicBlock* exit_block = callee_graph->GetExitBlock(); | 
|  | if (exit_block == nullptr) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because it has an infinite loop"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool has_one_return = false; | 
|  | for (HBasicBlock* predecessor : exit_block->GetPredecessors()) { | 
|  | if (predecessor->GetLastInstruction()->IsThrow()) { | 
|  | if (target_block->IsTryBlock()) { | 
|  | // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto. | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchCaller) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because one branch always throws and" | 
|  | << " caller is in a try/catch block"; | 
|  | return false; | 
|  | } else if (graph_->GetExitBlock() == nullptr) { | 
|  | // TODO(ngeoffray): Support adding HExit in the caller graph. | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because one branch always throws and" | 
|  | << " caller does not have an exit block"; | 
|  | return false; | 
|  | } else if (graph_->HasIrreducibleLoops()) { | 
|  | // TODO(ngeoffray): Support re-computing loop information to graphs with | 
|  | // irreducible loops? | 
|  | VLOG(compiler) << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because one branch always throws and" | 
|  | << " caller has irreducible loops"; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | has_one_return = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!has_one_return) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because it always throws"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const bool too_many_registers = | 
|  | total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters; | 
|  | bool needs_bss_check = false; | 
|  | const bool can_encode_in_stack_map = CanEncodeInlinedMethodInStackMap( | 
|  | *outer_compilation_unit_.GetDexFile(), resolved_method, codegen_, &needs_bss_check); | 
|  | size_t number_of_instructions = 0; | 
|  | // Skip the entry block, it does not contain instructions that prevent inlining. | 
|  | for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) { | 
|  | if (block->IsLoopHeader()) { | 
|  | if (block->GetLoopInformation()->IsIrreducible()) { | 
|  | // Don't inline methods with irreducible loops, they could prevent some | 
|  | // optimizations to run. | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoop) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because it contains an irreducible loop"; | 
|  | return false; | 
|  | } | 
|  | if (!block->GetLoopInformation()->HasExitEdge()) { | 
|  | // Don't inline methods with loops without exit, since they cause the | 
|  | // loop information to be computed incorrectly when updating after | 
|  | // inlining. | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because it contains a loop with no exit"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (HInstructionIterator instr_it(block->GetInstructions()); | 
|  | !instr_it.Done(); | 
|  | instr_it.Advance()) { | 
|  | if (++number_of_instructions > inlining_budget_) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " is not inlined because the outer method has reached" | 
|  | << " its instruction budget limit."; | 
|  | return false; | 
|  | } | 
|  | HInstruction* current = instr_it.Current(); | 
|  | if (current->NeedsEnvironment()) { | 
|  | if (too_many_registers) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " is not inlined because its caller has reached" | 
|  | << " its environment budget limit."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!can_encode_in_stack_map) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps) | 
|  | << "Method " << resolved_method->PrettyMethod() << " could not be inlined because " | 
|  | << current->DebugName() << " needs an environment, is in a different dex file" | 
|  | << ", and cannot be encoded in the stack maps."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (current->IsUnresolvedStaticFieldGet() || | 
|  | current->IsUnresolvedInstanceFieldGet() || | 
|  | current->IsUnresolvedStaticFieldSet() || | 
|  | current->IsUnresolvedInstanceFieldSet()) { | 
|  | // Entrypoint for unresolved fields does not handle inlined frames. | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because it is using an unresolved" | 
|  | << " entrypoint"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We currently don't have support for inlining across dex files if we are: | 
