|  | /* | 
|  | * Copyright (C) 2016 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_ | 
|  | #define ART_COMPILER_OPTIMIZING_SCHEDULER_H_ | 
|  |  | 
|  | #include <fstream> | 
|  |  | 
|  | #include "base/scoped_arena_allocator.h" | 
|  | #include "base/scoped_arena_containers.h" | 
|  | #include "base/stl_util.h" | 
|  | #include "base/time_utils.h" | 
|  | #include "code_generator.h" | 
|  | #include "load_store_analysis.h" | 
|  | #include "nodes.h" | 
|  | #include "optimization.h" | 
|  |  | 
|  | namespace art { | 
|  |  | 
|  | // General description of instruction scheduling. | 
|  | // | 
|  | // This pass tries to improve the quality of the generated code by reordering | 
|  | // instructions in the graph to avoid execution delays caused by execution | 
|  | // dependencies. | 
|  | // Currently, scheduling is performed at the block level, so no `HInstruction` | 
|  | // ever leaves its block in this pass. | 
|  | // | 
|  | // The scheduling process iterates through blocks in the graph. For blocks that | 
|  | // we can and want to schedule: | 
|  | // 1) Build a dependency graph for instructions. | 
|  | //    It includes data dependencies (inputs/uses), but also environment | 
|  | //    dependencies and side-effect dependencies. | 
|  | // 2) Schedule the dependency graph. | 
|  | //    This is a topological sort of the dependency graph, using heuristics to | 
|  | //    decide what node to scheduler first when there are multiple candidates. | 
|  | // | 
|  | // A few factors impacting the quality of the scheduling are: | 
|  | // - The heuristics used to decide what node to schedule in the topological sort | 
|  | //   when there are multiple valid candidates. There is a wide range of | 
|  | //   complexity possible here, going from a simple model only considering | 
|  | //   latencies, to a super detailed CPU pipeline model. | 
|  | // - Fewer dependencies in the dependency graph give more freedom for the | 
|  | //   scheduling heuristics. For example de-aliasing can allow possibilities for | 
|  | //   reordering of memory accesses. | 
|  | // - The level of abstraction of the IR. It is easier to evaluate scheduling for | 
|  | //   IRs that translate to a single assembly instruction than for IRs | 
|  | //   that generate multiple assembly instructions or generate different code | 
|  | //   depending on properties of the IR. | 
|  | // - Scheduling is performed before register allocation, it is not aware of the | 
|  | //   impact of moving instructions on register allocation. | 
|  | // | 
|  | // | 
|  | // The scheduling code uses the terms predecessors, successors, and dependencies. | 
|  | // This can be confusing at times, so here are clarifications. | 
|  | // These terms are used from the point of view of the program dependency graph. So | 
|  | // the inputs of an instruction are part of its dependencies, and hence part its | 
|  | // predecessors. So the uses of an instruction are (part of) its successors. | 
|  | // (Side-effect dependencies can yield predecessors or successors that are not | 
|  | // inputs or uses.) | 
|  | // | 
|  | // Here is a trivial example. For the Java code: | 
|  | // | 
|  | //    int a = 1 + 2; | 
|  | // | 
|  | // we would have the instructions | 
|  | // | 
|  | //    i1 HIntConstant 1 | 
|  | //    i2 HIntConstant 2 | 
|  | //    i3 HAdd [i1,i2] | 
|  | // | 
|  | // `i1` and `i2` are predecessors of `i3`. | 
|  | // `i3` is a successor of `i1` and a successor of `i2`. | 
|  | // In a scheduling graph for this code we would have three nodes `n1`, `n2`, | 
|  | // and `n3` (respectively for instructions `i1`, `i1`, and `i3`). | 
|  | // Conceptually the program dependency graph for this would contain two edges | 
|  | // | 
|  | //    n1 -> n3 | 
|  | //    n2 -> n3 | 
|  | // | 
|  | // Since we schedule backwards (starting from the last instruction in each basic | 
|  | // block), the implementation of nodes keeps a list of pointers their | 
|  | // predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`. | 
|  | // | 
|  | // Node dependencies are also referred to from the program dependency graph | 
