blob: f2f3453e0aa70f44a55b9b8432a524ef1268eed1 [file] [log] [blame]
/* DO NOT EDIT: This file was generated by gen-mterp.py. */
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
Art assembly interpreter notes:
First validate assembly code by implementing ExecuteXXXImpl() style body (doesn't
handle invoke, allows higher-level code to create frame & shadow frame.
Once that's working, support direct entry code & eliminate shadow frame (and
excess locals allocation.
Some (hopefully) temporary ugliness. We'll treat rFP as pointing to the
base of the vreg array within the shadow frame. Access the other fields,
dex_pc_, method_ and number_of_vregs_ via negative offsets. For now, we'll continue
the shadow frame mechanism of double-storing object references - via rFP &
number_of_vregs_.
*/
#include "asm_support.h"
#include "interpreter/cfi_asm_support.h"
#if (__mips==32) && (__mips_isa_rev>=2)
#define MIPS32REVGE2 /* mips32r2 and greater */
#if (__mips==32) && (__mips_isa_rev>=5)
#define FPU64 /* 64 bit FPU */
#if (__mips==32) && (__mips_isa_rev>=6)
#define MIPS32REVGE6 /* mips32r6 and greater */
#endif
#endif
#endif
/* MIPS definitions and declarations
reg nick purpose
s0 rPC interpreted program counter, used for fetching instructions
s1 rFP interpreted frame pointer, used for accessing locals and args
s2 rSELF self (Thread) pointer
s3 rIBASE interpreted instruction base pointer, used for computed goto
s4 rINST first 16-bit code unit of current instruction
s5 rOBJ object pointer
s6 rREFS base of object references in shadow frame (ideally, we'll get rid of this later).
s7 rTEMP used as temp storage that can survive a function call
s8 rPROFILE branch profiling countdown
*/
/* single-purpose registers, given names for clarity */
#define rPC s0
#define CFI_DEX 16 // DWARF register number of the register holding dex-pc (s0).
#define CFI_TMP 4 // DWARF register number of the first argument register (a0).
#define rFP s1
#define rSELF s2
#define rIBASE s3
#define rINST s4
#define rOBJ s5
#define rREFS s6
#define rTEMP s7
#define rPROFILE s8
#define rARG0 a0
#define rARG1 a1
#define rARG2 a2
#define rARG3 a3
#define rRESULT0 v0
#define rRESULT1 v1
/* GP register definitions */
#define zero $0 /* always zero */
#define AT $at /* assembler temp */
#define v0 $2 /* return value */
#define v1 $3
#define a0 $4 /* argument registers */
#define a1 $5
#define a2 $6
#define a3 $7
#define t0 $8 /* temp registers (not saved across subroutine calls) */
#define t1 $9
#define t2 $10
#define t3 $11
#define t4 $12
#define t5 $13
#define t6 $14
#define t7 $15
#define ta0 $12 /* alias */
#define ta1 $13
#define ta2 $14
#define ta3 $15
#define s0 $16 /* saved across subroutine calls (callee saved) */
#define s1 $17
#define s2 $18
#define s3 $19
#define s4 $20
#define s5 $21
#define s6 $22
#define s7 $23
#define t8 $24 /* two more temp registers */
#define t9 $25
#define k0 $26 /* kernel temporary */
#define k1 $27
#define gp $28 /* global pointer */
#define sp $29 /* stack pointer */
#define s8 $30 /* one more callee saved */
#define ra $31 /* return address */
/* FP register definitions */
#define fv0 $f0
#define fv0f $f1
#define fv1 $f2
#define fv1f $f3
#define fa0 $f12
#define fa0f $f13
#define fa1 $f14
#define fa1f $f15
#define ft0 $f4
#define ft0f $f5
#define ft1 $f6
#define ft1f $f7
#define ft2 $f8
#define ft2f $f9
#define ft3 $f10
#define ft3f $f11
#define ft4 $f16
#define ft4f $f17
#define ft5 $f18
#define ft5f $f19
#define fs0 $f20
#define fs0f $f21
#define fs1 $f22
#define fs1f $f23
#define fs2 $f24
#define fs2f $f25
#define fs3 $f26
#define fs3f $f27
#define fs4 $f28
#define fs4f $f29
#define fs5 $f30
#define fs5f $f31
#ifndef MIPS32REVGE6
#define fcc0 $fcc0
#define fcc1 $fcc1
#endif
#ifdef MIPS32REVGE2
#define SEB(rd, rt) \
seb rd, rt
#define SEH(rd, rt) \
seh rd, rt
#define INSERT_HIGH_HALF(rd_lo, rt_hi) \
ins rd_lo, rt_hi, 16, 16
#else
#define SEB(rd, rt) \
sll rd, rt, 24; \
sra rd, rd, 24
#define SEH(rd, rt) \
sll rd, rt, 16; \
sra rd, rd, 16
/* Clobbers rt_hi on pre-R2. */
#define INSERT_HIGH_HALF(rd_lo, rt_hi) \
sll rt_hi, rt_hi, 16; \
or rd_lo, rt_hi
#endif
#ifdef FPU64
#define MOVE_TO_FPU_HIGH(r, flo, fhi) \
mthc1 r, flo
#else
#define MOVE_TO_FPU_HIGH(r, flo, fhi) \
mtc1 r, fhi
#endif
#ifdef MIPS32REVGE6
#define JR(rt) \
jic rt, 0
#define LSA(rd, rs, rt, sa) \
.if sa; \
lsa rd, rs, rt, sa; \
.else; \
addu rd, rs, rt; \
.endif
#else
#define JR(rt) \
jalr zero, rt
#define LSA(rd, rs, rt, sa) \
.if sa; \
.set push; \
.set noat; \
sll AT, rs, sa; \
addu rd, AT, rt; \
.set pop; \
.else; \
addu rd, rs, rt; \
.endif
#endif
/*
* Instead of holding a pointer to the shadow frame, we keep rFP at the base of the vregs. So,
* to access other shadow frame fields, we need to use a backwards offset. Define those here.
*/
#define OFF_FP(a) (a - SHADOWFRAME_VREGS_OFFSET)
#define OFF_FP_NUMBER_OF_VREGS OFF_FP(SHADOWFRAME_NUMBER_OF_VREGS_OFFSET)
#define OFF_FP_DEX_PC OFF_FP(SHADOWFRAME_DEX_PC_OFFSET)
#define OFF_FP_LINK OFF_FP(SHADOWFRAME_LINK_OFFSET)
#define OFF_FP_METHOD OFF_FP(SHADOWFRAME_METHOD_OFFSET)
#define OFF_FP_RESULT_REGISTER OFF_FP(SHADOWFRAME_RESULT_REGISTER_OFFSET)
#define OFF_FP_DEX_PC_PTR OFF_FP(SHADOWFRAME_DEX_PC_PTR_OFFSET)
#define OFF_FP_DEX_INSTRUCTIONS OFF_FP(SHADOWFRAME_DEX_INSTRUCTIONS_OFFSET)
#define OFF_FP_SHADOWFRAME OFF_FP(0)
#define MTERP_PROFILE_BRANCHES 1
#define MTERP_LOGGING 0
/*
* "export" the PC to dex_pc field in the shadow frame, f/b/o future exception objects. Must
* be done *before* something throws.
*
* It's okay to do this more than once.
*
* NOTE: the fast interpreter keeps track of dex pc as a direct pointer to the mapped
* dex byte codes. However, the rest of the runtime expects dex pc to be an instruction
* offset into the code_items_[] array. For effiency, we will "export" the
* current dex pc as a direct pointer using the EXPORT_PC macro, and rely on GetDexPC
* to convert to a dex pc when needed.
*/
#define EXPORT_PC() \
sw rPC, OFF_FP_DEX_PC_PTR(rFP)
#define EXPORT_DEX_PC(tmp) \
lw tmp, OFF_FP_DEX_INSTRUCTIONS(rFP); \
sw rPC, OFF_FP_DEX_PC_PTR(rFP); \
subu tmp, rPC, tmp; \
sra tmp, tmp, 1; \
sw tmp, OFF_FP_DEX_PC(rFP)
/*
* Fetch the next instruction from rPC into rINST. Does not advance rPC.
*/
#define FETCH_INST() lhu rINST, (rPC)
/*
* Fetch the next instruction from the specified offset. Advances rPC
* to point to the next instruction. "_count" is in 16-bit code units.
*
* This must come AFTER anything that can throw an exception, or the
* exception catch may miss. (This also implies that it must come after
* EXPORT_PC().)
*/
#define FETCH_ADVANCE_INST(_count) \
lhu rINST, ((_count)*2)(rPC); \
addu rPC, rPC, ((_count) * 2)
/*
* Similar to FETCH_ADVANCE_INST, but does not update rPC. Used to load
* rINST ahead of possible exception point. Be sure to manually advance rPC
* later.
*/
#define PREFETCH_INST(_count) lhu rINST, ((_count)*2)(rPC)
/* Advance rPC by some number of code units. */
#define ADVANCE(_count) addu rPC, rPC, ((_count) * 2)
/*
* Fetch the next instruction from an offset specified by rd. Updates
* rPC to point to the next instruction. "rd" must specify the distance
* in bytes, *not* 16-bit code units, and may be a signed value.
*/
#define FETCH_ADVANCE_INST_RB(rd) \
addu rPC, rPC, rd; \
lhu rINST, (rPC)
/*
* Fetch a half-word code unit from an offset past the current PC. The
* "_count" value is in 16-bit code units. Does not advance rPC.
*
* The "_S" variant works the same but treats the value as signed.
*/
#define FETCH(rd, _count) lhu rd, ((_count) * 2)(rPC)
#define FETCH_S(rd, _count) lh rd, ((_count) * 2)(rPC)
/*
* Fetch one byte from an offset past the current PC. Pass in the same
* "_count" as you would for FETCH, and an additional 0/1 indicating which
* byte of the halfword you want (lo/hi).
*/
#define FETCH_B(rd, _count, _byte) lbu rd, ((_count) * 2 + _byte)(rPC)
/*
* Put the instruction's opcode field into the specified register.
*/
#define GET_INST_OPCODE(rd) and rd, rINST, 0xFF
/*
* Transform opcode into branch target address.
*/
#define GET_OPCODE_TARGET(rd) \
sll rd, rd, 7; \
addu rd, rIBASE, rd
/*
* Begin executing the opcode in rd.
*/
#define GOTO_OPCODE(rd) \
GET_OPCODE_TARGET(rd); \
JR(rd)
/*
* Get/set the 32-bit value from a Dalvik register.
*/
#define GET_VREG(rd, rix) LOAD_eas2(rd, rFP, rix)
#define GET_VREG_F(rd, rix) \
.set noat; \
EAS2(AT, rFP, rix); \
l.s rd, (AT); \
.set at
#ifdef MIPS32REVGE6
#define SET_VREG(rd, rix) \
lsa t8, rix, rFP, 2; \
sw rd, 0(t8); \
lsa t8, rix, rREFS, 2; \
sw zero, 0(t8)
#else
#define SET_VREG(rd, rix) \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
sw rd, 0(t8); \
addu t8, rREFS, AT; \
.set at; \
sw zero, 0(t8)
#endif
#ifdef MIPS32REVGE6
#define SET_VREG_OBJECT(rd, rix) \
lsa t8, rix, rFP, 2; \
sw rd, 0(t8); \
lsa t8, rix, rREFS, 2; \
sw rd, 0(t8)
#else
#define SET_VREG_OBJECT(rd, rix) \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
sw rd, 0(t8); \
addu t8, rREFS, AT; \
.set at; \
sw rd, 0(t8)
#endif
#ifdef MIPS32REVGE6
#define SET_VREG64(rlo, rhi, rix) \
lsa t8, rix, rFP, 2; \
sw rlo, 0(t8); \
sw rhi, 4(t8); \
lsa t8, rix, rREFS, 2; \
sw zero, 0(t8); \
sw zero, 4(t8)
#else
#define SET_VREG64(rlo, rhi, rix) \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
sw rlo, 0(t8); \
sw rhi, 4(t8); \
addu t8, rREFS, AT; \
.set at; \
sw zero, 0(t8); \
sw zero, 4(t8)
#endif
#ifdef MIPS32REVGE6
#define SET_VREG_F(rd, rix) \
lsa t8, rix, rFP, 2; \
s.s rd, 0(t8); \
lsa t8, rix, rREFS, 2; \
sw zero, 0(t8)
#else
#define SET_VREG_F(rd, rix) \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
s.s rd, 0(t8); \
addu t8, rREFS, AT; \
.set at; \
sw zero, 0(t8)
#endif
#ifdef MIPS32REVGE6
#define SET_VREG64_F(rlo, rhi, rix) \
lsa t8, rix, rFP, 2; \
.set noat; \
mfhc1 AT, rlo; \
s.s rlo, 0(t8); \
sw AT, 4(t8); \
.set at; \
lsa t8, rix, rREFS, 2; \
sw zero, 0(t8); \
sw zero, 4(t8)
#elif defined(FPU64)
#define SET_VREG64_F(rlo, rhi, rix) \
.set noat; \
sll AT, rix, 2; \
addu t8, rREFS, AT; \
sw zero, 0(t8); \
sw zero, 4(t8); \
addu t8, rFP, AT; \
mfhc1 AT, rlo; \
sw AT, 4(t8); \
.set at; \
s.s rlo, 0(t8)
#else
#define SET_VREG64_F(rlo, rhi, rix) \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
s.s rlo, 0(t8); \
s.s rhi, 4(t8); \
addu t8, rREFS, AT; \
.set at; \
sw zero, 0(t8); \
sw zero, 4(t8)
#endif
/* Combination of the SET_VREG and GOTO_OPCODE functions to save 1 instruction */
#ifdef MIPS32REVGE6
#define SET_VREG_GOTO(rd, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
lsa t8, rix, rFP, 2; \
sw rd, 0(t8); \
lsa t8, rix, rREFS, 2; \
jalr zero, dst; \
sw zero, 0(t8); \
.set reorder
#else
#define SET_VREG_GOTO(rd, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
sw rd, 0(t8); \
addu t8, rREFS, AT; \
.set at; \
jalr zero, dst; \
sw zero, 0(t8); \
.set reorder
#endif
/* Combination of the SET_VREG_OBJECT and GOTO_OPCODE functions to save 1 instruction */
#ifdef MIPS32REVGE6
#define SET_VREG_OBJECT_GOTO(rd, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
lsa t8, rix, rFP, 2; \
sw rd, 0(t8); \
lsa t8, rix, rREFS, 2; \
jalr zero, dst; \
sw rd, 0(t8); \
.set reorder
#else
#define SET_VREG_OBJECT_GOTO(rd, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
sw rd, 0(t8); \
addu t8, rREFS, AT; \
.set at; \
jalr zero, dst; \
sw rd, 0(t8); \
.set reorder
#endif
/* Combination of the SET_VREG64 and GOTO_OPCODE functions to save 1 instruction */
#ifdef MIPS32REVGE6
#define SET_VREG64_GOTO(rlo, rhi, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
lsa t8, rix, rFP, 2; \
sw rlo, 0(t8); \
sw rhi, 4(t8); \
lsa t8, rix, rREFS, 2; \
sw zero, 0(t8); \
jalr zero, dst; \
sw zero, 4(t8); \
.set reorder
#else
#define SET_VREG64_GOTO(rlo, rhi, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
sw rlo, 0(t8); \
sw rhi, 4(t8); \
addu t8, rREFS, AT; \
.set at; \
sw zero, 0(t8); \
jalr zero, dst; \
sw zero, 4(t8); \
.set reorder
#endif
/* Combination of the SET_VREG_F and GOTO_OPCODE functions to save 1 instruction */
#ifdef MIPS32REVGE6
#define SET_VREG_F_GOTO(rd, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
lsa t8, rix, rFP, 2; \
s.s rd, 0(t8); \
lsa t8, rix, rREFS, 2; \
jalr zero, dst; \
sw zero, 0(t8); \
.set reorder
#else
#define SET_VREG_F_GOTO(rd, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
s.s rd, 0(t8); \
addu t8, rREFS, AT; \
.set at; \
jalr zero, dst; \
sw zero, 0(t8); \
.set reorder
#endif
/* Combination of the SET_VREG64_F and GOTO_OPCODE functions to save 1 instruction */
#ifdef MIPS32REVGE6
#define SET_VREG64_F_GOTO(rlo, rhi, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
lsa t8, rix, rFP, 2; \
.set noat; \
mfhc1 AT, rlo; \
s.s rlo, 0(t8); \
sw AT, 4(t8); \
.set at; \
lsa t8, rix, rREFS, 2; \
sw zero, 0(t8); \
jalr zero, dst; \
sw zero, 4(t8); \
.set reorder
#elif defined(FPU64)
#define SET_VREG64_F_GOTO(rlo, rhi, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
.set noat; \
sll AT, rix, 2; \
addu t8, rREFS, AT; \
sw zero, 0(t8); \
sw zero, 4(t8); \
addu t8, rFP, AT; \
mfhc1 AT, rlo; \
sw AT, 4(t8); \
.set at; \
jalr zero, dst; \
s.s rlo, 0(t8); \
.set reorder
#else
#define SET_VREG64_F_GOTO(rlo, rhi, rix, dst) \
.set noreorder; \
GET_OPCODE_TARGET(dst); \
.set noat; \
sll AT, rix, 2; \
addu t8, rFP, AT; \
s.s rlo, 0(t8); \
s.s rhi, 4(t8); \
addu t8, rREFS, AT; \
.set at; \
sw zero, 0(t8); \
jalr zero, dst; \
sw zero, 4(t8); \
.set reorder
#endif
#define GET_OPA(rd) srl rd, rINST, 8
#ifdef MIPS32REVGE2
#define GET_OPA4(rd) ext rd, rINST, 8, 4
#else
#define GET_OPA4(rd) GET_OPA(rd); and rd, 0xf
#endif
#define GET_OPB(rd) srl rd, rINST, 12
/*
* Form an Effective Address rd = rbase + roff<<shift;
* Uses reg AT on pre-R6.