|  | // 1) In AoT, | 
|  | // 2) cross-dex inlining, | 
|  | // 3) the callee is a BCP DexFile, | 
|  | // 4) we are compiling multi image, and | 
|  | // 5) have an instruction that needs a bss entry, which will always be | 
|  | // 5)b) an instruction that needs an environment. | 
|  | // 1) - 4) are encoded in `needs_bss_check` (see CanEncodeInlinedMethodInStackMap). | 
|  | if (needs_bss_check && current->NeedsBss()) { | 
|  | DCHECK(current->NeedsEnvironment()); | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedBss) | 
|  | << "Method " << resolved_method->PrettyMethod() | 
|  | << " could not be inlined because it needs a BSS check"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *out_number_of_instructions = number_of_instructions; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction, | 
|  | ArtMethod* resolved_method, | 
|  | ReferenceTypeInfo receiver_type, | 
|  | HInstruction** return_replacement) { | 
|  | DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid())); | 
|  | const dex::CodeItem* code_item = resolved_method->GetCodeItem(); | 
|  | const DexFile& callee_dex_file = *resolved_method->GetDexFile(); | 
|  | uint32_t method_index = resolved_method->GetDexMethodIndex(); | 
|  | CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo()); | 
|  | ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); | 
|  | Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(), | 
|  | caller_compilation_unit_.GetDexCache(), | 
|  | graph_); | 
|  | Handle<mirror::ClassLoader> class_loader = | 
|  | NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(), | 
|  | caller_compilation_unit_.GetClassLoader(), | 
|  | graph_); | 
|  |  | 
|  | Handle<mirror::Class> compiling_class = | 
|  | graph_->GetHandleCache()->NewHandle(resolved_method->GetDeclaringClass()); | 
|  | DexCompilationUnit dex_compilation_unit( | 
|  | class_loader, | 
|  | class_linker, | 
|  | callee_dex_file, | 
|  | code_item, | 
|  | resolved_method->GetDeclaringClass()->GetDexClassDefIndex(), | 
|  | method_index, | 
|  | resolved_method->GetAccessFlags(), | 
|  | /* verified_method= */ nullptr, | 
|  | dex_cache, | 
|  | compiling_class); | 
|  |  | 
|  | InvokeType invoke_type = invoke_instruction->GetInvokeType(); | 
|  | if (invoke_type == kInterface) { | 
|  | // We have statically resolved the dispatch. To please the class linker | 
|  | // at runtime, we change this call as if it was a virtual call. | 
|  | invoke_type = kVirtual; | 
|  | } | 
|  |  | 
|  | bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe(); | 
|  | const dex::ClassDef& callee_class = resolved_method->GetClassDef(); | 
|  | // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation() | 
|  | // is currently rarely true. | 
|  | bool callee_dead_reference_safe = | 
|  | annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class) | 
|  | && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index); | 
|  |  | 
|  | const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId(); | 
|  | HGraph* callee_graph = new (graph_->GetAllocator()) HGraph( | 
|  | graph_->GetAllocator(), | 
|  | graph_->GetArenaStack(), | 
|  | graph_->GetHandleCache()->GetHandles(), | 
|  | callee_dex_file, | 
|  | method_index, | 
|  | codegen_->GetCompilerOptions().GetInstructionSet(), | 
|  | invoke_type, | 
|  | callee_dead_reference_safe, | 
|  | graph_->IsDebuggable(), | 
|  | graph_->GetCompilationKind(), | 
|  | /* start_instruction_id= */ caller_instruction_counter); | 
|  | callee_graph->SetArtMethod(resolved_method); | 
|  |  | 
|  | ScopedProfilingInfoUse spiu(Runtime::Current()->GetJit(), resolved_method, Thread::Current()); | 
|  | if (Runtime::Current()->GetJit() != nullptr) { | 
|  | callee_graph->SetProfilingInfo(spiu.GetProfilingInfo()); | 
|  | } | 
|  |  | 
|  | // When they are needed, allocate `inline_stats_` on the Arena instead | 
|  | // of on the stack, as Clang might produce a stack frame too large | 
|  | // for this function, that would not fit the requirements of the | 
|  | // `-Wframe-larger-than` option. | 
|  | if (stats_ != nullptr) { | 
|  | // Reuse one object for all inline attempts from this caller to keep Arena memory usage low. | 
|  | if (inline_stats_ == nullptr) { | 
|  | void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc); | 
|  | inline_stats_ = new (storage) OptimizingCompilerStats; | 
|  | } else { | 
|  | inline_stats_->Reset(); | 
|  | } | 
