|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "parallel_move_resolver.h" | 
|  |  | 
|  | #include "base/stl_util.h" | 
|  | #include "nodes.h" | 
|  |  | 
|  | namespace art { | 
|  |  | 
|  | void ParallelMoveResolver::BuildInitialMoveList(HParallelMove* parallel_move) { | 
|  | // Perform a linear sweep of the moves to add them to the initial list of | 
|  | // moves to perform, ignoring any move that is redundant (the source is | 
|  | // the same as the destination, the destination is ignored and | 
|  | // unallocated, or the move was already eliminated). | 
|  | for (size_t i = 0; i < parallel_move->NumMoves(); ++i) { | 
|  | MoveOperands* move = parallel_move->MoveOperandsAt(i); | 
|  | if (!move->IsRedundant()) { | 
|  | moves_.push_back(move); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverWithSwap::EmitNativeCode(HParallelMove* parallel_move) { | 
|  | DCHECK(moves_.empty()); | 
|  | // Build up a worklist of moves. | 
|  | BuildInitialMoveList(parallel_move); | 
|  |  | 
|  | // Move stack/stack slot to take advantage of a free register on constrained machines. | 
|  | for (size_t i = 0; i < moves_.size(); ++i) { | 
|  | const MoveOperands& move = *moves_[i]; | 
|  | // Ignore constants and moves already eliminated. | 
|  | if (move.IsEliminated() || move.GetSource().IsConstant()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((move.GetSource().IsStackSlot() || move.GetSource().IsDoubleStackSlot()) && | 
|  | (move.GetDestination().IsStackSlot() || move.GetDestination().IsDoubleStackSlot())) { | 
|  | PerformMove(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < moves_.size(); ++i) { | 
|  | const MoveOperands& move = *moves_[i]; | 
|  | // Skip constants to perform them last.  They don't block other moves | 
|  | // and skipping such moves with register destinations keeps those | 
|  | // registers free for the whole algorithm. | 
|  | if (!move.IsEliminated() && !move.GetSource().IsConstant()) { | 
|  | PerformMove(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform the moves with constant sources. | 
|  | for (size_t i = 0; i < moves_.size(); ++i) { | 
|  | MoveOperands* move = moves_[i]; | 
|  | if (!move->IsEliminated()) { | 
|  | DCHECK(move->GetSource().IsConstant()); | 
|  | EmitMove(i); | 
|  | // Eliminate the move, in case following moves need a scratch register. | 
|  | move->Eliminate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | moves_.clear(); | 
|  | } | 
|  |  | 
|  | Location LowOf(Location location) { | 
|  | if (location.IsRegisterPair()) { | 
|  | return Location::RegisterLocation(location.low()); | 
|  | } else if (location.IsFpuRegisterPair()) { | 
|  | return Location::FpuRegisterLocation(location.low()); | 
|  | } else if (location.IsDoubleStackSlot()) { | 
|  | return Location::StackSlot(location.GetStackIndex()); | 
|  | } else { | 
|  | return Location::NoLocation(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Location HighOf(Location location) { | 
|  | if (location.IsRegisterPair()) { | 
|  | return Location::RegisterLocation(location.high()); | 
|  | } else if (location.IsFpuRegisterPair()) { | 
|  | return Location::FpuRegisterLocation(location.high()); | 
|  | } else if (location.IsDoubleStackSlot()) { | 
|  | return Location::StackSlot(location.GetHighStackIndex(4)); | 
|  | } else { | 
|  | return Location::NoLocation(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update the source of `move`, knowing that `updated_location` has been swapped | 
|  | // with `new_source`. Note that `updated_location` can be a pair, therefore if | 
|  | // `move` is non-pair, we need to extract which register to use. | 
|  | static void UpdateSourceOf(MoveOperands* move, Location updated_location, Location new_source) { | 