*/
#define EASN(rd, rbase, roff, shift) LSA(rd, roff, rbase, shift)
#define EAS1(rd, rbase, roff) EASN(rd, rbase, roff, 1)
#define EAS2(rd, rbase, roff) EASN(rd, rbase, roff, 2)
#define EAS3(rd, rbase, roff) EASN(rd, rbase, roff, 3)
#define EAS4(rd, rbase, roff) EASN(rd, rbase, roff, 4)
#define LOAD_eas2(rd, rbase, roff) \
.set noat; \
EAS2(AT, rbase, roff); \
lw rd, 0(AT); \
.set at
#define STORE_eas2(rd, rbase, roff) \
.set noat; \
EAS2(AT, rbase, roff); \
sw rd, 0(AT); \
.set at
#define LOAD_RB_OFF(rd, rbase, off) lw rd, off(rbase)
#define STORE_RB_OFF(rd, rbase, off) sw rd, off(rbase)
#define STORE64_off(rlo, rhi, rbase, off) \
sw rlo, off(rbase); \
sw rhi, (off+4)(rbase)
#define LOAD64_off(rlo, rhi, rbase, off) \
lw rlo, off(rbase); \
lw rhi, (off+4)(rbase)
#define STORE64(rlo, rhi, rbase) STORE64_off(rlo, rhi, rbase, 0)
#define LOAD64(rlo, rhi, rbase) LOAD64_off(rlo, rhi, rbase, 0)
#ifdef FPU64
#define STORE64_off_F(rlo, rhi, rbase, off) \
s.s rlo, off(rbase); \
.set noat; \
mfhc1 AT, rlo; \
sw AT, (off+4)(rbase); \
.set at
#define LOAD64_off_F(rlo, rhi, rbase, off) \
l.s rlo, off(rbase); \
.set noat; \
lw AT, (off+4)(rbase); \
mthc1 AT, rlo; \
.set at
#else
#define STORE64_off_F(rlo, rhi, rbase, off) \
s.s rlo, off(rbase); \
s.s rhi, (off+4)(rbase)
#define LOAD64_off_F(rlo, rhi, rbase, off) \
l.s rlo, off(rbase); \
l.s rhi, (off+4)(rbase)
#endif
#define STORE64_F(rlo, rhi, rbase) STORE64_off_F(rlo, rhi, rbase, 0)
#define LOAD64_F(rlo, rhi, rbase) LOAD64_off_F(rlo, rhi, rbase, 0)
#define LOAD_base_offMirrorArray_length(rd, rbase) LOAD_RB_OFF(rd, rbase, MIRROR_ARRAY_LENGTH_OFFSET)
#define STACK_STORE(rd, off) sw rd, off(sp)
#define STACK_LOAD(rd, off) lw rd, off(sp)
#define CREATE_STACK(n) subu sp, sp, n
#define DELETE_STACK(n) addu sp, sp, n
#define LOAD_ADDR(dest, addr) la dest, addr
#define LOAD_IMM(dest, imm) li dest, imm
#define MOVE_REG(dest, src) move dest, src
#define STACK_SIZE 128
#define STACK_OFFSET_ARG04 16
#define STACK_OFFSET_ARG05 20
#define STACK_OFFSET_ARG06 24
#define STACK_OFFSET_ARG07 28
#define STACK_OFFSET_GP 84
#define JAL(n) jal n
#define BAL(n) bal n
/*
* FP register usage restrictions:
* 1) We don't use the callee save FP registers so we don't have to save them.
* 2) We don't use the odd FP registers so we can share code with mips32r6.
*/
#define STACK_STORE_FULL() CREATE_STACK(STACK_SIZE); \
STACK_STORE(ra, 124); \
STACK_STORE(s8, 120); \
STACK_STORE(s0, 116); \
STACK_STORE(s1, 112); \
STACK_STORE(s2, 108); \
STACK_STORE(s3, 104); \
STACK_STORE(s4, 100); \
STACK_STORE(s5, 96); \
STACK_STORE(s6, 92); \
STACK_STORE(s7, 88);
#define STACK_LOAD_FULL() STACK_LOAD(gp, STACK_OFFSET_GP); \
STACK_LOAD(s7, 88); \
STACK_LOAD(s6, 92); \
STACK_LOAD(s5, 96); \
STACK_LOAD(s4, 100); \
STACK_LOAD(s3, 104); \
STACK_LOAD(s2, 108); \
STACK_LOAD(s1, 112); \
STACK_LOAD(s0, 116); \
STACK_LOAD(s8, 120); \
STACK_LOAD(ra, 124); \
DELETE_STACK(STACK_SIZE)
#define REFRESH_IBASE() \
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF)
/* Constants for float/double_to_int/long conversions */
#define INT_MIN 0x80000000
#define INT_MIN_AS_FLOAT 0xCF000000
#define INT_MIN_AS_DOUBLE_HIGH 0xC1E00000
#define LONG_MIN_HIGH 0x80000000
#define LONG_MIN_AS_FLOAT 0xDF000000
#define LONG_MIN_AS_DOUBLE_HIGH 0xC3E00000
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Interpreter entry point.
*/
.text
.align 2
.global ExecuteMterpImpl
.ent ExecuteMterpImpl
.frame sp, STACK_SIZE, ra
/*
* On entry:
* a0 Thread* self
* a1 dex_instructions
* a2 ShadowFrame
* a3 JValue* result_register
*
*/
ExecuteMterpImpl:
.cfi_startproc
.set noreorder
.cpload t9
.set reorder
/* Save to the stack. Frame size = STACK_SIZE */
STACK_STORE_FULL()
/* This directive will make sure all subsequent jal restore gp at a known offset */
.cprestore STACK_OFFSET_GP
/* Remember the return register */
sw a3, SHADOWFRAME_RESULT_REGISTER_OFFSET(a2)
/* Remember the dex instruction pointer */
sw a1, SHADOWFRAME_DEX_INSTRUCTIONS_OFFSET(a2)
/* set up "named" registers */
move rSELF, a0
lw a0, SHADOWFRAME_NUMBER_OF_VREGS_OFFSET(a2)
addu rFP, a2, SHADOWFRAME_VREGS_OFFSET # point to vregs.
EAS2(rREFS, rFP, a0) # point to reference array in shadow frame
lw a0, SHADOWFRAME_DEX_PC_OFFSET(a2) # Get starting dex_pc
EAS1(rPC, a1, a0) # Create direct pointer to 1st dex opcode
CFI_DEFINE_DEX_PC_WITH_OFFSET(CFI_TMP, CFI_DEX, 0)
EXPORT_PC()
/* Starting ibase */
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF)
/* Set up for backwards branches & osr profiling */
lw a0, OFF_FP_METHOD(rFP)
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rSELF
JAL(MterpSetUpHotnessCountdown) # (method, shadow_frame, self)
move rPROFILE, v0 # Starting hotness countdown to rPROFILE
/* start executing the instruction at rPC */
FETCH_INST() # load rINST from rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* NOTE: no fallthrough */
.global artMterpAsmInstructionStart
artMterpAsmInstructionStart = .L_op_nop
.text
/* ------------------------------ */
.balign 128
.L_op_nop: /* 0x00 */
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_move: /* 0x01 */
/* for move, move-object, long-to-int */
/* op vA, vB */
GET_OPB(a1) # a1 <- B from 15:12
GET_OPA4(a0) # a0 <- A from 11:8
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_VREG(a2, a1) # a2 <- fp[B]
GET_INST_OPCODE(t0) # t0 <- opcode from rINST
.if 0
SET_VREG_OBJECT_GOTO(a2, a0, t0) # fp[A] <- a2
.else
SET_VREG_GOTO(a2, a0, t0) # fp[A] <- a2
.endif
/* ------------------------------ */
.balign 128
.L_op_move_from16: /* 0x02 */
/* for: move/from16, move-object/from16 */
/* op vAA, vBBBB */
FETCH(a1, 1) # a1 <- BBBB
GET_OPA(a0) # a0 <- AA
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_VREG(a2, a1) # a2 <- fp[BBBB]
GET_INST_OPCODE(t0) # extract opcode from rINST
.if 0
SET_VREG_OBJECT_GOTO(a2, a0, t0) # fp[AA] <- a2
.else
SET_VREG_GOTO(a2, a0, t0) # fp[AA] <- a2
.endif
/* ------------------------------ */
.balign 128
.L_op_move_16: /* 0x03 */
/* for: move/16, move-object/16 */
/* op vAAAA, vBBBB */
FETCH(a1, 2) # a1 <- BBBB
FETCH(a0, 1) # a0 <- AAAA
FETCH_ADVANCE_INST(3) # advance rPC, load rINST
GET_VREG(a2, a1) # a2 <- fp[BBBB]
GET_INST_OPCODE(t0) # extract opcode from rINST
.if 0
SET_VREG_OBJECT_GOTO(a2, a0, t0) # fp[AAAA] <- a2
.else
SET_VREG_GOTO(a2, a0, t0) # fp[AAAA] <- a2
.endif
/* ------------------------------ */
.balign 128
.L_op_move_wide: /* 0x04 */
/* move-wide vA, vB */
/* NOTE: regs can overlap, e.g. "move v6, v7" or "move v7, v6" */
GET_OPA4(a2) # a2 <- A(+)
GET_OPB(a3) # a3 <- B
EAS2(a3, rFP, a3) # a3 <- &fp[B]
LOAD64(a0, a1, a3) # a0/a1 <- fp[B]
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, a2, t0) # fp[A] <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_move_wide_from16: /* 0x05 */
/* move-wide/from16 vAA, vBBBB */
/* NOTE: regs can overlap, e.g. "move v6, v7" or "move v7, v6" */
FETCH(a3, 1) # a3 <- BBBB
GET_OPA(a2) # a2 <- AA
EAS2(a3, rFP, a3) # a3 <- &fp[BBBB]
LOAD64(a0, a1, a3) # a0/a1 <- fp[BBBB]
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, a2, t0) # fp[AA] <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_move_wide_16: /* 0x06 */
/* move-wide/16 vAAAA, vBBBB */
/* NOTE: regs can overlap, e.g. "move v6, v7" or "move v7, v6" */
FETCH(a3, 2) # a3 <- BBBB
FETCH(a2, 1) # a2 <- AAAA
EAS2(a3, rFP, a3) # a3 <- &fp[BBBB]
LOAD64(a0, a1, a3) # a0/a1 <- fp[BBBB]
FETCH_ADVANCE_INST(3) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, a2, t0) # fp[AAAA] <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_move_object: /* 0x07 */
/* for move, move-object, long-to-int */
/* op vA, vB */
GET_OPB(a1) # a1 <- B from 15:12
GET_OPA4(a0) # a0 <- A from 11:8
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_VREG(a2, a1) # a2 <- fp[B]
GET_INST_OPCODE(t0) # t0 <- opcode from rINST
.if 1
SET_VREG_OBJECT_GOTO(a2, a0, t0) # fp[A] <- a2
.else
SET_VREG_GOTO(a2, a0, t0) # fp[A] <- a2
.endif
/* ------------------------------ */
.balign 128
.L_op_move_object_from16: /* 0x08 */
/* for: move/from16, move-object/from16 */
/* op vAA, vBBBB */
FETCH(a1, 1) # a1 <- BBBB
GET_OPA(a0) # a0 <- AA
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_VREG(a2, a1) # a2 <- fp[BBBB]
GET_INST_OPCODE(t0) # extract opcode from rINST
.if 1
SET_VREG_OBJECT_GOTO(a2, a0, t0) # fp[AA] <- a2
.else
SET_VREG_GOTO(a2, a0, t0) # fp[AA] <- a2
.endif
/* ------------------------------ */
.balign 128
.L_op_move_object_16: /* 0x09 */
/* for: move/16, move-object/16 */
/* op vAAAA, vBBBB */
FETCH(a1, 2) # a1 <- BBBB
FETCH(a0, 1) # a0 <- AAAA
FETCH_ADVANCE_INST(3) # advance rPC, load rINST
GET_VREG(a2, a1) # a2 <- fp[BBBB]
GET_INST_OPCODE(t0) # extract opcode from rINST
.if 1
SET_VREG_OBJECT_GOTO(a2, a0, t0) # fp[AAAA] <- a2
.else
SET_VREG_GOTO(a2, a0, t0) # fp[AAAA] <- a2
.endif
/* ------------------------------ */
.balign 128
.L_op_move_result: /* 0x0a */
/* for: move-result, move-result-object */
/* op vAA */
GET_OPA(a2) # a2 <- AA
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
lw a0, OFF_FP_RESULT_REGISTER(rFP) # get pointer to result JType
lw a0, 0(a0) # a0 <- result.i
GET_INST_OPCODE(t0) # extract opcode from rINST
.if 0
SET_VREG_OBJECT_GOTO(a0, a2, t0) # fp[AA] <- a0
.else
SET_VREG_GOTO(a0, a2, t0) # fp[AA] <- a0
.endif
/* ------------------------------ */
.balign 128
.L_op_move_result_wide: /* 0x0b */
/* move-result-wide vAA */
GET_OPA(a2) # a2 <- AA
lw a3, OFF_FP_RESULT_REGISTER(rFP) # get pointer to result JType
LOAD64(a0, a1, a3) # a0/a1 <- retval.j
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, a2, t0) # fp[AA] <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_move_result_object: /* 0x0c */
/* for: move-result, move-result-object */
/* op vAA */
GET_OPA(a2) # a2 <- AA
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
lw a0, OFF_FP_RESULT_REGISTER(rFP) # get pointer to result JType
lw a0, 0(a0) # a0 <- result.i
GET_INST_OPCODE(t0) # extract opcode from rINST
.if 1
SET_VREG_OBJECT_GOTO(a0, a2, t0) # fp[AA] <- a0
.else
SET_VREG_GOTO(a0, a2, t0) # fp[AA] <- a0
.endif
/* ------------------------------ */
.balign 128
.L_op_move_exception: /* 0x0d */
/* move-exception vAA */
GET_OPA(a2) # a2 <- AA
lw a3, THREAD_EXCEPTION_OFFSET(rSELF) # get exception obj
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GET_OPCODE_TARGET(t0)
SET_VREG_OBJECT(a3, a2) # fp[AA] <- exception obj
sw zero, THREAD_EXCEPTION_OFFSET(rSELF) # clear exception
JR(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_return_void: /* 0x0e */
.extern MterpThreadFenceForConstructor
JAL(MterpThreadFenceForConstructor)
lw ra, THREAD_FLAGS_OFFSET(rSELF)
move a0, rSELF
and ra, THREAD_SUSPEND_OR_CHECKPOINT_REQUEST
beqz ra, 1f
JAL(MterpSuspendCheck) # (self)
1:
move v0, zero
move v1, zero
b MterpReturn
/* ------------------------------ */
.balign 128
.L_op_return: /* 0x0f */
/*
* Return a 32-bit value.