|  | } | 
|  | HGraphBuilder builder(callee_graph, | 
|  | code_item_accessor, | 
|  | &dex_compilation_unit, | 
|  | &outer_compilation_unit_, | 
|  | codegen_, | 
|  | inline_stats_); | 
|  |  | 
|  | if (builder.BuildGraph() != kAnalysisSuccess) { | 
|  | LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild) | 
|  | << "Method " << callee_dex_file.PrettyMethod(method_index) | 
|  | << " could not be built, so cannot be inlined"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SubstituteArguments(callee_graph, invoke_instruction, receiver_type, dex_compilation_unit); | 
|  |  | 
|  | RunOptimizations(callee_graph, code_item, dex_compilation_unit); | 
|  |  | 
|  | size_t number_of_instructions = 0; | 
|  | if (!CanInlineBody(callee_graph, invoke_instruction->GetBlock(), &number_of_instructions)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId()) | 
|  | << "No instructions can be added to the outer graph while inner graph is being built"; | 
|  |  | 
|  | // Inline the callee graph inside the caller graph. | 
|  | const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId(); | 
|  | graph_->SetCurrentInstructionId(callee_instruction_counter); | 
|  | *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction); | 
|  | // Update our budget for other inlining attempts in `caller_graph`. | 
|  | total_number_of_instructions_ += number_of_instructions; | 
|  | UpdateInliningBudget(); | 
|  |  | 
|  | DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId()) | 
|  | << "No instructions can be added to the inner graph during inlining into the outer graph"; | 
|  |  | 
|  | if (stats_ != nullptr) { | 
|  | DCHECK(inline_stats_ != nullptr); | 
|  | inline_stats_->AddTo(stats_); | 
|  | } | 
|  |  | 
|  | if (caller_dead_reference_safe && !callee_dead_reference_safe) { | 
|  | // Caller was dead reference safe, but is not anymore, since we inlined dead | 
|  | // reference unsafe code. Prior transformations remain valid, since they did not | 
|  | // affect the inlined code. | 
|  | graph_->MarkDeadReferenceUnsafe(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HInliner::RunOptimizations(HGraph* callee_graph, | 
|  | const dex::CodeItem* code_item, | 
|  | const DexCompilationUnit& dex_compilation_unit) { | 
|  | // Note: if the outermost_graph_ is being compiled OSR, we should not run any | 
|  | // optimization that could lead to a HDeoptimize. The following optimizations do not. | 
|  | HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner"); | 
|  | HConstantFolding fold(callee_graph, "constant_folding$inliner"); | 
|  | InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_); | 
|  |  | 
|  | HOptimization* optimizations[] = { | 
|  | &simplify, | 
|  | &fold, | 
|  | &dce, | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(optimizations); ++i) { | 
|  | HOptimization* optimization = optimizations[i]; | 
|  | optimization->Run(); | 
|  | } | 
|  |  | 
|  | // Bail early for pathological cases on the environment (for example recursive calls, | 
|  | // or too large environment). | 
|  | if (total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters) { | 
|  | LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() | 
|  | << " will not be inlined because the outer method has reached" | 
|  | << " its environment budget limit."; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Bail early if we know we already are over the limit. | 
|  | size_t number_of_instructions = CountNumberOfInstructions(callee_graph); | 
|  | if (number_of_instructions > inlining_budget_) { | 
|  | LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() | 
|  | << " will not be inlined because the outer method has reached" | 
|  | << " its instruction budget limit. " << number_of_instructions; | 
|  | return; | 
|  | } | 
|  |  | 
|  | CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item); | 
|  | HInliner inliner(callee_graph, | 
|  | outermost_graph_, | 
|  | codegen_, | 
|  | outer_compilation_unit_, | 
|  | dex_compilation_unit, | 
|  | inline_stats_, | 
|  | total_number_of_dex_registers_ + accessor.RegistersSize(), | 
|  | total_number_of_instructions_ + number_of_instructions, | 
|  | this, | 
|  | depth_ + 1); | 
|  | inliner.Run(); | 
|  | } | 
|  |  | 
|  | static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class, | 
|  | bool declared_is_exact, | 
|  | bool declared_can_be_null, | 