|  | Location source = move->GetSource(); | 
|  | if (LowOf(updated_location).Equals(source)) { | 
|  | move->SetSource(LowOf(new_source)); | 
|  | } else if (HighOf(updated_location).Equals(source)) { | 
|  | move->SetSource(HighOf(new_source)); | 
|  | } else { | 
|  | DCHECK(updated_location.Equals(source)) << updated_location << " " << source; | 
|  | move->SetSource(new_source); | 
|  | } | 
|  | } | 
|  |  | 
|  | MoveOperands* ParallelMoveResolverWithSwap::PerformMove(size_t index) { | 
|  | // Each call to this function performs a move and deletes it from the move | 
|  | // graph.  We first recursively perform any move blocking this one.  We | 
|  | // mark a move as "pending" on entry to PerformMove in order to detect | 
|  | // cycles in the move graph.  We use operand swaps to resolve cycles, | 
|  | // which means that a call to PerformMove could change any source operand | 
|  | // in the move graph. | 
|  |  | 
|  | MoveOperands* move = moves_[index]; | 
|  | DCHECK(!move->IsPending()); | 
|  | if (move->IsRedundant()) { | 
|  | // Because we swap register pairs first, following, un-pending | 
|  | // moves may become redundant. | 
|  | move->Eliminate(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Clear this move's destination to indicate a pending move.  The actual | 
|  | // destination is saved in a stack-allocated local.  Recursion may allow | 
|  | // multiple moves to be pending. | 
|  | DCHECK(!move->GetSource().IsInvalid()); | 
|  | Location destination = move->MarkPending(); | 
|  |  | 
|  | // Perform a depth-first traversal of the move graph to resolve | 
|  | // dependencies.  Any unperformed, unpending move with a source the same | 
|  | // as this one's destination blocks this one so recursively perform all | 
|  | // such moves. | 
|  | MoveOperands* required_swap = nullptr; | 
|  | for (size_t i = 0; i < moves_.size(); ++i) { | 
|  | const MoveOperands& other_move = *moves_[i]; | 
|  | if (other_move.Blocks(destination) && !other_move.IsPending()) { | 
|  | // Though PerformMove can change any source operand in the move graph, | 
|  | // calling `PerformMove` cannot create a blocking move via a swap | 
|  | // (this loop does not miss any). | 
|  | // For example, assume there is a non-blocking move with source A | 
|  | // and this move is blocked on source B and there is a swap of A and | 
|  | // B.  Then A and B must be involved in the same cycle (or they would | 
|  | // not be swapped).  Since this move's destination is B and there is | 
|  | // only a single incoming edge to an operand, this move must also be | 
|  | // involved in the same cycle.  In that case, the blocking move will | 
|  | // be created but will be "pending" when we return from PerformMove. | 
|  | required_swap = PerformMove(i); | 
|  |  | 
|  | if (required_swap == move) { | 
|  | // If this move is required to swap, we do so without looking | 
|  | // at the next moves. Swapping is not blocked by anything, it just | 
|  | // updates other moves's source. | 
|  | break; | 
|  | } else if (required_swap == moves_[i]) { | 
|  | // If `other_move` was swapped, we iterate again to find a new | 
|  | // potential cycle. | 
|  | required_swap = nullptr; | 
|  | i = -1; | 
|  | } else if (required_swap != nullptr) { | 
|  | // A move is required to swap. We walk back the cycle to find the | 
|  | // move by just returning from this `PerformMove`. | 
|  | moves_[index]->ClearPending(destination); | 
|  | return required_swap; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We are about to resolve this move and don't need it marked as | 
|  | // pending, so restore its destination. | 
|  | move->ClearPending(destination); | 
|  |  | 
|  | // This move's source may have changed due to swaps to resolve cycles and | 