*
* for: return, return-object
*/
/* op vAA */
.extern MterpThreadFenceForConstructor
JAL(MterpThreadFenceForConstructor)
lw ra, THREAD_FLAGS_OFFSET(rSELF)
move a0, rSELF
and ra, THREAD_SUSPEND_OR_CHECKPOINT_REQUEST
beqz ra, 1f
JAL(MterpSuspendCheck) # (self)
1:
GET_OPA(a2) # a2 <- AA
GET_VREG(v0, a2) # v0 <- vAA
move v1, zero
b MterpReturn
/* ------------------------------ */
.balign 128
.L_op_return_wide: /* 0x10 */
/*
* Return a 64-bit value.
*/
/* return-wide vAA */
.extern MterpThreadFenceForConstructor
JAL(MterpThreadFenceForConstructor)
lw ra, THREAD_FLAGS_OFFSET(rSELF)
move a0, rSELF
and ra, THREAD_SUSPEND_OR_CHECKPOINT_REQUEST
beqz ra, 1f
JAL(MterpSuspendCheck) # (self)
1:
GET_OPA(a2) # a2 <- AA
EAS2(a2, rFP, a2) # a2 <- &fp[AA]
LOAD64(v0, v1, a2) # v0/v1 <- vAA/vAA+1
b MterpReturn
/* ------------------------------ */
.balign 128
.L_op_return_object: /* 0x11 */
/*
* Return a 32-bit value.
*
* for: return, return-object
*/
/* op vAA */
.extern MterpThreadFenceForConstructor
JAL(MterpThreadFenceForConstructor)
lw ra, THREAD_FLAGS_OFFSET(rSELF)
move a0, rSELF
and ra, THREAD_SUSPEND_OR_CHECKPOINT_REQUEST
beqz ra, 1f
JAL(MterpSuspendCheck) # (self)
1:
GET_OPA(a2) # a2 <- AA
GET_VREG(v0, a2) # v0 <- vAA
move v1, zero
b MterpReturn
/* ------------------------------ */
.balign 128
.L_op_const_4: /* 0x12 */
/* const/4 vA, +B */
sll a1, rINST, 16 # a1 <- Bxxx0000
GET_OPA(a0) # a0 <- A+
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
sra a1, a1, 28 # a1 <- sssssssB (sign-extended)
and a0, a0, 15
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a1, a0, t0) # fp[A] <- a1
/* ------------------------------ */
.balign 128
.L_op_const_16: /* 0x13 */
/* const/16 vAA, +BBBB */
FETCH_S(a0, 1) # a0 <- ssssBBBB (sign-extended)
GET_OPA(a3) # a3 <- AA
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, a3, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_const: /* 0x14 */
/* const vAA, +BBBBbbbb */
GET_OPA(a3) # a3 <- AA
FETCH(a0, 1) # a0 <- bbbb (low)
FETCH(a1, 2) # a1 <- BBBB (high)
FETCH_ADVANCE_INST(3) # advance rPC, load rINST
INSERT_HIGH_HALF(a0, a1) # a0 <- BBBBbbbb
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, a3, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_const_high16: /* 0x15 */
/* const/high16 vAA, +BBBB0000 */
FETCH(a0, 1) # a0 <- 0000BBBB (zero-extended)
GET_OPA(a3) # a3 <- AA
sll a0, a0, 16 # a0 <- BBBB0000
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, a3, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_const_wide_16: /* 0x16 */
/* const-wide/16 vAA, +BBBB */
FETCH_S(a0, 1) # a0 <- ssssBBBB (sign-extended)
GET_OPA(a3) # a3 <- AA
sra a1, a0, 31 # a1 <- ssssssss
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, a3, t0) # vAA/vAA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_const_wide_32: /* 0x17 */
/* const-wide/32 vAA, +BBBBbbbb */
FETCH(a0, 1) # a0 <- 0000bbbb (low)
GET_OPA(a3) # a3 <- AA
FETCH_S(a2, 2) # a2 <- ssssBBBB (high)
FETCH_ADVANCE_INST(3) # advance rPC, load rINST
INSERT_HIGH_HALF(a0, a2) # a0 <- BBBBbbbb
sra a1, a0, 31 # a1 <- ssssssss
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, a3, t0) # vAA/vAA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_const_wide: /* 0x18 */
/* const-wide vAA, +HHHHhhhhBBBBbbbb */
FETCH(a0, 1) # a0 <- bbbb (low)
FETCH(a1, 2) # a1 <- BBBB (low middle)
FETCH(a2, 3) # a2 <- hhhh (high middle)
INSERT_HIGH_HALF(a0, a1) # a0 <- BBBBbbbb (low word)
FETCH(a3, 4) # a3 <- HHHH (high)
GET_OPA(t1) # t1 <- AA
INSERT_HIGH_HALF(a2, a3) # a2 <- HHHHhhhh (high word)
FETCH_ADVANCE_INST(5) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a2, t1, t0) # vAA/vAA+1 <- a0/a2
/* ------------------------------ */
.balign 128
.L_op_const_wide_high16: /* 0x19 */
/* const-wide/high16 vAA, +BBBB000000000000 */
FETCH(a1, 1) # a1 <- 0000BBBB (zero-extended)
GET_OPA(a3) # a3 <- AA
li a0, 0 # a0 <- 00000000
sll a1, 16 # a1 <- BBBB0000
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, a3, t0) # vAA/vAA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_const_string: /* 0x1a */
/* const/class vAA, type@BBBB */
/* const/method-handle vAA, method_handle@BBBB */
/* const/method-type vAA, proto@BBBB */
/* const/string vAA, string@@BBBB */
.extern MterpConstString
EXPORT_PC()
FETCH(a0, 1) # a0 <- BBBB
GET_OPA(a1) # a1 <- AA
addu a2, rFP, OFF_FP_SHADOWFRAME # a2 <- shadow frame
move a3, rSELF
JAL(MterpConstString) # v0 <- Mterp(index, tgt_reg, shadow_frame, self)
PREFETCH_INST(2) # load rINST
bnez v0, MterpPossibleException
ADVANCE(2) # advance rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_const_string_jumbo: /* 0x1b */
/* const/string vAA, string@BBBBBBBB */
EXPORT_PC()
FETCH(a0, 1) # a0 <- bbbb (low)
FETCH(a2, 2) # a2 <- BBBB (high)
GET_OPA(a1) # a1 <- AA
INSERT_HIGH_HALF(a0, a2) # a0 <- BBBBbbbb
addu a2, rFP, OFF_FP_SHADOWFRAME # a2 <- shadow frame
move a3, rSELF
JAL(MterpConstString) # v0 <- Mterp(index, tgt_reg, shadow_frame, self)
PREFETCH_INST(3) # load rINST
bnez v0, MterpPossibleException
ADVANCE(3) # advance rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_const_class: /* 0x1c */
/* const/class vAA, type@BBBB */
/* const/method-handle vAA, method_handle@BBBB */
/* const/method-type vAA, proto@BBBB */
/* const/string vAA, string@@BBBB */
.extern MterpConstClass
EXPORT_PC()
FETCH(a0, 1) # a0 <- BBBB
GET_OPA(a1) # a1 <- AA
addu a2, rFP, OFF_FP_SHADOWFRAME # a2 <- shadow frame
move a3, rSELF
JAL(MterpConstClass) # v0 <- Mterp(index, tgt_reg, shadow_frame, self)
PREFETCH_INST(2) # load rINST
bnez v0, MterpPossibleException
ADVANCE(2) # advance rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_monitor_enter: /* 0x1d */
/*
* Synchronize on an object.
*/
/* monitor-enter vAA */
EXPORT_PC()
GET_OPA(a2) # a2 <- AA
GET_VREG(a0, a2) # a0 <- vAA (object)
move a1, rSELF # a1 <- self
JAL(artLockObjectFromCode) # v0 <- artLockObject(obj, self)
bnez v0, MterpException
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_monitor_exit: /* 0x1e */
/*
* Unlock an object.
*
* Exceptions that occur when unlocking a monitor need to appear as
* if they happened at the following instruction. See the Dalvik
* instruction spec.
*/
/* monitor-exit vAA */
EXPORT_PC()
GET_OPA(a2) # a2 <- AA
GET_VREG(a0, a2) # a0 <- vAA (object)
move a1, rSELF # a1 <- self
JAL(artUnlockObjectFromCode) # v0 <- artUnlockObject(obj, self)
bnez v0, MterpException
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_check_cast: /* 0x1f */
/*
* Check to see if a cast from one class to another is allowed.
*/
/* check-cast vAA, class@BBBB */
EXPORT_PC()
FETCH(a0, 1) # a0 <- BBBB
GET_OPA(a1) # a1 <- AA
EAS2(a1, rFP, a1) # a1 <- &object
lw a2, OFF_FP_METHOD(rFP) # a2 <- method
move a3, rSELF # a3 <- self
JAL(MterpCheckCast) # v0 <- CheckCast(index, &obj, method, self)
PREFETCH_INST(2)
bnez v0, MterpPossibleException
ADVANCE(2)
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_instance_of: /* 0x20 */
/*
* Check to see if an object reference is an instance of a class.
*
* Most common situation is a non-null object, being compared against
* an already-resolved class.
*/
/* instance-of vA, vB, class@CCCC */
EXPORT_PC()
FETCH(a0, 1) # a0 <- CCCC
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &object
lw a2, OFF_FP_METHOD(rFP) # a2 <- method
move a3, rSELF # a3 <- self
GET_OPA4(rOBJ) # rOBJ <- A+
JAL(MterpInstanceOf) # v0 <- Mterp(index, &obj, method, self)
lw a1, THREAD_EXCEPTION_OFFSET(rSELF)
PREFETCH_INST(2) # load rINST
bnez a1, MterpException
ADVANCE(2) # advance rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(v0, rOBJ, t0) # vA <- v0
/* ------------------------------ */
.balign 128
.L_op_array_length: /* 0x21 */
/*
* Return the length of an array.
*/
/* array-length vA, vB */
GET_OPB(a1) # a1 <- B
GET_OPA4(a2) # a2 <- A+
GET_VREG(a0, a1) # a0 <- vB (object ref)
# is object null?
beqz a0, common_errNullObject # yup, fail
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- array length
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a3, a2, t0) # vA <- length
/* ------------------------------ */
.balign 128
.L_op_new_instance: /* 0x22 */
/*
* Create a new instance of a class.
*/
/* new-instance vAA, class@BBBB */
EXPORT_PC()
addu a0, rFP, OFF_FP_SHADOWFRAME
move a1, rSELF
move a2, rINST
JAL(MterpNewInstance)
beqz v0, MterpPossibleException
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_new_array: /* 0x23 */
/*
* Allocate an array of objects, specified with the array class
* and a count.
*
* The verifier guarantees that this is an array class, so we don't
* check for it here.
*/
/* new-array vA, vB, class@CCCC */
EXPORT_PC()
addu a0, rFP, OFF_FP_SHADOWFRAME
move a1, rPC
move a2, rINST
move a3, rSELF
JAL(MterpNewArray)
beqz v0, MterpPossibleException
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_filled_new_array: /* 0x24 */
/*
* Create a new array with elements filled from registers.
*
* for: filled-new-array, filled-new-array/range
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, type@BBBB */
.extern MterpFilledNewArray
EXPORT_PC()
addu a0, rFP, OFF_FP_SHADOWFRAME # a0 <- shadow frame
move a1, rPC
move a2, rSELF
JAL(MterpFilledNewArray) # v0 <- helper(shadow_frame, pc, self)
beqz v0, MterpPossibleException # has exception
FETCH_ADVANCE_INST(3) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_filled_new_array_range: /* 0x25 */
/*
* Create a new array with elements filled from registers.
*
* for: filled-new-array, filled-new-array/range
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, type@BBBB */
.extern MterpFilledNewArrayRange
EXPORT_PC()
addu a0, rFP, OFF_FP_SHADOWFRAME # a0 <- shadow frame
move a1, rPC
move a2, rSELF
JAL(MterpFilledNewArrayRange) # v0 <- helper(shadow_frame, pc, self)
beqz v0, MterpPossibleException # has exception
FETCH_ADVANCE_INST(3) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_fill_array_data: /* 0x26 */
/* fill-array-data vAA, +BBBBBBBB */
EXPORT_PC()
FETCH(a1, 1) # a1 <- bbbb (lo)
FETCH(a0, 2) # a0 <- BBBB (hi)
GET_OPA(a3) # a3 <- AA
INSERT_HIGH_HALF(a1, a0) # a1 <- BBBBbbbb
GET_VREG(a0, a3) # a0 <- vAA (array object)
EAS1(a1, rPC, a1) # a1 <- PC + BBBBbbbb*2 (array data off.)
JAL(MterpFillArrayData) # v0 <- Mterp(obj, payload)
beqz v0, MterpPossibleException # has exception
FETCH_ADVANCE_INST(3) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_throw: /* 0x27 */
/*
* Throw an exception object in the current thread.
*/
/* throw vAA */
EXPORT_PC() # exception handler can throw
GET_OPA(a2) # a2 <- AA
GET_VREG(a1, a2) # a1 <- vAA (exception object)
# null object?
beqz a1, common_errNullObject # yes, throw an NPE instead
sw a1, THREAD_EXCEPTION_OFFSET(rSELF) # thread->exception <- obj
b MterpException
/* ------------------------------ */
.balign 128
.L_op_goto: /* 0x28 */
/*
* Unconditional branch, 8-bit offset.
*
* The branch distance is a signed code-unit offset, which we need to
* double to get a byte offset.
*/
/* goto +AA */
sll a0, rINST, 16 # a0 <- AAxx0000
sra rINST, a0, 24 # rINST <- ssssssAA (sign-extended)
b MterpCommonTakenBranchNoFlags
/* ------------------------------ */
.balign 128
.L_op_goto_16: /* 0x29 */
/*
* Unconditional branch, 16-bit offset.
*
* The branch distance is a signed code-unit offset, which we need to
* double to get a byte offset.
*/
/* goto/16 +AAAA */
FETCH_S(rINST, 1) # rINST <- ssssAAAA (sign-extended)
b MterpCommonTakenBranchNoFlags
/* ------------------------------ */
.balign 128
.L_op_goto_32: /* 0x2a */
/*
* Unconditional branch, 32-bit offset.
*
* The branch distance is a signed code-unit offset, which we need to
* double to get a byte offset.