|  | // point of view: we say that node `B` immediately depends on `A` if there is an | 
|  | // edge from `A` to `B` in the program dependency graph. `A` is a predecessor of | 
|  | // `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and | 
|  | // `n2`. | 
|  | // Since nodes in the scheduling graph keep a list of their predecessors, node | 
|  | // `B` will have a pointer to its predecessor `A`. | 
|  | // As we schedule backwards, `B` will be selected for scheduling before `A` is. | 
|  | // | 
|  | // So the scheduling for the example above could happen as follow | 
|  | // | 
|  | //    |---------------------------+------------------------| | 
|  | //    | candidates for scheduling | instructions scheduled | | 
|  | //    | --------------------------+------------------------| | 
|  | // | 
|  | // The only node without successors is `n3`, so it is the only initial | 
|  | // candidate. | 
|  | // | 
|  | //    | n3                        | (none)                 | | 
|  | // | 
|  | // We schedule `n3` as the last (and only) instruction. All its predecessors | 
|  | // that do not have any unscheduled successors become candidate. That is, `n1` | 
|  | // and `n2` become candidates. | 
|  | // | 
|  | //    | n1, n2                    | n3                     | | 
|  | // | 
|  | // One of the candidates is selected. In practice this is where scheduling | 
|  | // heuristics kick in, to decide which of the candidates should be selected. | 
|  | // In this example, let it be `n1`. It is scheduled before previously scheduled | 
|  | // nodes (in program order). There are no other nodes to add to the list of | 
|  | // candidates. | 
|  | // | 
|  | //    | n2                        | n1                     | | 
|  | //    |                           | n3                     | | 
|  | // | 
|  | // The only candidate available for scheduling is `n2`. Schedule it before | 
|  | // (in program order) the previously scheduled nodes. | 
|  | // | 
|  | //    | (none)                    | n2                     | | 
|  | //    |                           | n1                     | | 
|  | //    |                           | n3                     | | 
|  | //    |---------------------------+------------------------| | 
|  | // | 
|  | // So finally the instructions will be executed in the order `i2`, `i1`, and `i3`. | 
|  | // In this trivial example, it does not matter which of `i1` and `i2` is | 
|  | // scheduled first since they are constants. However the same process would | 
|  | // apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`). | 
|  |  | 
|  | // Set to true to have instruction scheduling dump scheduling graphs to the file | 
|  | // `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`. | 
|  | static constexpr bool kDumpDotSchedulingGraphs = false; | 
|  |  | 
|  | // Typically used as a default instruction latency. | 
|  | static constexpr uint32_t kGenericInstructionLatency = 1; | 
|  |  | 
|  | class HScheduler; | 
|  |  | 
|  | /** | 
|  | * A node representing an `HInstruction` in the `SchedulingGraph`. | 
|  | */ | 
|  | class SchedulingNode : public DeletableArenaObject<kArenaAllocScheduler> { | 
|  | public: | 
|  | SchedulingNode(HInstruction* instr, ScopedArenaAllocator* allocator, bool is_scheduling_barrier) | 
|  | : latency_(0), | 
|  | internal_latency_(0), | 
|  | critical_path_(0), | 
|  | instruction_(instr), | 
|  | is_scheduling_barrier_(is_scheduling_barrier), | 
|  | data_predecessors_(allocator->Adapter(kArenaAllocScheduler)), | 
|  | other_predecessors_(allocator->Adapter(kArenaAllocScheduler)), | 
|  | num_unscheduled_successors_(0) { | 
|  | data_predecessors_.reserve(kPreallocatedPredecessors); | 
|  | } | 
|  |  | 
|  | void AddDataPredecessor(SchedulingNode* predecessor) { | 
|  | // Check whether the predecessor has been added earlier. | 
|  | if (HasDataDependency(predecessor)) { | 
|  | return; | 
|  | } | 
|  | data_predecessors_.push_back(predecessor); | 
|  | predecessor->num_unscheduled_successors_++; | 
|  | } | 
|  |  | 
|  | const ScopedArenaVector<SchedulingNode*>& GetDataPredecessors() const { | 
|  | return data_predecessors_; | 
|  | } | 
|  |  | 