|  | // so it may now be the last move in the cycle.  If so remove it. | 
|  | if (move->GetSource().Equals(destination)) { | 
|  | move->Eliminate(); | 
|  | DCHECK(required_swap == nullptr); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // The move may be blocked on a (at most one) pending move, in which case | 
|  | // we have a cycle.  Search for such a blocking move and perform a swap to | 
|  | // resolve it. | 
|  | bool do_swap = false; | 
|  | if (required_swap != nullptr) { | 
|  | DCHECK_EQ(required_swap, move); | 
|  | do_swap = true; | 
|  | } else { | 
|  | for (MoveOperands* other_move : moves_) { | 
|  | if (other_move->Blocks(destination)) { | 
|  | DCHECK(other_move->IsPending()) << "move=" << *move << " other_move=" << *other_move; | 
|  | if (!move->Is64BitMove() && other_move->Is64BitMove()) { | 
|  | // We swap 64bits moves before swapping 32bits moves. Go back from the | 
|  | // cycle by returning the move that must be swapped. | 
|  | return other_move; | 
|  | } | 
|  | do_swap = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (do_swap) { | 
|  | EmitSwap(index); | 
|  | // Any unperformed (including pending) move with a source of either | 
|  | // this move's source or destination needs to have their source | 
|  | // changed to reflect the state of affairs after the swap. | 
|  | Location source = move->GetSource(); | 
|  | Location swap_destination = move->GetDestination(); | 
|  | move->Eliminate(); | 
|  | for (MoveOperands* other_move : moves_) { | 
|  | if (other_move->Blocks(source)) { | 
|  | UpdateSourceOf(other_move, source, swap_destination); | 
|  | } else if (other_move->Blocks(swap_destination)) { | 
|  | UpdateSourceOf(other_move, swap_destination, source); | 
|  | } | 
|  | } | 
|  | // If the swap was required because of a 64bits move in the middle of a cycle, | 
|  | // we return the swapped move, so that the caller knows it needs to re-iterate | 
|  | // its dependency loop. | 
|  | return required_swap; | 
|  | } else { | 
|  | // This move is not blocked. | 
|  | EmitMove(index); | 
|  | move->Eliminate(); | 
|  | DCHECK(required_swap == nullptr); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ParallelMoveResolverWithSwap::IsScratchLocation(Location loc) { | 
|  | for (MoveOperands* move : moves_) { | 
|  | if (move->Blocks(loc)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (MoveOperands* move : moves_) { | 
|  | if (move->GetDestination().Equals(loc)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int ParallelMoveResolverWithSwap::AllocateScratchRegister(int blocked, | 
|  | int register_count, | 
|  | int if_scratch, | 
|  | bool* spilled) { | 
|  | DCHECK_NE(blocked, if_scratch); | 
|  | int scratch = -1; | 
|  | for (int reg = 0; reg < register_count; ++reg) { | 
|  | if ((blocked != reg) && IsScratchLocation(Location::RegisterLocation(reg))) { | 
|  | scratch = reg; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (scratch == -1) { | 
|  | *spilled = true; | 
|  | scratch = if_scratch; | 
|  | } else { | 
|  | *spilled = false; | 
|  | } | 
|  |  | 
|  | return scratch; | 
|  | } | 
|  |  | 
|  |  | 
|  | ParallelMoveResolverWithSwap::ScratchRegisterScope::ScratchRegisterScope( | 
|  | ParallelMoveResolverWithSwap* resolver, int blocked, int if_scratch, int number_of_registers) | 
|  | : resolver_(resolver), | 
|  | reg_(kNoRegister), | 
|  | spilled_(false) { | 
|  | reg_ = resolver_->AllocateScratchRegister(blocked, number_of_registers, if_scratch, &spilled_); | 
|  |  | 
|  | if (spilled_) { | 
|  | resolver->SpillScratch(reg_); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | ParallelMoveResolverWithSwap::ScratchRegisterScope::~ScratchRegisterScope() { | 
|  | if (spilled_) { | 