*
* Unlike most opcodes, this one is allowed to branch to itself, so
* our "backward branch" test must be "<=0" instead of "<0".
*/
/* goto/32 +AAAAAAAA */
FETCH(rINST, 1) # rINST <- aaaa (lo)
FETCH(a1, 2) # a1 <- AAAA (hi)
INSERT_HIGH_HALF(rINST, a1) # rINST <- AAAAaaaa
b MterpCommonTakenBranchNoFlags
/* ------------------------------ */
.balign 128
.L_op_packed_switch: /* 0x2b */
/*
* Handle a packed-switch or sparse-switch instruction. In both cases
* we decode it and hand it off to a helper function.
*
* We don't really expect backward branches in a switch statement, but
* they're perfectly legal, so we check for them here.
*
* for: packed-switch, sparse-switch
*/
/* op vAA, +BBBB */
FETCH(a0, 1) # a0 <- bbbb (lo)
FETCH(a1, 2) # a1 <- BBBB (hi)
GET_OPA(a3) # a3 <- AA
INSERT_HIGH_HALF(a0, a1) # a0 <- BBBBbbbb
GET_VREG(a1, a3) # a1 <- vAA
EAS1(a0, rPC, a0) # a0 <- PC + BBBBbbbb*2
JAL(MterpDoPackedSwitch) # a0 <- code-unit branch offset
move rINST, v0
b MterpCommonTakenBranchNoFlags
/* ------------------------------ */
.balign 128
.L_op_sparse_switch: /* 0x2c */
/*
* Handle a packed-switch or sparse-switch instruction. In both cases
* we decode it and hand it off to a helper function.
*
* We don't really expect backward branches in a switch statement, but
* they're perfectly legal, so we check for them here.
*
* for: packed-switch, sparse-switch
*/
/* op vAA, +BBBB */
FETCH(a0, 1) # a0 <- bbbb (lo)
FETCH(a1, 2) # a1 <- BBBB (hi)
GET_OPA(a3) # a3 <- AA
INSERT_HIGH_HALF(a0, a1) # a0 <- BBBBbbbb
GET_VREG(a1, a3) # a1 <- vAA
EAS1(a0, rPC, a0) # a0 <- PC + BBBBbbbb*2
JAL(MterpDoSparseSwitch) # a0 <- code-unit branch offset
move rINST, v0
b MterpCommonTakenBranchNoFlags
/* ------------------------------ */
.balign 128
.L_op_cmpl_float: /* 0x2d */
/*
* Compare two floating-point values. Puts 0(==), 1(>), or -1(<)
* into the destination register based on the comparison results.
*
* for: cmpl-float, cmpg-float
*/
/* op vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8
GET_VREG_F(ft0, a2)
GET_VREG_F(ft1, a3)
#ifdef MIPS32REVGE6
cmp.eq.s ft2, ft0, ft1
li rTEMP, 0
bc1nez ft2, 1f # done if vBB == vCC (ordered)
.if 0
cmp.lt.s ft2, ft0, ft1
li rTEMP, -1
bc1nez ft2, 1f # done if vBB < vCC (ordered)
li rTEMP, 1 # vBB > vCC or unordered
.else
cmp.lt.s ft2, ft1, ft0
li rTEMP, 1
bc1nez ft2, 1f # done if vBB > vCC (ordered)
li rTEMP, -1 # vBB < vCC or unordered
.endif
#else
c.eq.s fcc0, ft0, ft1
li rTEMP, 0
bc1t fcc0, 1f # done if vBB == vCC (ordered)
.if 0
c.olt.s fcc0, ft0, ft1
li rTEMP, -1
bc1t fcc0, 1f # done if vBB < vCC (ordered)
li rTEMP, 1 # vBB > vCC or unordered
.else
c.olt.s fcc0, ft1, ft0
li rTEMP, 1
bc1t fcc0, 1f # done if vBB > vCC (ordered)
li rTEMP, -1 # vBB < vCC or unordered
.endif
#endif
1:
GET_OPA(rOBJ)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(rTEMP, rOBJ, t0) # vAA <- rTEMP
/* ------------------------------ */
.balign 128
.L_op_cmpg_float: /* 0x2e */
/*
* Compare two floating-point values. Puts 0(==), 1(>), or -1(<)
* into the destination register based on the comparison results.
*
* for: cmpl-float, cmpg-float
*/
/* op vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8
GET_VREG_F(ft0, a2)
GET_VREG_F(ft1, a3)
#ifdef MIPS32REVGE6
cmp.eq.s ft2, ft0, ft1
li rTEMP, 0
bc1nez ft2, 1f # done if vBB == vCC (ordered)
.if 1
cmp.lt.s ft2, ft0, ft1
li rTEMP, -1
bc1nez ft2, 1f # done if vBB < vCC (ordered)
li rTEMP, 1 # vBB > vCC or unordered
.else
cmp.lt.s ft2, ft1, ft0
li rTEMP, 1
bc1nez ft2, 1f # done if vBB > vCC (ordered)
li rTEMP, -1 # vBB < vCC or unordered
.endif
#else
c.eq.s fcc0, ft0, ft1
li rTEMP, 0
bc1t fcc0, 1f # done if vBB == vCC (ordered)
.if 1
c.olt.s fcc0, ft0, ft1
li rTEMP, -1
bc1t fcc0, 1f # done if vBB < vCC (ordered)
li rTEMP, 1 # vBB > vCC or unordered
.else
c.olt.s fcc0, ft1, ft0
li rTEMP, 1
bc1t fcc0, 1f # done if vBB > vCC (ordered)
li rTEMP, -1 # vBB < vCC or unordered
.endif
#endif
1:
GET_OPA(rOBJ)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(rTEMP, rOBJ, t0) # vAA <- rTEMP
/* ------------------------------ */
.balign 128
.L_op_cmpl_double: /* 0x2f */
/*
* Compare two floating-point values. Puts 0(==), 1(>), or -1(<)
* into the destination register based on the comparison results.
*
* For: cmpl-double, cmpg-double
*/
/* op vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
and rOBJ, a0, 255 # rOBJ <- BB
srl t0, a0, 8 # t0 <- CC
EAS2(rOBJ, rFP, rOBJ) # rOBJ <- &fp[BB]
EAS2(t0, rFP, t0) # t0 <- &fp[CC]
LOAD64_F(ft0, ft0f, rOBJ)
LOAD64_F(ft1, ft1f, t0)
#ifdef MIPS32REVGE6
cmp.eq.d ft2, ft0, ft1
li rTEMP, 0
bc1nez ft2, 1f # done if vBB == vCC (ordered)
.if 0
cmp.lt.d ft2, ft0, ft1
li rTEMP, -1
bc1nez ft2, 1f # done if vBB < vCC (ordered)
li rTEMP, 1 # vBB > vCC or unordered
.else
cmp.lt.d ft2, ft1, ft0
li rTEMP, 1
bc1nez ft2, 1f # done if vBB > vCC (ordered)
li rTEMP, -1 # vBB < vCC or unordered
.endif
#else
c.eq.d fcc0, ft0, ft1
li rTEMP, 0
bc1t fcc0, 1f # done if vBB == vCC (ordered)
.if 0
c.olt.d fcc0, ft0, ft1
li rTEMP, -1
bc1t fcc0, 1f # done if vBB < vCC (ordered)
li rTEMP, 1 # vBB > vCC or unordered
.else
c.olt.d fcc0, ft1, ft0
li rTEMP, 1
bc1t fcc0, 1f # done if vBB > vCC (ordered)
li rTEMP, -1 # vBB < vCC or unordered
.endif
#endif
1:
GET_OPA(rOBJ)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(rTEMP, rOBJ, t0) # vAA <- rTEMP
/* ------------------------------ */
.balign 128
.L_op_cmpg_double: /* 0x30 */
/*
* Compare two floating-point values. Puts 0(==), 1(>), or -1(<)
* into the destination register based on the comparison results.
*
* For: cmpl-double, cmpg-double
*/
/* op vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
and rOBJ, a0, 255 # rOBJ <- BB
srl t0, a0, 8 # t0 <- CC
EAS2(rOBJ, rFP, rOBJ) # rOBJ <- &fp[BB]
EAS2(t0, rFP, t0) # t0 <- &fp[CC]
LOAD64_F(ft0, ft0f, rOBJ)
LOAD64_F(ft1, ft1f, t0)
#ifdef MIPS32REVGE6
cmp.eq.d ft2, ft0, ft1
li rTEMP, 0
bc1nez ft2, 1f # done if vBB == vCC (ordered)
.if 1
cmp.lt.d ft2, ft0, ft1
li rTEMP, -1
bc1nez ft2, 1f # done if vBB < vCC (ordered)
li rTEMP, 1 # vBB > vCC or unordered
.else
cmp.lt.d ft2, ft1, ft0
li rTEMP, 1
bc1nez ft2, 1f # done if vBB > vCC (ordered)
li rTEMP, -1 # vBB < vCC or unordered
.endif
#else
c.eq.d fcc0, ft0, ft1
li rTEMP, 0
bc1t fcc0, 1f # done if vBB == vCC (ordered)
.if 1
c.olt.d fcc0, ft0, ft1
li rTEMP, -1
bc1t fcc0, 1f # done if vBB < vCC (ordered)
li rTEMP, 1 # vBB > vCC or unordered
.else
c.olt.d fcc0, ft1, ft0
li rTEMP, 1
bc1t fcc0, 1f # done if vBB > vCC (ordered)
li rTEMP, -1 # vBB < vCC or unordered
.endif
#endif
1:
GET_OPA(rOBJ)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(rTEMP, rOBJ, t0) # vAA <- rTEMP
/* ------------------------------ */
.balign 128
.L_op_cmp_long: /* 0x31 */
/*
* Compare two 64-bit values
* x = y return 0
* x < y return -1
* x > y return 1
*
* I think I can improve on the ARM code by the following observation
* slt t0, x.hi, y.hi; # (x.hi < y.hi) ? 1:0
* sgt t1, x.hi, y.hi; # (y.hi > x.hi) ? 1:0
* subu v0, t0, t1 # v0= -1:1:0 for [ < > = ]
*/
/* cmp-long vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(a3, rFP, a3) # a3 <- &fp[CC]
LOAD64(a0, a1, a2) # a0/a1 <- vBB/vBB+1
LOAD64(a2, a3, a3) # a2/a3 <- vCC/vCC+1
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
slt t0, a1, a3 # compare hi
sgt t1, a1, a3
subu v0, t1, t0 # v0 <- (-1, 1, 0)
bnez v0, .Lop_cmp_long_finish
# at this point x.hi==y.hi
sltu t0, a0, a2 # compare lo
sgtu t1, a0, a2
subu v0, t1, t0 # v0 <- (-1, 1, 0) for [< > =]
.Lop_cmp_long_finish:
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(v0, rOBJ, t0) # vAA <- v0
/* ------------------------------ */
.balign 128
.L_op_if_eq: /* 0x32 */
/*
* Generic two-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* For: if-eq, if-ne, if-lt, if-ge, if-gt, if-le
*/
/* if-cmp vA, vB, +CCCC */
GET_OPA4(a0) # a0 <- A+
GET_OPB(a1) # a1 <- B
GET_VREG(a3, a1) # a3 <- vB
GET_VREG(a0, a0) # a0 <- vA
FETCH_S(rINST, 1) # rINST<- branch offset, in code units
beq a0, a3, MterpCommonTakenBranchNoFlags # compare (vA, vB)
li t0, JIT_CHECK_OSR
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_ne: /* 0x33 */
/*
* Generic two-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* For: if-eq, if-ne, if-lt, if-ge, if-gt, if-le
*/
/* if-cmp vA, vB, +CCCC */
GET_OPA4(a0) # a0 <- A+
GET_OPB(a1) # a1 <- B
GET_VREG(a3, a1) # a3 <- vB
GET_VREG(a0, a0) # a0 <- vA
FETCH_S(rINST, 1) # rINST<- branch offset, in code units
bne a0, a3, MterpCommonTakenBranchNoFlags # compare (vA, vB)
li t0, JIT_CHECK_OSR
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_lt: /* 0x34 */
/*
* Generic two-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* For: if-eq, if-ne, if-lt, if-ge, if-gt, if-le
*/
/* if-cmp vA, vB, +CCCC */
GET_OPA4(a0) # a0 <- A+
GET_OPB(a1) # a1 <- B
GET_VREG(a3, a1) # a3 <- vB
GET_VREG(a0, a0) # a0 <- vA
FETCH_S(rINST, 1) # rINST<- branch offset, in code units
blt a0, a3, MterpCommonTakenBranchNoFlags # compare (vA, vB)
li t0, JIT_CHECK_OSR
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_ge: /* 0x35 */
/*
* Generic two-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* For: if-eq, if-ne, if-lt, if-ge, if-gt, if-le
*/
/* if-cmp vA, vB, +CCCC */
GET_OPA4(a0) # a0 <- A+
GET_OPB(a1) # a1 <- B
GET_VREG(a3, a1) # a3 <- vB
GET_VREG(a0, a0) # a0 <- vA
FETCH_S(rINST, 1) # rINST<- branch offset, in code units
bge a0, a3, MterpCommonTakenBranchNoFlags # compare (vA, vB)
li t0, JIT_CHECK_OSR
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_gt: /* 0x36 */
/*
* Generic two-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* For: if-eq, if-ne, if-lt, if-ge, if-gt, if-le
*/
/* if-cmp vA, vB, +CCCC */
GET_OPA4(a0) # a0 <- A+
GET_OPB(a1) # a1 <- B
GET_VREG(a3, a1) # a3 <- vB
GET_VREG(a0, a0) # a0 <- vA
FETCH_S(rINST, 1) # rINST<- branch offset, in code units
bgt a0, a3, MterpCommonTakenBranchNoFlags # compare (vA, vB)
li t0, JIT_CHECK_OSR
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_le: /* 0x37 */
/*
* Generic two-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* For: if-eq, if-ne, if-lt, if-ge, if-gt, if-le
*/
/* if-cmp vA, vB, +CCCC */
GET_OPA4(a0) # a0 <- A+
GET_OPB(a1) # a1 <- B
GET_VREG(a3, a1) # a3 <- vB
GET_VREG(a0, a0) # a0 <- vA
FETCH_S(rINST, 1) # rINST<- branch offset, in code units
ble a0, a3, MterpCommonTakenBranchNoFlags # compare (vA, vB)
li t0, JIT_CHECK_OSR
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_eqz: /* 0x38 */
/*
* Generic one-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* for: if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez
*/
/* if-cmp vAA, +BBBB */
GET_OPA(a0) # a0 <- AA
GET_VREG(a0, a0) # a0 <- vAA
FETCH_S(rINST, 1) # rINST <- branch offset, in code units
beq a0, zero, MterpCommonTakenBranchNoFlags
li t0, JIT_CHECK_OSR # possible OSR re-entry?
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_nez: /* 0x39 */
/*
* Generic one-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* for: if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez
*/
/* if-cmp vAA, +BBBB */
GET_OPA(a0) # a0 <- AA
GET_VREG(a0, a0) # a0 <- vAA
FETCH_S(rINST, 1) # rINST <- branch offset, in code units
bne a0, zero, MterpCommonTakenBranchNoFlags
li t0, JIT_CHECK_OSR # possible OSR re-entry?
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_ltz: /* 0x3a */
/*
* Generic one-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* for: if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez
*/
/* if-cmp vAA, +BBBB */
GET_OPA(a0) # a0 <- AA
GET_VREG(a0, a0) # a0 <- vAA
FETCH_S(rINST, 1) # rINST <- branch offset, in code units
blt a0, zero, MterpCommonTakenBranchNoFlags
li t0, JIT_CHECK_OSR # possible OSR re-entry?