|  | void AddOtherPredecessor(SchedulingNode* predecessor) { | 
|  | // Check whether the predecessor has been added earlier. | 
|  | // As an optimization of the scheduling graph, we don't need to create another dependency if | 
|  | // there is a data dependency between scheduling nodes. | 
|  | if (HasOtherDependency(predecessor) || HasDataDependency(predecessor)) { | 
|  | return; | 
|  | } | 
|  | other_predecessors_.push_back(predecessor); | 
|  | predecessor->num_unscheduled_successors_++; | 
|  | } | 
|  |  | 
|  | const ScopedArenaVector<SchedulingNode*>& GetOtherPredecessors() const { | 
|  | return other_predecessors_; | 
|  | } | 
|  |  | 
|  | void DecrementNumberOfUnscheduledSuccessors() { | 
|  | num_unscheduled_successors_--; | 
|  | } | 
|  |  | 
|  | void MaybeUpdateCriticalPath(uint32_t other_critical_path) { | 
|  | critical_path_ = std::max(critical_path_, other_critical_path); | 
|  | } | 
|  |  | 
|  | bool HasUnscheduledSuccessors() const { | 
|  | return num_unscheduled_successors_ != 0; | 
|  | } | 
|  |  | 
|  | HInstruction* GetInstruction() const { return instruction_; } | 
|  | uint32_t GetLatency() const { return latency_; } | 
|  | void SetLatency(uint32_t latency) { latency_ = latency; } | 
|  | uint32_t GetInternalLatency() const { return internal_latency_; } | 
|  | void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; } | 
|  | uint32_t GetCriticalPath() const { return critical_path_; } | 
|  | bool IsSchedulingBarrier() const { return is_scheduling_barrier_; } | 
|  |  | 
|  | bool HasDataDependency(const SchedulingNode* node) const { | 
|  | return ContainsElement(data_predecessors_, node); | 
|  | } | 
|  |  | 
|  | bool HasOtherDependency(const SchedulingNode* node) const { | 
|  | return ContainsElement(other_predecessors_, node); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // The latency of this node. It represents the latency between the moment the | 
|  | // last instruction for this node has executed to the moment the result | 
|  | // produced by this node is available to users. | 
|  | uint32_t latency_; | 
|  | // This represents the time spent *within* the generated code for this node. | 
|  | // It should be zero for nodes that only generate a single instruction. | 
|  | uint32_t internal_latency_; | 
|  |  | 
|  | // The critical path from this instruction to the end of scheduling. It is | 
|  | // used by the scheduling heuristics to measure the priority of this instruction. | 
|  | // It is defined as | 
|  | //     critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses) | 
|  | // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in | 
|  | // `HScheduler::Schedule(SchedulingNode* scheduling_node)`). | 
|  | uint32_t critical_path_; | 
|  |  | 
|  | // The instruction that this node represents. | 
|  | HInstruction* const instruction_; | 
|  |  | 
|  | // If a node is scheduling barrier, other nodes cannot be scheduled before it. | 
|  | const bool is_scheduling_barrier_; | 
|  |  | 
|  | // The lists of predecessors. They cannot be scheduled before this node. Once | 
|  | // this node is scheduled, we check whether any of its predecessors has become a | 
|  | // valid candidate for scheduling. | 
|  | // Predecessors in `data_predecessors_` are data dependencies. Those in | 
|  | // `other_predecessors_` contain side-effect dependencies, environment | 
|  | // dependencies, and scheduling barrier dependencies. | 
|  | ScopedArenaVector<SchedulingNode*> data_predecessors_; | 
|  | ScopedArenaVector<SchedulingNode*> other_predecessors_; | 
|  |  | 
|  | // The number of unscheduled successors for this node. This number is | 
|  | // decremented as successors are scheduled. When it reaches zero this node | 
|  | // becomes a valid candidate to schedule. | 
|  | uint32_t num_unscheduled_successors_; | 
|  |  | 
|  | static constexpr size_t kPreallocatedPredecessors = 4; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Provide analysis of instruction dependencies (side effects) which are not in a form of explicit | 
|  | * def-use data dependencies. | 
|  | */ | 
|  | class SideEffectDependencyAnalysis { | 
|  | public: | 