|  | HInstruction* actual_obj) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | if (declared_can_be_null && !actual_obj->CanBeNull()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo(); | 
|  | ObjPtr<mirror::Class> actual_class = actual_rti.GetTypeHandle().Get(); | 
|  | return (actual_rti.IsExact() && !declared_is_exact) || | 
|  | (declared_class != actual_class && declared_class->IsAssignableFrom(actual_class)); | 
|  | } | 
|  |  | 
|  | static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class, | 
|  | bool declared_can_be_null, | 
|  | HInstruction* actual_obj) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | bool admissible = ReferenceTypePropagation::IsAdmissible(declared_class); | 
|  | return IsReferenceTypeRefinement( | 
|  | admissible ? declared_class : GetClassRoot<mirror::Class>(), | 
|  | /*declared_is_exact=*/ admissible && declared_class->CannotBeAssignedFromOtherTypes(), | 
|  | declared_can_be_null, | 
|  | actual_obj); | 
|  | } | 
|  |  | 
|  | bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) { | 
|  | // If this is an instance call, test whether the type of the `this` argument | 
|  | // is more specific than the class which declares the method. | 
|  | if (!resolved_method->IsStatic()) { | 
|  | if (IsReferenceTypeRefinement(resolved_method->GetDeclaringClass(), | 
|  | /*declared_can_be_null=*/ false, | 
|  | invoke_instruction->InputAt(0u))) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Iterate over the list of parameter types and test whether any of the | 
|  | // actual inputs has a more specific reference type than the type declared in | 
|  | // the signature. | 
|  | const dex::TypeList* param_list = resolved_method->GetParameterTypeList(); | 
|  | for (size_t param_idx = 0, | 
|  | input_idx = resolved_method->IsStatic() ? 0 : 1, | 
|  | e = (param_list == nullptr ? 0 : param_list->Size()); | 
|  | param_idx < e; | 
|  | ++param_idx, ++input_idx) { | 
|  | HInstruction* input = invoke_instruction->InputAt(input_idx); | 
|  | if (input->GetType() == DataType::Type::kReference) { | 
|  | ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex( | 
|  | param_list->GetTypeItem(param_idx).type_idx_); | 
|  | if (IsReferenceTypeRefinement(param_cls, /*declared_can_be_null=*/ true, input)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HInliner::ReturnTypeMoreSpecific(HInstruction* return_replacement, | 
|  | HInvoke* invoke_instruction) { | 
|  | // Check the integrity of reference types and run another type propagation if needed. | 
|  | if (return_replacement != nullptr) { | 
|  | if (return_replacement->GetType() == DataType::Type::kReference) { | 
|  | // Test if the return type is a refinement of the declared return type. | 
|  | ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo(); | 
|  | if (IsReferenceTypeRefinement(invoke_rti.GetTypeHandle().Get(), | 
|  | invoke_rti.IsExact(), | 
|  | /*declared_can_be_null=*/ true, | 
|  | return_replacement)) { | 
|  | return true; | 
|  | } else if (return_replacement->IsInstanceFieldGet()) { | 
|  | HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet(); | 
|  | if (field_get->GetFieldInfo().GetField() == | 
|  | GetClassRoot<mirror::Object>()->GetInstanceField(0)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (return_replacement->IsInstanceOf()) { | 
|  | // Inlining InstanceOf into an If may put a tighter bound on reference types. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method, | 
|  | HInstruction* return_replacement) { | 
|  | if (return_replacement != nullptr) { | 
|  | if (return_replacement->GetType() == DataType::Type::kReference) { | 
|  | if (!return_replacement->GetReferenceTypeInfo().IsValid()) { | 
|  | // Make sure that we have a valid type for the return. We may get an invalid one when | 
|  | // we inline invokes with multiple branches and create a Phi for the result. | 
|  | // TODO: we could be more precise by merging the phi inputs but that requires | 
|  | // some functionality from the reference type propagation. | 
|  | DCHECK(return_replacement->IsPhi()); | 
|  | ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType(); | 
|  | ReferenceTypeInfo rti = ReferenceTypePropagation::IsAdmissible(cls) | 
|  | ? ReferenceTypeInfo::Create(graph_->GetHandleCache()->NewHandle(cls)) | 
|  | : graph_->GetInexactObjectRti(); | 
|  | return_replacement->SetReferenceTypeInfo(rti); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace art |