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_gez: /* 0x3b */
/*
* Generic one-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* for: if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez
*/
/* if-cmp vAA, +BBBB */
GET_OPA(a0) # a0 <- AA
GET_VREG(a0, a0) # a0 <- vAA
FETCH_S(rINST, 1) # rINST <- branch offset, in code units
bge a0, zero, MterpCommonTakenBranchNoFlags
li t0, JIT_CHECK_OSR # possible OSR re-entry?
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_gtz: /* 0x3c */
/*
* Generic one-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* for: if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez
*/
/* if-cmp vAA, +BBBB */
GET_OPA(a0) # a0 <- AA
GET_VREG(a0, a0) # a0 <- vAA
FETCH_S(rINST, 1) # rINST <- branch offset, in code units
bgt a0, zero, MterpCommonTakenBranchNoFlags
li t0, JIT_CHECK_OSR # possible OSR re-entry?
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_if_lez: /* 0x3d */
/*
* Generic one-operand compare-and-branch operation. Provide a "condition"
* fragment that specifies the comparison to perform.
*
* for: if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez
*/
/* if-cmp vAA, +BBBB */
GET_OPA(a0) # a0 <- AA
GET_VREG(a0, a0) # a0 <- vAA
FETCH_S(rINST, 1) # rINST <- branch offset, in code units
ble a0, zero, MterpCommonTakenBranchNoFlags
li t0, JIT_CHECK_OSR # possible OSR re-entry?
beq rPROFILE, t0, .L_check_not_taken_osr
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_unused_3e: /* 0x3e */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_3f: /* 0x3f */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_40: /* 0x40 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_41: /* 0x41 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_42: /* 0x42 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_43: /* 0x43 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_aget: /* 0x44 */
/*
* Array get, 32 bits or less. vAA <- vBB[vCC].
*
* Note: using the usual FETCH/and/shift stuff, this fits in exactly 17
* instructions. We use a pair of FETCH_Bs instead.
*
* for: aget, aget-boolean, aget-byte, aget-char, aget-short
*
* NOTE: assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 2) # a0 <- arrayObj + index*width
# a1 >= a3; compare unsigned index
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
lw a2, MIRROR_INT_ARRAY_DATA_OFFSET(a0) # a2 <- vBB[vCC]
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a2, rOBJ, t0) # vAA <- a2
/* ------------------------------ */
.balign 128
.L_op_aget_wide: /* 0x45 */
/*
* Array get, 64 bits. vAA <- vBB[vCC].
*
* Arrays of long/double are 64-bit aligned.
*/
/* aget-wide vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EAS3(a0, a0, a1) # a0 <- arrayObj + index*width
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
LOAD64_off(a2, a3, a0, MIRROR_WIDE_ARRAY_DATA_OFFSET)
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a2, a3, rOBJ, t0) # vAA/vAA+1 <- a2/a3
/* ------------------------------ */
.balign 128
.L_op_aget_object: /* 0x46 */
/*
* Array object get. vAA <- vBB[vCC].
*
* for: aget-object
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
EXPORT_PC()
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
JAL(artAGetObjectFromMterp) # v0 <- GetObj(array, index)
lw a1, THREAD_EXCEPTION_OFFSET(rSELF)
PREFETCH_INST(2) # load rINST
bnez a1, MterpException
ADVANCE(2) # advance rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_OBJECT_GOTO(v0, rOBJ, t0) # vAA <- v0
/* ------------------------------ */
.balign 128
.L_op_aget_boolean: /* 0x47 */
/*
* Array get, 32 bits or less. vAA <- vBB[vCC].
*
* Note: using the usual FETCH/and/shift stuff, this fits in exactly 17
* instructions. We use a pair of FETCH_Bs instead.
*
* for: aget, aget-boolean, aget-byte, aget-char, aget-short
*
* NOTE: assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 0) # a0 <- arrayObj + index*width
# a1 >= a3; compare unsigned index
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
lbu a2, MIRROR_BOOLEAN_ARRAY_DATA_OFFSET(a0) # a2 <- vBB[vCC]
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a2, rOBJ, t0) # vAA <- a2
/* ------------------------------ */
.balign 128
.L_op_aget_byte: /* 0x48 */
/*
* Array get, 32 bits or less. vAA <- vBB[vCC].
*
* Note: using the usual FETCH/and/shift stuff, this fits in exactly 17
* instructions. We use a pair of FETCH_Bs instead.
*
* for: aget, aget-boolean, aget-byte, aget-char, aget-short
*
* NOTE: assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 0) # a0 <- arrayObj + index*width
# a1 >= a3; compare unsigned index
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
lb a2, MIRROR_BYTE_ARRAY_DATA_OFFSET(a0) # a2 <- vBB[vCC]
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a2, rOBJ, t0) # vAA <- a2
/* ------------------------------ */
.balign 128
.L_op_aget_char: /* 0x49 */
/*
* Array get, 32 bits or less. vAA <- vBB[vCC].
*
* Note: using the usual FETCH/and/shift stuff, this fits in exactly 17
* instructions. We use a pair of FETCH_Bs instead.
*
* for: aget, aget-boolean, aget-byte, aget-char, aget-short
*
* NOTE: assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 1) # a0 <- arrayObj + index*width
# a1 >= a3; compare unsigned index
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
lhu a2, MIRROR_CHAR_ARRAY_DATA_OFFSET(a0) # a2 <- vBB[vCC]
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a2, rOBJ, t0) # vAA <- a2
/* ------------------------------ */
.balign 128
.L_op_aget_short: /* 0x4a */
/*
* Array get, 32 bits or less. vAA <- vBB[vCC].
*
* Note: using the usual FETCH/and/shift stuff, this fits in exactly 17
* instructions. We use a pair of FETCH_Bs instead.
*
* for: aget, aget-boolean, aget-byte, aget-char, aget-short
*
* NOTE: assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 1) # a0 <- arrayObj + index*width
# a1 >= a3; compare unsigned index
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
lh a2, MIRROR_SHORT_ARRAY_DATA_OFFSET(a0) # a2 <- vBB[vCC]
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a2, rOBJ, t0) # vAA <- a2
/* ------------------------------ */
.balign 128
.L_op_aput: /* 0x4b */
/*
* Array put, 32 bits or less. vBB[vCC] <- vAA.
*
* for: aput, aput-boolean, aput-byte, aput-char, aput-short
*
* NOTE: this assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 2) # a0 <- arrayObj + index*width
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_VREG(a2, rOBJ) # a2 <- vAA
GET_INST_OPCODE(t0) # extract opcode from rINST
GET_OPCODE_TARGET(t0)
sw a2, MIRROR_INT_ARRAY_DATA_OFFSET(a0) # vBB[vCC] <- a2
JR(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_aput_wide: /* 0x4c */
/*
* Array put, 64 bits. vBB[vCC] <- vAA.
*/
/* aput-wide vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(t0) # t0 <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EAS3(a0, a0, a1) # a0 <- arrayObj + index*width
EAS2(rOBJ, rFP, t0) # rOBJ <- &fp[AA]
# compare unsigned index, length
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
LOAD64(a2, a3, rOBJ) # a2/a3 <- vAA/vAA+1
GET_INST_OPCODE(t0) # extract opcode from rINST
GET_OPCODE_TARGET(t0)
STORE64_off(a2, a3, a0, MIRROR_WIDE_ARRAY_DATA_OFFSET) # a2/a3 <- vBB[vCC]
JR(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_aput_object: /* 0x4d */
/*
* Store an object into an array. vBB[vCC] <- vAA.
*
*/
/* op vAA, vBB, vCC */
EXPORT_PC()
addu a0, rFP, OFF_FP_SHADOWFRAME
move a1, rPC
move a2, rINST
JAL(MterpAputObject)
beqz v0, MterpPossibleException
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_aput_boolean: /* 0x4e */
/*
* Array put, 32 bits or less. vBB[vCC] <- vAA.
*
* for: aput, aput-boolean, aput-byte, aput-char, aput-short
*
* NOTE: this assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 0) # a0 <- arrayObj + index*width
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_VREG(a2, rOBJ) # a2 <- vAA
GET_INST_OPCODE(t0) # extract opcode from rINST
GET_OPCODE_TARGET(t0)
sb a2, MIRROR_BOOLEAN_ARRAY_DATA_OFFSET(a0) # vBB[vCC] <- a2
JR(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_aput_byte: /* 0x4f */
/*
* Array put, 32 bits or less. vBB[vCC] <- vAA.
*
* for: aput, aput-boolean, aput-byte, aput-char, aput-short
*
* NOTE: this assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 0) # a0 <- arrayObj + index*width
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_VREG(a2, rOBJ) # a2 <- vAA
GET_INST_OPCODE(t0) # extract opcode from rINST
GET_OPCODE_TARGET(t0)
sb a2, MIRROR_BYTE_ARRAY_DATA_OFFSET(a0) # vBB[vCC] <- a2
JR(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_aput_char: /* 0x50 */
/*
* Array put, 32 bits or less. vBB[vCC] <- vAA.
*
* for: aput, aput-boolean, aput-byte, aput-char, aput-short
*
* NOTE: this assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 1) # a0 <- arrayObj + index*width
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_VREG(a2, rOBJ) # a2 <- vAA
GET_INST_OPCODE(t0) # extract opcode from rINST
GET_OPCODE_TARGET(t0)
sh a2, MIRROR_CHAR_ARRAY_DATA_OFFSET(a0) # vBB[vCC] <- a2
JR(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_aput_short: /* 0x51 */
/*
* Array put, 32 bits or less. vBB[vCC] <- vAA.
*
* for: aput, aput-boolean, aput-byte, aput-char, aput-short
*
* NOTE: this assumes data offset for arrays is the same for all non-wide types.
* If this changes, specialize.
*/
/* op vAA, vBB, vCC */
FETCH_B(a2, 1, 0) # a2 <- BB
GET_OPA(rOBJ) # rOBJ <- AA
FETCH_B(a3, 1, 1) # a3 <- CC
GET_VREG(a0, a2) # a0 <- vBB (array object)
GET_VREG(a1, a3) # a1 <- vCC (requested index)
# null array object?
beqz a0, common_errNullObject # yes, bail
LOAD_base_offMirrorArray_length(a3, a0) # a3 <- arrayObj->length
EASN(a0, a0, a1, 1) # a0 <- arrayObj + index*width
bgeu a1, a3, common_errArrayIndex # index >= length, bail
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_VREG(a2, rOBJ) # a2 <- vAA
GET_INST_OPCODE(t0) # extract opcode from rINST
GET_OPCODE_TARGET(t0)
sh a2, MIRROR_SHORT_ARRAY_DATA_OFFSET(a0) # vBB[vCC] <- a2
JR(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_iget: /* 0x52 */
TODO
/* ------------------------------ */
.balign 128
.L_op_iget_wide: /* 0x53 */
TODO
/* ------------------------------ */
.balign 128
.L_op_iget_object: /* 0x54 */
TODO
/* ------------------------------ */
.balign 128
.L_op_iget_boolean: /* 0x55 */
TODO
/* ------------------------------ */
.balign 128
.L_op_iget_byte: /* 0x56 */
TODO
/* ------------------------------ */
.balign 128
.L_op_iget_char: /* 0x57 */
TODO
/* ------------------------------ */
.balign 128
.L_op_iget_short: /* 0x58 */
TODO
/* ------------------------------ */
.balign 128
.L_op_iput: /* 0x59 */
TODO
/* ------------------------------ */
.balign 128
.L_op_iput_wide: /* 0x5a */
TODO
/* ------------------------------ */
.balign 128
.L_op_iput_object: /* 0x5b */
TODO
/* ------------------------------ */
.balign 128
.L_op_iput_boolean: /* 0x5c */
TODO
/* ------------------------------ */
.balign 128
.L_op_iput_byte: /* 0x5d */
TODO
/* ------------------------------ */
.balign 128
.L_op_iput_char: /* 0x5e */
TODO
/* ------------------------------ */
.balign 128
.L_op_iput_short: /* 0x5f */
TODO
/* ------------------------------ */
.balign 128
.L_op_sget: /* 0x60 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sget_wide: /* 0x61 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sget_object: /* 0x62 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sget_boolean: /* 0x63 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sget_byte: /* 0x64 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sget_char: /* 0x65 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sget_short: /* 0x66 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sput: /* 0x67 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sput_wide: /* 0x68 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sput_object: /* 0x69 */
TODO
/* ------------------------------ */
.balign 128
.L_op_sput_boolean: /* 0x6a */
TODO
/* ------------------------------ */
.balign 128
.L_op_sput_byte: /* 0x6b */
TODO
/* ------------------------------ */
.balign 128
.L_op_sput_char: /* 0x6c */
TODO
/* ------------------------------ */
.balign 128
.L_op_sput_short: /* 0x6d */
TODO
/* ------------------------------ */
.balign 128
.L_op_invoke_virtual: /* 0x6e */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeVirtual
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeVirtual)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_super: /* 0x6f */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeSuper
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeSuper)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_direct: /* 0x70 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeDirect
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeDirect)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_static: /* 0x71 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeStatic
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeStatic)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_interface: /* 0x72 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeInterface
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeInterface)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_return_void_no_barrier: /* 0x73 */
lw ra, THREAD_FLAGS_OFFSET(rSELF)
move a0, rSELF
and ra, THREAD_SUSPEND_OR_CHECKPOINT_REQUEST
beqz ra, 1f
JAL(MterpSuspendCheck) # (self)
1:
move v0, zero
move v1, zero
b MterpReturn
/* ------------------------------ */
.balign 128
.L_op_invoke_virtual_range: /* 0x74 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeVirtualRange
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeVirtualRange)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_super_range: /* 0x75 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeSuperRange
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeSuperRange)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_direct_range: /* 0x76 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeDirectRange
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeDirectRange)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_static_range: /* 0x77 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeStaticRange
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeStaticRange)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_interface_range: /* 0x78 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeInterfaceRange
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeInterfaceRange)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_unused_79: /* 0x79 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_7a: /* 0x7a */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_neg_int: /* 0x7b */
/*
* Generic 32-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0 = op a0".
* This could be a MIPS instruction or a function call.
*
* for: int-to-byte, int-to-char, int-to-short,
* neg-int, not-int, neg-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(t0) # t0 <- A+
GET_VREG(a0, a3) # a0 <- vB
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
negu a0, a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t1) # extract opcode from rINST
SET_VREG_GOTO(a0, t0, t1) # vA <- result0
/* ------------------------------ */
.balign 128
.L_op_not_int: /* 0x7c */
/*
* Generic 32-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0 = op a0".
* This could be a MIPS instruction or a function call.
*
* for: int-to-byte, int-to-char, int-to-short,
* neg-int, not-int, neg-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(t0) # t0 <- A+
GET_VREG(a0, a3) # a0 <- vB
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
not a0, a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t1) # extract opcode from rINST
SET_VREG_GOTO(a0, t0, t1) # vA <- result0
/* ------------------------------ */
.balign 128
.L_op_neg_long: /* 0x7d */
/*
* Generic 64-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0/result1 = op a0/a1".
* This could be MIPS instruction or a function call.
*
* For: neg-long, not-long, neg-double,
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
EAS2(a3, rFP, a3) # a3 <- &fp[B]
LOAD64(a0, a1, a3) # a0/a1 <- vA
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
negu v0, a0 # optional op
negu v1, a1; sltu a0, zero, v0; subu v1, v1, a0 # a0/a1 <- op, a2-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vA/vA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_not_long: /* 0x7e */
/*
* Generic 64-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0/result1 = op a0/a1".
* This could be MIPS instruction or a function call.
*
* For: neg-long, not-long, neg-double,
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
EAS2(a3, rFP, a3) # a3 <- &fp[B]
LOAD64(a0, a1, a3) # a0/a1 <- vA
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
not a0, a0 # optional op
not a1, a1 # a0/a1 <- op, a2-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vA/vA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_neg_float: /* 0x7f */
/*
* Generic 32-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0 = op a0".