|  | explicit SideEffectDependencyAnalysis(const HeapLocationCollector* heap_location_collector) | 
|  | : memory_dependency_analysis_(heap_location_collector) {} | 
|  |  | 
|  | bool HasSideEffectDependency(HInstruction* instr1, HInstruction* instr2) const { | 
|  | if (memory_dependency_analysis_.HasMemoryDependency(instr1, instr2)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Even if above memory dependency check has passed, it is still necessary to | 
|  | // check dependencies between instructions that can throw and instructions | 
|  | // that write to memory. | 
|  | if (HasExceptionDependency(instr1, instr2)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static bool HasExceptionDependency(const HInstruction* instr1, const HInstruction* instr2); | 
|  | static bool HasReorderingDependency(const HInstruction* instr1, const HInstruction* instr2); | 
|  |  | 
|  | /* | 
|  | * Memory dependency analysis of instructions based on their memory side effects | 
|  | * and heap location information from the LCA pass if it is provided. | 
|  | */ | 
|  | class MemoryDependencyAnalysis { | 
|  | public: | 
|  | explicit MemoryDependencyAnalysis(const HeapLocationCollector* heap_location_collector) | 
|  | : heap_location_collector_(heap_location_collector) {} | 
|  |  | 
|  | bool HasMemoryDependency(HInstruction* instr1, HInstruction* instr2) const; | 
|  |  | 
|  | private: | 
|  | bool ArrayAccessMayAlias(HInstruction* instr1, HInstruction* instr2) const; | 
|  | bool FieldAccessMayAlias(const HInstruction* instr1, const HInstruction* instr2) const; | 
|  | size_t ArrayAccessHeapLocation(HInstruction* instruction) const; | 
|  | size_t FieldAccessHeapLocation(const HInstruction* instruction) const; | 
|  |  | 
|  | const HeapLocationCollector* const heap_location_collector_; | 
|  | }; | 
|  |  | 
|  | MemoryDependencyAnalysis memory_dependency_analysis_; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Directed acyclic graph for scheduling. | 
|  | */ | 
|  | class SchedulingGraph : public ValueObject { | 
|  | public: | 
|  | SchedulingGraph(ScopedArenaAllocator* allocator, | 
|  | const HeapLocationCollector* heap_location_collector) | 
|  | : allocator_(allocator), | 
|  | contains_scheduling_barrier_(false), | 
|  | nodes_map_(allocator_->Adapter(kArenaAllocScheduler)), | 
|  | side_effect_dependency_analysis_(heap_location_collector) {} | 
|  |  | 
|  | SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) { | 
|  | std::unique_ptr<SchedulingNode> node( | 
|  | new (allocator_) SchedulingNode(instr, allocator_, is_scheduling_barrier)); | 
|  | SchedulingNode* result = node.get(); | 
|  | nodes_map_.insert(std::make_pair(instr, std::move(node))); | 
|  | contains_scheduling_barrier_ |= is_scheduling_barrier; | 
|  | AddDependencies(result, is_scheduling_barrier); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | SchedulingNode* GetNode(const HInstruction* instr) const { | 
|  | auto it = nodes_map_.find(instr); | 
|  | if (it == nodes_map_.end()) { | 
|  | return nullptr; | 
|  | } else { | 
|  | return it->second.get(); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t Size() const { | 
|  | return nodes_map_.size(); | 
|  | } | 
|  |  | 
|  | // Dump the scheduling graph, in dot file format, appending it to the file | 
|  | // `scheduling_graphs.dot`. | 
|  | void DumpAsDotGraph(const std::string& description, | 
|  | const ScopedArenaVector<SchedulingNode*>& initial_candidates); | 
|  |  | 
|  | protected: | 
|  | void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency); | 
|  | void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) { | 
|  | AddDependency(node, dependency, /*is_data_dependency*/true); | 
|  | } | 
|  | void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) { | 
|  | AddDependency(node, dependency, /*is_data_dependency*/false); | 
|  | } | 
|  |  | 
|  | // Analyze whether the scheduling node has cross-iteration dependencies which mean it uses | 
|  | // values defined on the previous iteration. | 
|  | // | 
|  | // Supported cases: | 
|  | // | 
|  | //   L: | 
|  | //     v2 = loop_head_phi(v1) | 
|  | //     instr1(v2) | 
|  | //     v1 = instr2 | 