|  | resolver_->RestoreScratch(reg_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverNoSwap::EmitNativeCode(HParallelMove* parallel_move) { | 
|  | DCHECK_EQ(GetNumberOfPendingMoves(), 0u); | 
|  | DCHECK(moves_.empty()); | 
|  | DCHECK(scratches_.empty()); | 
|  |  | 
|  | // Backend dependent initialization. | 
|  | PrepareForEmitNativeCode(); | 
|  |  | 
|  | // Build up a worklist of moves. | 
|  | BuildInitialMoveList(parallel_move); | 
|  |  | 
|  | for (size_t i = 0; i < moves_.size(); ++i) { | 
|  | const MoveOperands& move = *moves_[i]; | 
|  | // Skip constants to perform them last. They don't block other moves and | 
|  | // skipping such moves with register destinations keeps those registers | 
|  | // free for the whole algorithm. | 
|  | if (!move.IsEliminated() && !move.GetSource().IsConstant()) { | 
|  | PerformMove(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform the moves with constant sources and register destinations with UpdateMoveSource() | 
|  | // to reduce the number of literal loads. Stack destinations are skipped since we won't be benefit | 
|  | // from changing the constant sources to stack locations. | 
|  | for (size_t i = 0; i < moves_.size(); ++i) { | 
|  | MoveOperands* move = moves_[i]; | 
|  | Location destination = move->GetDestination(); | 
|  | if (!move->IsEliminated() && !destination.IsStackSlot() && !destination.IsDoubleStackSlot()) { | 
|  | Location source = move->GetSource(); | 
|  | EmitMove(i); | 
|  | move->Eliminate(); | 
|  | // This may introduce additional instruction dependency, but reduce number | 
|  | // of moves and possible literal loads. For example, | 
|  | // Original moves: | 
|  | //   1234.5678 -> D0 | 
|  | //   1234.5678 -> D1 | 
|  | // Updated moves: | 
|  | //   1234.5678 -> D0 | 
|  | //   D0 -> D1 | 
|  | UpdateMoveSource(source, destination); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform the rest of the moves. | 
|  | for (size_t i = 0; i < moves_.size(); ++i) { | 
|  | MoveOperands* move = moves_[i]; | 
|  | if (!move->IsEliminated()) { | 
|  | EmitMove(i); | 
|  | move->Eliminate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // All pending moves that we have added for resolve cycles should be performed. | 
|  | DCHECK_EQ(GetNumberOfPendingMoves(), 0u); | 
|  |  | 
|  | // Backend dependent cleanup. | 
|  | FinishEmitNativeCode(); | 
|  |  | 
|  | moves_.clear(); | 
|  | scratches_.clear(); | 
|  | } | 
|  |  | 
|  | Location ParallelMoveResolverNoSwap::GetScratchLocation(Location::Kind kind) { | 
|  | for (Location loc : scratches_) { | 
|  | if (loc.GetKind() == kind && !IsBlockedByMoves(loc)) { | 
|  | return loc; | 
|  | } | 
|  | } | 
|  | for (MoveOperands* move : moves_) { | 
|  | Location loc = move->GetDestination(); | 
|  | if (loc.GetKind() == kind && !IsBlockedByMoves(loc)) { | 
|  | return loc; | 
|  | } | 
|  | } | 
|  | return Location::NoLocation(); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverNoSwap::AddScratchLocation(Location loc) { | 
|  | if (kIsDebugBuild) { | 
|  | for (Location scratch : scratches_) { | 
|  | CHECK(!loc.Equals(scratch)); | 
|  | } | 
|  | } | 
|  | scratches_.push_back(loc); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverNoSwap::RemoveScratchLocation(Location loc) { | 
|  | DCHECK(!IsBlockedByMoves(loc)); | 
|  | for (auto it = scratches_.begin(), end = scratches_.end(); it != end; ++it) { | 
|  | if (loc.Equals(*it)) { | 
|  | scratches_.erase(it); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverNoSwap::PerformMove(size_t index) { | 
|  | // Each call to this function performs a move and deletes it from the move | 
|  | // graph. We first recursively perform any move blocking this one. We mark | 