* This could be a MIPS instruction or a function call.
*
* for: int-to-byte, int-to-char, int-to-short,
* neg-int, not-int, neg-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(t0) # t0 <- A+
GET_VREG(a0, a3) # a0 <- vB
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
addu a0, a0, 0x80000000 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t1) # extract opcode from rINST
SET_VREG_GOTO(a0, t0, t1) # vA <- result0
/* ------------------------------ */
.balign 128
.L_op_neg_double: /* 0x80 */
/*
* Generic 64-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0/result1 = op a0/a1".
* This could be MIPS instruction or a function call.
*
* For: neg-long, not-long, neg-double,
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
EAS2(a3, rFP, a3) # a3 <- &fp[B]
LOAD64(a0, a1, a3) # a0/a1 <- vA
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
addu a1, a1, 0x80000000 # a0/a1 <- op, a2-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vA/vA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_int_to_long: /* 0x81 */
/*
* Generic 32bit-to-64bit unary operation. Provide an "instr" line
* that specifies an instruction that performs "result0/result1 = op a0".
*
* For: int-to-long
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, a3) # a0 <- vB
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
sra a1, a0, 31 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vA/vA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_int_to_float: /* 0x82 */
/*
* Generic 32-bit floating-point unary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = op fa0".
* This could be a MIPS instruction or a function call.
*
* for: int-to-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG_F(fa0, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
cvt.s.w fv0, fa0
GET_INST_OPCODE(t1) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t1) # vA <- fv0
/* ------------------------------ */
.balign 128
.L_op_int_to_double: /* 0x83 */
/*
* Generic 32bit-to-64bit floating-point unary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = op fa0".
*
* For: int-to-double, float-to-double
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG_F(fa0, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
cvt.d.w fv0, fa0
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vA/vA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_long_to_int: /* 0x84 */
/* we ignore the high word, making this equivalent to a 32-bit reg move */
/* for move, move-object, long-to-int */
/* op vA, vB */
GET_OPB(a1) # a1 <- B from 15:12
GET_OPA4(a0) # a0 <- A from 11:8
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_VREG(a2, a1) # a2 <- fp[B]
GET_INST_OPCODE(t0) # t0 <- opcode from rINST
.if 0
SET_VREG_OBJECT_GOTO(a2, a0, t0) # fp[A] <- a2
.else
SET_VREG_GOTO(a2, a0, t0) # fp[A] <- a2
.endif
/* ------------------------------ */
.balign 128
.L_op_long_to_float: /* 0x85 */
/*
* long-to-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
EAS2(a3, rFP, a3) # a3 <- &fp[B]
#ifdef MIPS32REVGE6
LOAD64_F(fv0, fv0f, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
cvt.s.l fv0, fv0
#else
LOAD64(rARG0, rARG1, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
JAL(__floatdisf)
#endif
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vA <- fv0
/* ------------------------------ */
.balign 128
.L_op_long_to_double: /* 0x86 */
/*
* long-to-double
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
EAS2(a3, rFP, a3) # a3 <- &fp[B]
#ifdef MIPS32REVGE6
LOAD64_F(fv0, fv0f, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
cvt.d.l fv0, fv0
#else
LOAD64(rARG0, rARG1, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
JAL(__floatdidf) # a0/a1 <- op, a2-a3 changed
#endif
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vA/vA+1 <- result
/* ------------------------------ */
.balign 128
.L_op_float_to_int: /* 0x87 */
/*
* float-to-int
*
* We have to clip values to int min/max per the specification. The
* expected common case is a "reasonable" value that converts directly
* to modest integer. The EABI convert function isn't doing this for us
* for pre-R6.
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG_F(fa0, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
#ifndef MIPS32REVGE6
li t0, INT_MIN_AS_FLOAT
mtc1 t0, fa1
c.ole.s fcc0, fa1, fa0
#endif
GET_INST_OPCODE(t1) # extract opcode from rINST
#ifndef MIPS32REVGE6
bc1t fcc0, 1f # if INT_MIN <= vB, proceed to truncation
c.eq.s fcc0, fa0, fa0
mtc1 zero, fa0
movt.s fa0, fa1, fcc0 # fa0 = ordered(vB) ? INT_MIN_AS_FLOAT : 0
1:
#endif
trunc.w.s fa0, fa0
SET_VREG_F_GOTO(fa0, rOBJ, t1) # vA <- result
/* ------------------------------ */
.balign 128
.L_op_float_to_long: /* 0x88 */
/*
* float-to-long
*
* We have to clip values to long min/max per the specification. The
* expected common case is a "reasonable" value that converts directly
* to modest integer. The EABI convert function isn't doing this for us
* for pre-R6.
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG_F(fa0, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
#ifdef MIPS32REVGE6
GET_INST_OPCODE(t1) # extract opcode from rINST
trunc.l.s fa0, fa0
SET_VREG64_F_GOTO(fa0, fa0f, rOBJ, t1) # vA <- result
#else
c.eq.s fcc0, fa0, fa0
li rRESULT0, 0
li rRESULT1, 0
bc1f fcc0, .Lop_float_to_long_get_opcode
li t0, LONG_MIN_AS_FLOAT
mtc1 t0, fa1
c.ole.s fcc0, fa0, fa1
li rRESULT1, LONG_MIN_HIGH
bc1t fcc0, .Lop_float_to_long_get_opcode
neg.s fa1, fa1
c.ole.s fcc0, fa1, fa0
nor rRESULT0, rRESULT0, zero
nor rRESULT1, rRESULT1, zero
bc1t fcc0, .Lop_float_to_long_get_opcode
JAL(__fixsfdi)
GET_INST_OPCODE(t1) # extract opcode from rINST
b .Lop_float_to_long_set_vreg
#endif
/* ------------------------------ */
.balign 128
.L_op_float_to_double: /* 0x89 */
/*
* Generic 32bit-to-64bit floating-point unary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = op fa0".
*
* For: int-to-double, float-to-double
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG_F(fa0, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
cvt.d.s fv0, fa0
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vA/vA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_double_to_int: /* 0x8a */
/*
* double-to-int
*
* We have to clip values to int min/max per the specification. The
* expected common case is a "reasonable" value that converts directly
* to modest integer. The EABI convert function isn't doing this for us
* for pre-R6.
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
EAS2(a3, rFP, a3) # a3 <- &fp[B]
LOAD64_F(fa0, fa0f, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
#ifndef MIPS32REVGE6
li t0, INT_MIN_AS_DOUBLE_HIGH
mtc1 zero, fa1
MOVE_TO_FPU_HIGH(t0, fa1, fa1f)
c.ole.d fcc0, fa1, fa0
#endif
GET_INST_OPCODE(t1) # extract opcode from rINST
#ifndef MIPS32REVGE6
bc1t fcc0, 1f # if INT_MIN <= vB, proceed to truncation
c.eq.d fcc0, fa0, fa0
mtc1 zero, fa0
MOVE_TO_FPU_HIGH(zero, fa0, fa0f)
movt.d fa0, fa1, fcc0 # fa0 = ordered(vB) ? INT_MIN_AS_DOUBLE : 0
1:
#endif
trunc.w.d fa0, fa0
SET_VREG_F_GOTO(fa0, rOBJ, t1) # vA <- result
/* ------------------------------ */
.balign 128
.L_op_double_to_long: /* 0x8b */
/*
* double-to-long
*
* We have to clip values to long min/max per the specification. The
* expected common case is a "reasonable" value that converts directly
* to modest integer. The EABI convert function isn't doing this for us
* for pre-R6.
*/
/* unop vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
EAS2(a3, rFP, a3) # a3 <- &fp[B]
LOAD64_F(fa0, fa0f, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
#ifdef MIPS32REVGE6
GET_INST_OPCODE(t1) # extract opcode from rINST
trunc.l.d fa0, fa0
SET_VREG64_F_GOTO(fa0, fa0f, rOBJ, t1) # vA <- result
#else
c.eq.d fcc0, fa0, fa0
li rRESULT0, 0
li rRESULT1, 0
bc1f fcc0, .Lop_double_to_long_get_opcode
li t0, LONG_MIN_AS_DOUBLE_HIGH
mtc1 zero, fa1
MOVE_TO_FPU_HIGH(t0, fa1, fa1f)
c.ole.d fcc0, fa0, fa1
li rRESULT1, LONG_MIN_HIGH
bc1t fcc0, .Lop_double_to_long_get_opcode
neg.d fa1, fa1
c.ole.d fcc0, fa1, fa0
nor rRESULT0, rRESULT0, zero
nor rRESULT1, rRESULT1, zero
bc1t fcc0, .Lop_double_to_long_get_opcode
JAL(__fixdfdi)
GET_INST_OPCODE(t1) # extract opcode from rINST
b .Lop_double_to_long_set_vreg
#endif
/* ------------------------------ */
.balign 128
.L_op_double_to_float: /* 0x8c */
/*
* Generic 64bit-to-32bit floating-point unary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = op fa0".
*
* For: double-to-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
EAS2(a3, rFP, a3) # a3 <- &fp[B]
LOAD64_F(fa0, fa0f, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
cvt.s.d fv0, fa0
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vA <- fv0
/* ------------------------------ */
.balign 128
.L_op_int_to_byte: /* 0x8d */
/*
* Generic 32-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0 = op a0".
* This could be a MIPS instruction or a function call.
*
* for: int-to-byte, int-to-char, int-to-short,
* neg-int, not-int, neg-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(t0) # t0 <- A+
GET_VREG(a0, a3) # a0 <- vB
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
SEB(a0, a0) # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t1) # extract opcode from rINST
SET_VREG_GOTO(a0, t0, t1) # vA <- result0
/* ------------------------------ */
.balign 128
.L_op_int_to_char: /* 0x8e */
/*
* Generic 32-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0 = op a0".
* This could be a MIPS instruction or a function call.
*
* for: int-to-byte, int-to-char, int-to-short,
* neg-int, not-int, neg-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(t0) # t0 <- A+
GET_VREG(a0, a3) # a0 <- vB
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
and a0, 0xffff # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t1) # extract opcode from rINST
SET_VREG_GOTO(a0, t0, t1) # vA <- result0
/* ------------------------------ */
.balign 128
.L_op_int_to_short: /* 0x8f */
/*
* Generic 32-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result0 = op a0".
* This could be a MIPS instruction or a function call.
*
* for: int-to-byte, int-to-char, int-to-short,
* neg-int, not-int, neg-float
*/
/* unop vA, vB */
GET_OPB(a3) # a3 <- B
GET_OPA4(t0) # t0 <- A+
GET_VREG(a0, a3) # a0 <- vB
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
SEH(a0, a0) # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t1) # extract opcode from rINST
SET_VREG_GOTO(a0, t0, t1) # vA <- result0
/* ------------------------------ */
.balign 128
.L_op_add_int: /* 0x90 */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
addu a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_sub_int: /* 0x91 */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
subu a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_mul_int: /* 0x92 */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
mul a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_div_int: /* 0x93 */
#ifdef MIPS32REVGE6
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
div a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
#else
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
div zero, a0, a1 # optional op
mflo a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
#endif
/* ------------------------------ */
.balign 128
.L_op_rem_int: /* 0x94 */
#ifdef MIPS32REVGE6
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
mod a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
#else
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
div zero, a0, a1 # optional op
mfhi a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
#endif
/* ------------------------------ */
.balign 128
.L_op_and_int: /* 0x95 */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
and a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_or_int: /* 0x96 */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
or a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_xor_int: /* 0x97 */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
xor a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_shl_int: /* 0x98 */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
sll a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_shr_int: /* 0x99 */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
sra a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_ushr_int: /* 0x9a */
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0 op a1".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the CPU handles it
* correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG(a1, a3) # a1 <- vCC
GET_VREG(a0, a2) # a0 <- vBB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
srl a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_add_long: /* 0x9b */
/*
* The compiler generates the following sequence for
* [v1 v0] = [a1 a0] + [a3 a2];
* addu v0,a2,a0
* addu a1,a3,a1
* sltu v1,v0,a2
* addu v1,v1,a1
*/
/*
* Generic 64-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a2-a3). Useful for integer division and modulus.
*
* for: add-long, sub-long, div-long, rem-long, and-long, or-long,
* xor-long
*
* IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64(a0, a1, a2) # a0/a1 <- vBB/vBB+1
LOAD64(a2, a3, t1) # a2/a3 <- vCC/vCC+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
addu v0, a2, a0 # optional op
addu a1, a3, a1; sltu v1, v0, a2; addu v1, v1, a1 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vAA/vAA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_sub_long: /* 0x9c */
/*
* For little endian the code sequence looks as follows:
* subu v0,a0,a2
* subu v1,a1,a3
* sltu a0,a0,v0
* subu v1,v1,a0
*/
/*
* Generic 64-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a2-a3). Useful for integer division and modulus.
*
* for: add-long, sub-long, div-long, rem-long, and-long, or-long,
* xor-long
*
* IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64(a0, a1, a2) # a0/a1 <- vBB/vBB+1
LOAD64(a2, a3, t1) # a2/a3 <- vCC/vCC+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
subu v0, a0, a2 # optional op
subu v1, a1, a3; sltu a0, a0, v0; subu v1, v1, a0 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vAA/vAA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_mul_long: /* 0x9d */
/*
* Signed 64-bit integer multiply.
* a1 a0
* x a3 a2
* -------------
* a2a1 a2a0
* a3a0
* a3a1 (<= unused)
* ---------------
* v1 v0
*/
/* mul-long vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
and t0, a0, 255 # a2 <- BB
srl t1, a0, 8 # a3 <- CC
EAS2(t0, rFP, t0) # t0 <- &fp[BB]
LOAD64(a0, a1, t0) # a0/a1 <- vBB/vBB+1
EAS2(t1, rFP, t1) # t0 <- &fp[CC]
LOAD64(a2, a3, t1) # a2/a3 <- vCC/vCC+1
mul v1, a3, a0 # v1= a3a0
#ifdef MIPS32REVGE6
mulu v0, a2, a0 # v0= a2a0
muhu t1, a2, a0
#else
multu a2, a0
mfhi t1
mflo v0 # v0= a2a0
#endif
mul t0, a2, a1 # t0= a2a1
addu v1, v1, t1 # v1+= hi(a2a0)
addu v1, v1, t0 # v1= a3a0 + a2a1;
GET_OPA(a0) # a0 <- AA
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
b .Lop_mul_long_finish
/* ------------------------------ */
.balign 128
.L_op_div_long: /* 0x9e */
/*
* Generic 64-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a2-a3). Useful for integer division and modulus.
*
* for: add-long, sub-long, div-long, rem-long, and-long, or-long,
* xor-long
*
* IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64(a0, a1, a2) # a0/a1 <- vBB/vBB+1
LOAD64(a2, a3, t1) # a2/a3 <- vCC/vCC+1
.if 1
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
JAL(__divdi3) # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vAA/vAA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_rem_long: /* 0x9f */
/*
* Generic 64-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a2-a3). Useful for integer division and modulus.
*
* for: add-long, sub-long, div-long, rem-long, and-long, or-long,
* xor-long
*
* IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64(a0, a1, a2) # a0/a1 <- vBB/vBB+1
LOAD64(a2, a3, t1) # a2/a3 <- vCC/vCC+1
.if 1
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
JAL(__moddi3) # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vAA/vAA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_and_long: /* 0xa0 */
/*
* Generic 64-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a2-a3). Useful for integer division and modulus.
*
* for: add-long, sub-long, div-long, rem-long, and-long, or-long,
* xor-long
*
* IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64(a0, a1, a2) # a0/a1 <- vBB/vBB+1
LOAD64(a2, a3, t1) # a2/a3 <- vCC/vCC+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
and a0, a0, a2 # optional op
and a1, a1, a3 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vAA/vAA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_or_long: /* 0xa1 */
/*
* Generic 64-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a2-a3). Useful for integer division and modulus.