|  | //     goto L | 
|  | // | 
|  | // In such cases moving instr2 before instr1 creates intersecting live ranges | 
|  | // of v1 and v2. As a result a separate register is needed to keep the value | 
|  | // defined by instr2 which is only used on the next iteration. | 
|  | // If instr2 is not moved, no additional register is needed. The register | 
|  | // used by instr1 is reused. | 
|  | // To prevent such a situation a "other" dependency between instr1 and instr2 must be set. | 
|  | void AddCrossIterationDependencies(SchedulingNode* node); | 
|  |  | 
|  | // Add dependencies nodes for the given `SchedulingNode`: inputs, environments, and side-effects. | 
|  | void AddDependencies(SchedulingNode* node, bool is_scheduling_barrier = false); | 
|  |  | 
|  | ScopedArenaAllocator* const allocator_; | 
|  | bool contains_scheduling_barrier_; | 
|  | ScopedArenaHashMap<const HInstruction*, std::unique_ptr<SchedulingNode>> nodes_map_; | 
|  | SideEffectDependencyAnalysis side_effect_dependency_analysis_; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The visitors derived from this base class are used by schedulers to evaluate | 
|  | * the latencies of `HInstruction`s. | 
|  | */ | 
|  | class SchedulingLatencyVisitor : public HGraphDelegateVisitor { | 
|  | public: | 
|  | // This class and its sub-classes will never be used to drive a visit of an | 
|  | // `HGraph` but only to visit `HInstructions` one at a time, so we do not need | 
|  | // to pass a valid graph to `HGraphDelegateVisitor()`. | 
|  | SchedulingLatencyVisitor() | 
|  | : HGraphDelegateVisitor(nullptr), | 
|  | last_visited_latency_(0), | 
|  | last_visited_internal_latency_(0) {} | 
|  |  | 
|  | void VisitInstruction(HInstruction* instruction) override { | 
|  | LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". " | 
|  | "Architecture-specific scheduling latency visitors must handle all instructions" | 
|  | " (potentially by overriding the generic `VisitInstruction()`."; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | void Visit(HInstruction* instruction) { | 
|  | instruction->Accept(this); | 
|  | } | 
|  |  | 
|  | void CalculateLatency(SchedulingNode* node) { | 
|  | // By default nodes have no internal latency. | 
|  | last_visited_internal_latency_ = 0; | 
|  | Visit(node->GetInstruction()); | 
|  | } | 
|  |  | 
|  | uint32_t GetLastVisitedLatency() const { return last_visited_latency_; } | 
|  | uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; } | 
|  |  | 
|  | protected: | 
|  | // The latency of the most recent visited SchedulingNode. | 
|  | // This is for reporting the latency value to the user of this visitor. | 
|  | uint32_t last_visited_latency_; | 
|  | // This represents the time spent *within* the generated code for the most recent visited | 
|  | // SchedulingNode. This is for reporting the internal latency value to the user of this visitor. | 
|  | uint32_t last_visited_internal_latency_; | 
|  | }; | 
|  |  | 
|  | class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> { | 
|  | public: | 
|  | virtual void Reset() {} | 
|  | virtual SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes, | 
|  | const SchedulingGraph& graph) = 0; | 
|  | virtual ~SchedulingNodeSelector() {} | 
|  | protected: | 
|  | static void DeleteNodeAtIndex(ScopedArenaVector<SchedulingNode*>* nodes, size_t index) { | 
|  | (*nodes)[index] = nodes->back(); | 
|  | nodes->pop_back(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Select a `SchedulingNode` at random within the candidates. | 
|  | */ | 
|  | class RandomSchedulingNodeSelector : public SchedulingNodeSelector { | 
|  | public: | 
|  | RandomSchedulingNodeSelector() : seed_(0) { | 
|  | seed_  = static_cast<uint32_t>(NanoTime()); | 
|  | srand(seed_); | 
|  | } | 
|  |  | 
|  | SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes, | 
|  | const SchedulingGraph& graph) override { | 
|  | UNUSED(graph); | 
|  | DCHECK(!nodes->empty()); | 
|  | size_t select = rand_r(&seed_) % nodes->size(); | 
|  | SchedulingNode* select_node = (*nodes)[select]; | 
|  | DeleteNodeAtIndex(nodes, select); | 
|  | return select_node; | 
|  | } | 