|  | // a move as "pending" on entry to PerformMove in order to detect cycles | 
|  | // in the move graph. We use scratch location to resolve cycles, also | 
|  | // additional pending moves might be added. After move has been performed, | 
|  | // we will update source operand in the move graph to reduce dependencies in | 
|  | // the graph. | 
|  |  | 
|  | MoveOperands* move = moves_[index]; | 
|  | DCHECK(!move->IsPending()); | 
|  | DCHECK(!move->IsEliminated()); | 
|  | if (move->IsRedundant()) { | 
|  | // Previous operations on the list of moves have caused this particular move | 
|  | // to become a no-op, so we can safely eliminate it. Consider for example | 
|  | // (0 -> 1) (1 -> 0) (1 -> 2). There is a cycle (0 -> 1) (1 -> 0), that we will | 
|  | // resolve as (1 -> scratch) (0 -> 1) (scratch -> 0). If, by chance, '2' is | 
|  | // used as the scratch location, the move (1 -> 2) will occur while resolving | 
|  | // the cycle. When that move is emitted, the code will update moves with a '1' | 
|  | // as their source to use '2' instead (see `UpdateMoveSource()`. In our example | 
|  | // the initial move (1 -> 2) would then become the no-op (2 -> 2) that can be | 
|  | // eliminated here. | 
|  | move->Eliminate(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Clear this move's destination to indicate a pending move. The actual | 
|  | // destination is saved in a stack-allocated local. Recursion may allow | 
|  | // multiple moves to be pending. | 
|  | DCHECK(!move->GetSource().IsInvalid()); | 
|  | Location destination = move->MarkPending(); | 
|  |  | 
|  | // Perform a depth-first traversal of the move graph to resolve | 
|  | // dependencies. Any unperformed, unpending move with a source the same | 
|  | // as this one's destination blocks this one so recursively perform all | 
|  | // such moves. | 
|  | for (size_t i = 0; i < moves_.size(); ++i) { | 
|  | const MoveOperands& other_move = *moves_[i]; | 
|  | if (other_move.Blocks(destination) && !other_move.IsPending()) { | 
|  | PerformMove(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We are about to resolve this move and don't need it marked as | 
|  | // pending, so restore its destination. | 
|  | move->ClearPending(destination); | 
|  |  | 
|  | // No one else should write to the move destination when the it is pending. | 
|  | DCHECK(!move->IsRedundant()); | 
|  |  | 
|  | Location source = move->GetSource(); | 
|  | // The move may be blocked on several pending moves, in case we have a cycle. | 
|  | if (IsBlockedByMoves(destination)) { | 
|  | // For a cycle like: (A -> B) (B -> C) (C -> A), we change it to following | 
|  | // sequence: | 
|  | // (C -> scratch)     # Emit right now. | 
|  | // (A -> B) (B -> C)  # Unblocked. | 
|  | // (scratch -> A)     # Add to pending_moves_, blocked by (A -> B). | 
|  | Location::Kind kind = source.GetKind(); | 
|  | DCHECK_NE(kind, Location::kConstant); | 
|  | Location scratch = AllocateScratchLocationFor(kind); | 
|  | // We only care about the move size. | 
|  | DataType::Type type = move->Is64BitMove() ? DataType::Type::kInt64 : DataType::Type::kInt32; | 
|  | // Perform (C -> scratch) | 
|  | move->SetDestination(scratch); | 
|  | EmitMove(index); | 
|  | move->Eliminate(); | 
|  | UpdateMoveSource(source, scratch); | 
|  | // Add (scratch -> A). | 
|  | AddPendingMove(scratch, destination, type); | 
|  | } else { | 
|  | // This move is not blocked. | 
|  | EmitMove(index); | 
|  | move->Eliminate(); | 
|  | UpdateMoveSource(source, destination); | 
|  | } | 
|  |  | 
|  | // Moves in the pending list should not block any other moves. But performing | 
|  | // unblocked moves in the pending list can free scratch registers, so we do this | 
|  | // as early as possible. | 