*
* for: add-long, sub-long, div-long, rem-long, and-long, or-long,
* xor-long
*
* IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64(a0, a1, a2) # a0/a1 <- vBB/vBB+1
LOAD64(a2, a3, t1) # a2/a3 <- vCC/vCC+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
or a0, a0, a2 # optional op
or a1, a1, a3 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vAA/vAA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_xor_long: /* 0xa2 */
/*
* Generic 64-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a2-a3). Useful for integer division and modulus.
*
* for: add-long, sub-long, div-long, rem-long, and-long, or-long,
* xor-long
*
* IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64(a0, a1, a2) # a0/a1 <- vBB/vBB+1
LOAD64(a2, a3, t1) # a2/a3 <- vCC/vCC+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
xor a0, a0, a2 # optional op
xor a1, a1, a3 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vAA/vAA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_shl_long: /* 0xa3 */
/*
* Long integer shift. This is different from the generic 32/64-bit
* binary operations because vAA/vBB are 64-bit but vCC (the shift
* distance) is 32-bit. Also, Dalvik requires us to mask off the low
* 6 bits of the shift distance.
*/
/* shl-long vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(t2) # t2 <- AA
and a3, a0, 255 # a3 <- BB
srl a0, a0, 8 # a0 <- CC
EAS2(a3, rFP, a3) # a3 <- &fp[BB]
GET_VREG(a2, a0) # a2 <- vCC
LOAD64(a0, a1, a3) # a0/a1 <- vBB/vBB+1
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
andi v1, a2, 0x20 # shift< shift & 0x20
sll v0, a0, a2 # rlo<- alo << (shift&31)
bnez v1, .Lop_shl_long_finish
not v1, a2 # rhi<- 31-shift (shift is 5b)
srl a0, 1
srl a0, v1 # alo<- alo >> (32-(shift&31))
sll v1, a1, a2 # rhi<- ahi << (shift&31)
or v1, a0 # rhi<- rhi | alo
SET_VREG64_GOTO(v0, v1, t2, t0) # vAA/vAA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_shr_long: /* 0xa4 */
/*
* Long integer shift. This is different from the generic 32/64-bit
* binary operations because vAA/vBB are 64-bit but vCC (the shift
* distance) is 32-bit. Also, Dalvik requires us to mask off the low
* 6 bits of the shift distance.
*/
/* shr-long vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(t3) # t3 <- AA
and a3, a0, 255 # a3 <- BB
srl a0, a0, 8 # a0 <- CC
EAS2(a3, rFP, a3) # a3 <- &fp[BB]
GET_VREG(a2, a0) # a2 <- vCC
LOAD64(a0, a1, a3) # a0/a1 <- vBB/vBB+1
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
andi v0, a2, 0x20 # shift & 0x20
sra v1, a1, a2 # rhi<- ahi >> (shift&31)
bnez v0, .Lop_shr_long_finish
srl v0, a0, a2 # rlo<- alo >> (shift&31)
not a0, a2 # alo<- 31-shift (shift is 5b)
sll a1, 1
sll a1, a0 # ahi<- ahi << (32-(shift&31))
or v0, a1 # rlo<- rlo | ahi
SET_VREG64_GOTO(v0, v1, t3, t0) # vAA/VAA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_ushr_long: /* 0xa5 */
/*
* Long integer shift. This is different from the generic 32/64-bit
* binary operations because vAA/vBB are 64-bit but vCC (the shift
* distance) is 32-bit. Also, Dalvik requires us to mask off the low
* 6 bits of the shift distance.
*/
/* ushr-long vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a3, a0, 255 # a3 <- BB
srl a0, a0, 8 # a0 <- CC
EAS2(a3, rFP, a3) # a3 <- &fp[BB]
GET_VREG(a2, a0) # a2 <- vCC
LOAD64(a0, a1, a3) # a0/a1 <- vBB/vBB+1
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
andi v0, a2, 0x20 # shift & 0x20
srl v1, a1, a2 # rhi<- ahi >> (shift&31)
bnez v0, .Lop_ushr_long_finish
srl v0, a0, a2 # rlo<- alo >> (shift&31)
not a0, a2 # alo<- 31-n (shift is 5b)
sll a1, 1
sll a1, a0 # ahi<- ahi << (32-(shift&31))
or v0, a1 # rlo<- rlo | ahi
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vAA/vAA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_add_float: /* 0xa6 */
/*
* Generic 32-bit binary float operation.
*
* For: add-fp, sub-fp, mul-fp, div-fp, rem-fp
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG_F(fa1, a3) # a1 <- vCC
GET_VREG_F(fa0, a2) # a0 <- vBB
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
add.s fv0, fa0, fa1 # f0 = result
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vAA <- fv0
/* ------------------------------ */
.balign 128
.L_op_sub_float: /* 0xa7 */
/*
* Generic 32-bit binary float operation.
*
* For: add-fp, sub-fp, mul-fp, div-fp, rem-fp
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG_F(fa1, a3) # a1 <- vCC
GET_VREG_F(fa0, a2) # a0 <- vBB
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
sub.s fv0, fa0, fa1 # f0 = result
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vAA <- fv0
/* ------------------------------ */
.balign 128
.L_op_mul_float: /* 0xa8 */
/*
* Generic 32-bit binary float operation.
*
* For: add-fp, sub-fp, mul-fp, div-fp, rem-fp
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG_F(fa1, a3) # a1 <- vCC
GET_VREG_F(fa0, a2) # a0 <- vBB
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
mul.s fv0, fa0, fa1 # f0 = result
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vAA <- fv0
/* ------------------------------ */
.balign 128
.L_op_div_float: /* 0xa9 */
/*
* Generic 32-bit binary float operation.
*
* For: add-fp, sub-fp, mul-fp, div-fp, rem-fp
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG_F(fa1, a3) # a1 <- vCC
GET_VREG_F(fa0, a2) # a0 <- vBB
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
div.s fv0, fa0, fa1 # f0 = result
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vAA <- fv0
/* ------------------------------ */
.balign 128
.L_op_rem_float: /* 0xaa */
/*
* Generic 32-bit binary float operation.
*
* For: add-fp, sub-fp, mul-fp, div-fp, rem-fp
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
srl a3, a0, 8 # a3 <- CC
and a2, a0, 255 # a2 <- BB
GET_VREG_F(fa1, a3) # a1 <- vCC
GET_VREG_F(fa0, a2) # a0 <- vBB
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
JAL(fmodf) # f0 = result
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vAA <- fv0
/* ------------------------------ */
.balign 128
.L_op_add_double: /* 0xab */
/*
* Generic 64-bit floating-point binary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* for: add-double, sub-double, mul-double, div-double,
* rem-double
*
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64_F(fa0, fa0f, a2)
LOAD64_F(fa1, fa1f, t1)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
add.d fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vAA/vAA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_sub_double: /* 0xac */
/*
* Generic 64-bit floating-point binary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* for: add-double, sub-double, mul-double, div-double,
* rem-double
*
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64_F(fa0, fa0f, a2)
LOAD64_F(fa1, fa1f, t1)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
sub.d fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vAA/vAA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_mul_double: /* 0xad */
/*
* Generic 64-bit floating-point binary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* for: add-double, sub-double, mul-double, div-double,
* rem-double
*
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64_F(fa0, fa0f, a2)
LOAD64_F(fa1, fa1f, t1)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
mul.d fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vAA/vAA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_div_double: /* 0xae */
/*
* Generic 64-bit floating-point binary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* for: add-double, sub-double, mul-double, div-double,
* rem-double
*
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64_F(fa0, fa0f, a2)
LOAD64_F(fa1, fa1f, t1)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
div.d fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vAA/vAA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_rem_double: /* 0xaf */
/*
* Generic 64-bit floating-point binary operation. Provide an "instr"
* line that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* for: add-double, sub-double, mul-double, div-double,
* rem-double
*
*/
/* binop vAA, vBB, vCC */
FETCH(a0, 1) # a0 <- CCBB
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a0, 255 # a2 <- BB
srl a3, a0, 8 # a3 <- CC
EAS2(a2, rFP, a2) # a2 <- &fp[BB]
EAS2(t1, rFP, a3) # a3 <- &fp[CC]
LOAD64_F(fa0, fa0f, a2)
LOAD64_F(fa1, fa1f, t1)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
JAL(fmod)
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vAA/vAA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_add_int_2addr: /* 0xb0 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
addu a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_sub_int_2addr: /* 0xb1 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
subu a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_mul_int_2addr: /* 0xb2 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
mul a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_div_int_2addr: /* 0xb3 */
#ifdef MIPS32REVGE6
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
div a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
#else
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
div zero, a0, a1 # optional op
mflo a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
#endif
/* ------------------------------ */
.balign 128
.L_op_rem_int_2addr: /* 0xb4 */
#ifdef MIPS32REVGE6
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
mod a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
#else
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
div zero, a0, a1 # optional op
mfhi a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
#endif
/* ------------------------------ */
.balign 128
.L_op_and_int_2addr: /* 0xb5 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
and a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_or_int_2addr: /* 0xb6 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
or a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_xor_int_2addr: /* 0xb7 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
xor a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_shl_int_2addr: /* 0xb8 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
sll a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_shr_int_2addr: /* 0xb9 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
sra a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_ushr_int_2addr: /* 0xba */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call.
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a0, rOBJ) # a0 <- vA
GET_VREG(a1, a3) # a1 <- vB
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
srl a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_add_long_2addr: /* 0xbb */
/*
* See op_add_long.S for details
*/
/*
* Generic 64-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vB (a2-a3). Useful for integer division and modulus.
*
* For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
* and-long/2addr, or-long/2addr, xor-long/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64(a2, a3, a1) # a2/a3 <- vB/vB+1
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
addu v0, a2, a0 # optional op
addu a1, a3, a1; sltu v1, v0, a2; addu v1, v1, a1 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vA/vA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_sub_long_2addr: /* 0xbc */
/*
* See op_sub_long.S for more details
*/
/*
* Generic 64-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vB (a2-a3). Useful for integer division and modulus.
*
* For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
* and-long/2addr, or-long/2addr, xor-long/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64(a2, a3, a1) # a2/a3 <- vB/vB+1
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
subu v0, a0, a2 # optional op
subu v1, a1, a3; sltu a0, a0, v0; subu v1, v1, a0 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vA/vA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_mul_long_2addr: /* 0xbd */
/*
* See op_mul_long.S for more details
*/
/* mul-long/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64(a0, a1, t0) # vAA.low / high
GET_OPB(t1) # t1 <- B
EAS2(t1, rFP, t1) # t1 <- &fp[B]
LOAD64(a2, a3, t1) # vBB.low / high
mul v1, a3, a0 # v1= a3a0
#ifdef MIPS32REVGE6
mulu v0, a2, a0 # v0= a2a0
muhu t1, a2, a0
#else
multu a2, a0
mfhi t1
mflo v0 # v0= a2a0
#endif
mul t2, a2, a1 # t2= a2a1
addu v1, v1, t1 # v1= a3a0 + hi(a2a0)
addu v1, v1, t2 # v1= v1 + a2a1;
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t1) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t1) # vA/vA+1 <- v0(low)/v1(high)
/* ------------------------------ */
.balign 128
.L_op_div_long_2addr: /* 0xbe */
/*
* Generic 64-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vB (a2-a3). Useful for integer division and modulus.
*
* For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
* and-long/2addr, or-long/2addr, xor-long/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64(a2, a3, a1) # a2/a3 <- vB/vB+1
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
.if 1
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
JAL(__divdi3) # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vA/vA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_rem_long_2addr: /* 0xbf */
/*
* Generic 64-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vB (a2-a3). Useful for integer division and modulus.
*
* For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
* and-long/2addr, or-long/2addr, xor-long/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64(a2, a3, a1) # a2/a3 <- vB/vB+1
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
.if 1
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
# optional op
JAL(__moddi3) # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vA/vA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_and_long_2addr: /* 0xc0 */
/*
* Generic 64-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vB (a2-a3). Useful for integer division and modulus.
*
* For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
* and-long/2addr, or-long/2addr, xor-long/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64(a2, a3, a1) # a2/a3 <- vB/vB+1
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
and a0, a0, a2 # optional op
and a1, a1, a3 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vA/vA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_or_long_2addr: /* 0xc1 */
/*
* Generic 64-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vB (a2-a3). Useful for integer division and modulus.
*
* For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
* and-long/2addr, or-long/2addr, xor-long/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64(a2, a3, a1) # a2/a3 <- vB/vB+1
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
or a0, a0, a2 # optional op
or a1, a1, a3 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vA/vA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_xor_long_2addr: /* 0xc2 */
/*
* Generic 64-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0-a1 op a2-a3".
* This could be a MIPS instruction or a function call. (If the result
* comes back in a register pair other than a0-a1, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vB (a2-a3). Useful for integer division and modulus.
*
* For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
* and-long/2addr, or-long/2addr, xor-long/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64(a2, a3, a1) # a2/a3 <- vB/vB+1
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
.if 0
or t0, a2, a3 # second arg (a2-a3) is zero?
beqz t0, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
xor a0, a0, a2 # optional op
xor a1, a1, a3 # result <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, rOBJ, t0) # vA/vA+1 <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_shl_long_2addr: /* 0xc3 */
/*
* Long integer shift, 2addr version. vA is 64-bit value/result, vB is
* 32-bit shift distance.
*/
/* shl-long/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a2, a3) # a2 <- vB
EAS2(t2, rFP, rOBJ) # t2 <- &fp[A]
LOAD64(a0, a1, t2) # a0/a1 <- vA/vA+1
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
andi v1, a2, 0x20 # shift< shift & 0x20
sll v0, a0, a2 # rlo<- alo << (shift&31)
bnez v1, .Lop_shl_long_2addr_finish
not v1, a2 # rhi<- 31-shift (shift is 5b)
srl a0, 1
srl a0, v1 # alo<- alo >> (32-(shift&31))
sll v1, a1, a2 # rhi<- ahi << (shift&31)
or v1, a0 # rhi<- rhi | alo
SET_VREG64_GOTO(v0, v1, rOBJ, t0) # vA/vA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_shr_long_2addr: /* 0xc4 */
/*
* Long integer shift, 2addr version. vA is 64-bit value/result, vB is
* 32-bit shift distance.
*/
/* shr-long/2addr vA, vB */
GET_OPA4(t2) # t2 <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a2, a3) # a2 <- vB
EAS2(t0, rFP, t2) # t0 <- &fp[A]
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
andi v0, a2, 0x20 # shift & 0x20
sra v1, a1, a2 # rhi<- ahi >> (shift&31)
bnez v0, .Lop_shr_long_2addr_finish
srl v0, a0, a2 # rlo<- alo >> (shift&31)
not a0, a2 # alo<- 31-shift (shift is 5b)
sll a1, 1
sll a1, a0 # ahi<- ahi << (32-(shift&31))
or v0, a1 # rlo<- rlo | ahi
SET_VREG64_GOTO(v0, v1, t2, t0) # vA/vA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_ushr_long_2addr: /* 0xc5 */
/*
* Long integer shift, 2addr version. vA is 64-bit value/result, vB is
* 32-bit shift distance.