|  |  | 
|  | uint32_t seed_; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Select a `SchedulingNode` according to critical path information, | 
|  | * with heuristics to favor certain instruction patterns like materialized condition. | 
|  | */ | 
|  | class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector { | 
|  | public: | 
|  | CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {} | 
|  |  | 
|  | void Reset() override { prev_select_ = nullptr; } | 
|  | SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes, | 
|  | const SchedulingGraph& graph) override; | 
|  |  | 
|  | protected: | 
|  | SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate, | 
|  | SchedulingNode* check) const; | 
|  |  | 
|  | SchedulingNode* SelectMaterializedCondition(ScopedArenaVector<SchedulingNode*>* nodes, | 
|  | const SchedulingGraph& graph) const; | 
|  |  | 
|  | private: | 
|  | const SchedulingNode* prev_select_; | 
|  | }; | 
|  |  | 
|  | class HScheduler { | 
|  | public: | 
|  | HScheduler(SchedulingLatencyVisitor* latency_visitor, SchedulingNodeSelector* selector) | 
|  | : latency_visitor_(latency_visitor), | 
|  | selector_(selector), | 
|  | only_optimize_loop_blocks_(true), | 
|  | cursor_(nullptr) {} | 
|  | virtual ~HScheduler() {} | 
|  |  | 
|  | void Schedule(HGraph* graph); | 
|  |  | 
|  | void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; } | 
|  |  | 
|  | // Instructions can not be rescheduled across a scheduling barrier. | 
|  | virtual bool IsSchedulingBarrier(const HInstruction* instruction) const; | 
|  |  | 
|  | protected: | 
|  | void Schedule(HBasicBlock* block, const HeapLocationCollector* heap_location_collector); | 
|  | void Schedule(SchedulingNode* scheduling_node, | 
|  | /*inout*/ ScopedArenaVector<SchedulingNode*>* candidates); | 
|  | void Schedule(HInstruction* instruction); | 
|  |  | 
|  | // Any instruction returning `false` via this method will prevent its | 
|  | // containing basic block from being scheduled. | 
|  | // This method is used to restrict scheduling to instructions that we know are | 
|  | // safe to handle. | 
|  | // | 
|  | // For newly introduced instructions by default HScheduler::IsSchedulable returns false. | 
|  | // HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see | 
|  | // scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also | 
|  | // look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction. | 
|  | virtual bool IsSchedulable(const HInstruction* instruction) const; | 
|  | bool IsSchedulable(const HBasicBlock* block) const; | 
|  |  | 
|  | void CalculateLatency(SchedulingNode* node) { | 
|  | latency_visitor_->CalculateLatency(node); | 
|  | node->SetLatency(latency_visitor_->GetLastVisitedLatency()); | 
|  | node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency()); | 
|  | } | 
|  |  | 
|  | SchedulingLatencyVisitor* const latency_visitor_; | 
|  | SchedulingNodeSelector* const selector_; | 
|  | bool only_optimize_loop_blocks_; | 
|  |  | 
|  | // A pointer indicating where the next instruction to be scheduled will be inserted. | 
|  | HInstruction* cursor_; | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HScheduler); | 
|  | }; | 
|  |  | 
|  | class HInstructionScheduling : public HOptimization { | 
|  | public: | 
|  | HInstructionScheduling(HGraph* graph, | 
|  | InstructionSet instruction_set, | 
|  | CodeGenerator* cg = nullptr, | 
|  | const char* name = kInstructionSchedulingPassName) | 
|  | : HOptimization(graph, name), | 
|  | codegen_(cg), | 
|  | instruction_set_(instruction_set) {} | 
|  |  | 
|  | bool Run() override { | 
|  | return Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false); | 
|  | } | 
|  |  | 
|  | bool Run(bool only_optimize_loop_blocks, bool schedule_randomly); | 
|  |  | 
|  | static constexpr const char* kInstructionSchedulingPassName = "scheduler"; | 
|  |  | 
|  | private: | 
|  | CodeGenerator* const codegen_; | 
|  | const InstructionSet instruction_set_; | 
|  | DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling); | 
|  | }; | 
|  |  | 
|  | }  // namespace art | 
|  |  | 
|  | #endif  // ART_COMPILER_OPTIMIZING_SCHEDULER_H_ |