|  | MoveOperands* pending_move; | 
|  | while ((pending_move = GetUnblockedPendingMove(source)) != nullptr) { | 
|  | Location pending_source = pending_move->GetSource(); | 
|  | Location pending_destination = pending_move->GetDestination(); | 
|  | // We do not depend on the pending move index. So just delete the move instead | 
|  | // of eliminating it to make the pending list cleaner. | 
|  | DeletePendingMove(pending_move); | 
|  | move->SetSource(pending_source); | 
|  | move->SetDestination(pending_destination); | 
|  | EmitMove(index); | 
|  | move->Eliminate(); | 
|  | UpdateMoveSource(pending_source, pending_destination); | 
|  | // Free any unblocked locations in the scratch location list. | 
|  | // Note: Fetch size() on each iteration because scratches_ can be modified inside the loop. | 
|  | // FIXME: If FreeScratchLocation() removes the location from scratches_, | 
|  | // we skip the next location. This happens for arm64. | 
|  | for (size_t i = 0; i < scratches_.size(); ++i) { | 
|  | Location scratch = scratches_[i]; | 
|  | // Only scratch overlapping with performed move source can be unblocked. | 
|  | if (scratch.OverlapsWith(pending_source) && !IsBlockedByMoves(scratch)) { | 
|  | FreeScratchLocation(pending_source); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverNoSwap::UpdateMoveSource(Location from, Location to) { | 
|  | // This function is used to reduce the dependencies in the graph after | 
|  | // (from -> to) has been performed. Since we ensure there is no move with the same | 
|  | // destination, (to -> X) cannot be blocked while (from -> X) might still be | 
|  | // blocked. Consider for example the moves (0 -> 1) (1 -> 2) (1 -> 3). After | 
|  | // (1 -> 2) has been performed, the moves left are (0 -> 1) and (1 -> 3). There is | 
|  | // a dependency between the two. If we update the source location from 1 to 2, we | 
|  | // will get (0 -> 1) and (2 -> 3). There is no dependency between the two. | 
|  | // | 
|  | // This is not something we must do, but we can use fewer scratch locations with | 
|  | // this trick. For example, we can avoid using additional scratch locations for | 
|  | // moves (0 -> 1), (1 -> 2), (1 -> 0). | 
|  | for (MoveOperands* move : moves_) { | 
|  | if (move->GetSource().Equals(from)) { | 
|  | move->SetSource(to); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverNoSwap::AddPendingMove(Location source, | 
|  | Location destination, | 
|  | DataType::Type type) { | 
|  | pending_moves_.push_back(new (allocator_) MoveOperands(source, destination, type, nullptr)); | 
|  | } | 
|  |  | 
|  | void ParallelMoveResolverNoSwap::DeletePendingMove(MoveOperands* move) { | 
|  | RemoveElement(pending_moves_, move); | 
|  | } | 
|  |  | 
|  | MoveOperands* ParallelMoveResolverNoSwap::GetUnblockedPendingMove(Location loc) { | 
|  | for (MoveOperands* move : pending_moves_) { | 
|  | Location destination = move->GetDestination(); | 
|  | // Only moves with destination overlapping with input loc can be unblocked. | 
|  | if (destination.OverlapsWith(loc) && !IsBlockedByMoves(destination)) { | 
|  | return move; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool ParallelMoveResolverNoSwap::IsBlockedByMoves(Location loc) { | 
|  | for (MoveOperands* move : pending_moves_) { | 
|  | if (move->Blocks(loc)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | for (MoveOperands* move : moves_) { | 
|  | if (move->Blocks(loc)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // So far it is only used for debugging purposes to make sure all pending moves | 
|  | // have been performed. | 
|  | size_t ParallelMoveResolverNoSwap::GetNumberOfPendingMoves() { | 
|  | return pending_moves_.size(); | 
|  | } | 
|  |  | 
|  | }  // namespace art |