*/
/* ushr-long/2addr vA, vB */
GET_OPA4(t3) # t3 <- A+
GET_OPB(a3) # a3 <- B
GET_VREG(a2, a3) # a2 <- vB
EAS2(t0, rFP, t3) # t0 <- &fp[A]
LOAD64(a0, a1, t0) # a0/a1 <- vA/vA+1
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
andi v0, a2, 0x20 # shift & 0x20
srl v1, a1, a2 # rhi<- ahi >> (shift&31)
bnez v0, .Lop_ushr_long_2addr_finish
srl v0, a0, a2 # rlo<- alo >> (shift&31)
not a0, a2 # alo<- 31-n (shift is 5b)
sll a1, 1
sll a1, a0 # ahi<- ahi << (32-(shift&31))
or v0, a1 # rlo<- rlo | ahi
SET_VREG64_GOTO(v0, v1, t3, t0) # vA/vA+1 <- v0/v1
/* ------------------------------ */
.balign 128
.L_op_add_float_2addr: /* 0xc6 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr"
* that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-float/2addr, sub-float/2addr, mul-float/2addr,
* div-float/2addr, rem-float/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG_F(fa0, rOBJ)
GET_VREG_F(fa1, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
add.s fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vA <- result
/* ------------------------------ */
.balign 128
.L_op_sub_float_2addr: /* 0xc7 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr"
* that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-float/2addr, sub-float/2addr, mul-float/2addr,
* div-float/2addr, rem-float/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG_F(fa0, rOBJ)
GET_VREG_F(fa1, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
sub.s fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vA <- result
/* ------------------------------ */
.balign 128
.L_op_mul_float_2addr: /* 0xc8 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr"
* that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-float/2addr, sub-float/2addr, mul-float/2addr,
* div-float/2addr, rem-float/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG_F(fa0, rOBJ)
GET_VREG_F(fa1, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
mul.s fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vA <- result
/* ------------------------------ */
.balign 128
.L_op_div_float_2addr: /* 0xc9 */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr"
* that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-float/2addr, sub-float/2addr, mul-float/2addr,
* div-float/2addr, rem-float/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG_F(fa0, rOBJ)
GET_VREG_F(fa1, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
div.s fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vA <- result
/* ------------------------------ */
.balign 128
.L_op_rem_float_2addr: /* 0xca */
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr"
* that specifies an instruction that performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-float/2addr, sub-float/2addr, mul-float/2addr,
* div-float/2addr, rem-float/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a3) # a3 <- B
GET_VREG_F(fa0, rOBJ)
GET_VREG_F(fa1, a3)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
JAL(fmodf)
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_F_GOTO(fv0, rOBJ, t0) # vA <- result
/* ------------------------------ */
.balign 128
.L_op_add_double_2addr: /* 0xcb */
/*
* Generic 64-bit floating-point "/2addr" binary operation.
* Provide an "instr" line that specifies an instruction that
* performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-double/2addr, sub-double/2addr, mul-double/2addr,
* div-double/2addr, rem-double/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64_F(fa0, fa0f, t0)
LOAD64_F(fa1, fa1f, a1)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
add.d fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vA/vA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_sub_double_2addr: /* 0xcc */
/*
* Generic 64-bit floating-point "/2addr" binary operation.
* Provide an "instr" line that specifies an instruction that
* performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-double/2addr, sub-double/2addr, mul-double/2addr,
* div-double/2addr, rem-double/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64_F(fa0, fa0f, t0)
LOAD64_F(fa1, fa1f, a1)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
sub.d fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vA/vA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_mul_double_2addr: /* 0xcd */
/*
* Generic 64-bit floating-point "/2addr" binary operation.
* Provide an "instr" line that specifies an instruction that
* performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-double/2addr, sub-double/2addr, mul-double/2addr,
* div-double/2addr, rem-double/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64_F(fa0, fa0f, t0)
LOAD64_F(fa1, fa1f, a1)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
mul.d fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vA/vA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_div_double_2addr: /* 0xce */
/*
* Generic 64-bit floating-point "/2addr" binary operation.
* Provide an "instr" line that specifies an instruction that
* performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-double/2addr, sub-double/2addr, mul-double/2addr,
* div-double/2addr, rem-double/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64_F(fa0, fa0f, t0)
LOAD64_F(fa1, fa1f, a1)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
div.d fv0, fa0, fa1
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vA/vA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_rem_double_2addr: /* 0xcf */
/*
* Generic 64-bit floating-point "/2addr" binary operation.
* Provide an "instr" line that specifies an instruction that
* performs "fv0 = fa0 op fa1".
* This could be an MIPS instruction or a function call.
*
* For: add-double/2addr, sub-double/2addr, mul-double/2addr,
* div-double/2addr, rem-double/2addr
*/
/* binop/2addr vA, vB */
GET_OPA4(rOBJ) # rOBJ <- A+
GET_OPB(a1) # a1 <- B
EAS2(a1, rFP, a1) # a1 <- &fp[B]
EAS2(t0, rFP, rOBJ) # t0 <- &fp[A]
LOAD64_F(fa0, fa0f, t0)
LOAD64_F(fa1, fa1f, a1)
FETCH_ADVANCE_INST(1) # advance rPC, load rINST
JAL(fmod)
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_F_GOTO(fv0, fv0f, rOBJ, t0) # vA/vA+1 <- fv0
/* ------------------------------ */
.balign 128
.L_op_add_int_lit16: /* 0xd0 */
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 0
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
addu a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_rsub_int: /* 0xd1 */
/* this op is "rsub-int", but can be thought of as "rsub-int/lit16" */
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 0
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
subu a0, a1, a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_mul_int_lit16: /* 0xd2 */
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 0
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
mul a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_div_int_lit16: /* 0xd3 */
#ifdef MIPS32REVGE6
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 1
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
div a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
#else
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 1
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
div zero, a0, a1 # optional op
mflo a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
#endif
/* ------------------------------ */
.balign 128
.L_op_rem_int_lit16: /* 0xd4 */
#ifdef MIPS32REVGE6
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 1
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
mod a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
#else
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 1
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
div zero, a0, a1 # optional op
mfhi a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
#endif
/* ------------------------------ */
.balign 128
.L_op_and_int_lit16: /* 0xd5 */
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 0
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
and a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_or_int_lit16: /* 0xd6 */
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 0
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
or a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_xor_int_lit16: /* 0xd7 */
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, +CCCC */
FETCH_S(a1, 1) # a1 <- ssssCCCC (sign-extended)
GET_OPB(a2) # a2 <- B
GET_OPA4(rOBJ) # rOBJ <- A+
GET_VREG(a0, a2) # a0 <- vB
.if 0
# cmp a1, 0; is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
xor a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vA <- a0
/* ------------------------------ */
.balign 128
.L_op_add_int_lit8: /* 0xd8 */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
addu a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_rsub_int_lit8: /* 0xd9 */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
subu a0, a1, a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_mul_int_lit8: /* 0xda */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
mul a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_div_int_lit8: /* 0xdb */
#ifdef MIPS32REVGE6
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
div a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
#else
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
div zero, a0, a1 # optional op
mflo a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
#endif
/* ------------------------------ */
.balign 128
.L_op_rem_int_lit8: /* 0xdc */
#ifdef MIPS32REVGE6
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
mod a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
#else
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 1
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
div zero, a0, a1 # optional op
mfhi a0 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
#endif
/* ------------------------------ */
.balign 128
.L_op_and_int_lit8: /* 0xdd */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
and a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_or_int_lit8: /* 0xde */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
or a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_xor_int_lit8: /* 0xdf */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
xor a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_shl_int_lit8: /* 0xe0 */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
sll a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_shr_int_lit8: /* 0xe1 */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
sra a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_ushr_int_lit8: /* 0xe2 */
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = a0 op a1".
* This could be an MIPS instruction or a function call. (If the result
* comes back in a register other than a0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (a1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, +CC */
FETCH_S(a3, 1) # a3 <- ssssCCBB (sign-extended for CC)
GET_OPA(rOBJ) # rOBJ <- AA
and a2, a3, 255 # a2 <- BB
GET_VREG(a0, a2) # a0 <- vBB
sra a1, a3, 8 # a1 <- ssssssCC (sign extended)
.if 0
# is second operand zero?
beqz a1, common_errDivideByZero
.endif
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
# optional op
srl a0, a0, a1 # a0 <- op, a0-a3 changed
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, rOBJ, t0) # vAA <- a0
/* ------------------------------ */
.balign 128
.L_op_iget_quick: /* 0xe3 */
/* For: iget-quick, iget-boolean-quick, iget-byte-quick, iget-char-quick, iget-short-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- object we're operating on
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
# check object for null
beqz a3, common_errNullObject # object was null
addu t0, a3, a1
lw a0, 0(t0) # a0 <- obj.field (8/16/32 bits)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, a2, t0) # fp[A] <- a0
/* ------------------------------ */
.balign 128
.L_op_iget_wide_quick: /* 0xe4 */
/* iget-wide-quick vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- object we're operating on
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
# check object for null
beqz a3, common_errNullObject # object was null
addu t0, a3, a1 # t0 <- a3 + a1
LOAD64(a0, a1, t0) # a0 <- obj.field (64 bits, aligned)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(a0, a1, a2, t0) # fp[A] <- a0/a1
/* ------------------------------ */
.balign 128
.L_op_iget_object_quick: /* 0xe5 */
/* For: iget-object-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
FETCH(a1, 1) # a1 <- field byte offset
EXPORT_PC()
GET_VREG(a0, a2) # a0 <- object we're operating on
JAL(artIGetObjectFromMterp) # v0 <- GetObj(obj, offset)
lw a3, THREAD_EXCEPTION_OFFSET(rSELF)
GET_OPA4(a2) # a2<- A+
PREFETCH_INST(2) # load rINST
bnez a3, MterpPossibleException # bail out
ADVANCE(2) # advance rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_OBJECT_GOTO(v0, a2, t0) # fp[A] <- v0
/* ------------------------------ */
.balign 128
.L_op_iput_quick: /* 0xe6 */
/* For: iput-quick, iput-object-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- fp[B], the object pointer
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
beqz a3, common_errNullObject # object was null
GET_VREG(a0, a2) # a0 <- fp[A]
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
addu t0, a3, a1
GET_INST_OPCODE(t1) # extract opcode from rINST
GET_OPCODE_TARGET(t1)
sw a0, 0(t0) # obj.field (8/16/32 bits) <- a0
JR(t1) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_iput_wide_quick: /* 0xe7 */
/* iput-wide-quick vA, vB, offset@CCCC */
GET_OPA4(a0) # a0 <- A(+)
GET_OPB(a1) # a1 <- B
GET_VREG(a2, a1) # a2 <- fp[B], the object pointer
# check object for null
beqz a2, common_errNullObject # object was null
EAS2(a3, rFP, a0) # a3 <- &fp[A]
LOAD64(a0, a1, a3) # a0/a1 <- fp[A]
FETCH(a3, 1) # a3 <- field byte offset
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
addu a2, a2, a3 # obj.field (64 bits, aligned) <- a0/a1
GET_INST_OPCODE(t0) # extract opcode from rINST
GET_OPCODE_TARGET(t0)
STORE64(a0, a1, a2) # obj.field (64 bits, aligned) <- a0/a1
JR(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_iput_object_quick: /* 0xe8 */
/* For: iput-object-quick */
/* op vA, vB, offset@CCCC */
EXPORT_PC()
addu a0, rFP, OFF_FP_SHADOWFRAME
move a1, rPC
move a2, rINST
JAL(MterpIputObjectQuick)
beqz v0, MterpException
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_invoke_virtual_quick: /* 0xe9 */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeVirtualQuick
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeVirtualQuick)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_virtual_range_quick: /* 0xea */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeVirtualQuickRange
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeVirtualQuickRange)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_iput_boolean_quick: /* 0xeb */
/* For: iput-quick, iput-object-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- fp[B], the object pointer
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
beqz a3, common_errNullObject # object was null
GET_VREG(a0, a2) # a0 <- fp[A]
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
addu t0, a3, a1
GET_INST_OPCODE(t1) # extract opcode from rINST
GET_OPCODE_TARGET(t1)
sb a0, 0(t0) # obj.field (8/16/32 bits) <- a0
JR(t1) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_iput_byte_quick: /* 0xec */
/* For: iput-quick, iput-object-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- fp[B], the object pointer
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
beqz a3, common_errNullObject # object was null
GET_VREG(a0, a2) # a0 <- fp[A]
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
addu t0, a3, a1
GET_INST_OPCODE(t1) # extract opcode from rINST
GET_OPCODE_TARGET(t1)
sb a0, 0(t0) # obj.field (8/16/32 bits) <- a0
JR(t1) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_iput_char_quick: /* 0xed */
/* For: iput-quick, iput-object-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- fp[B], the object pointer
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
beqz a3, common_errNullObject # object was null
GET_VREG(a0, a2) # a0 <- fp[A]
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
addu t0, a3, a1
GET_INST_OPCODE(t1) # extract opcode from rINST
GET_OPCODE_TARGET(t1)
sh a0, 0(t0) # obj.field (8/16/32 bits) <- a0
JR(t1) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_iput_short_quick: /* 0xee */
/* For: iput-quick, iput-object-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- fp[B], the object pointer
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
beqz a3, common_errNullObject # object was null
GET_VREG(a0, a2) # a0 <- fp[A]
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
addu t0, a3, a1
GET_INST_OPCODE(t1) # extract opcode from rINST
GET_OPCODE_TARGET(t1)
sh a0, 0(t0) # obj.field (8/16/32 bits) <- a0
JR(t1) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_iget_boolean_quick: /* 0xef */
/* For: iget-quick, iget-boolean-quick, iget-byte-quick, iget-char-quick, iget-short-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- object we're operating on
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
# check object for null
beqz a3, common_errNullObject # object was null
addu t0, a3, a1
lbu a0, 0(t0) # a0 <- obj.field (8/16/32 bits)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, a2, t0) # fp[A] <- a0
/* ------------------------------ */
.balign 128
.L_op_iget_byte_quick: /* 0xf0 */
/* For: iget-quick, iget-boolean-quick, iget-byte-quick, iget-char-quick, iget-short-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- object we're operating on
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
# check object for null
beqz a3, common_errNullObject # object was null
addu t0, a3, a1
lb a0, 0(t0) # a0 <- obj.field (8/16/32 bits)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, a2, t0) # fp[A] <- a0
/* ------------------------------ */
.balign 128
.L_op_iget_char_quick: /* 0xf1 */
/* For: iget-quick, iget-boolean-quick, iget-byte-quick, iget-char-quick, iget-short-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- object we're operating on
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
# check object for null
beqz a3, common_errNullObject # object was null
addu t0, a3, a1
lhu a0, 0(t0) # a0 <- obj.field (8/16/32 bits)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, a2, t0) # fp[A] <- a0
/* ------------------------------ */
.balign 128
.L_op_iget_short_quick: /* 0xf2 */
/* For: iget-quick, iget-boolean-quick, iget-byte-quick, iget-char-quick, iget-short-quick */
/* op vA, vB, offset@CCCC */
GET_OPB(a2) # a2 <- B
GET_VREG(a3, a2) # a3 <- object we're operating on
FETCH(a1, 1) # a1 <- field byte offset
GET_OPA4(a2) # a2 <- A(+)
# check object for null
beqz a3, common_errNullObject # object was null
addu t0, a3, a1
lh a0, 0(t0) # a0 <- obj.field (8/16/32 bits)
FETCH_ADVANCE_INST(2) # advance rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG_GOTO(a0, a2, t0) # fp[A] <- a0
/* ------------------------------ */
.balign 128
.L_op_unused_f3: /* 0xf3 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_f4: /* 0xf4 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_f5: /* 0xf5 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_f6: /* 0xf6 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_f7: /* 0xf7 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_f8: /* 0xf8 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_unused_f9: /* 0xf9 */
/*
* Bail to reference interpreter to throw.
*/
b MterpFallback
/* ------------------------------ */
.balign 128
.L_op_invoke_polymorphic: /* 0xfa */
/*
* invoke-polymorphic handler wrapper.
*/
/* op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB, proto@HHHH */
.extern MterpInvokePolymorphic
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokePolymorphic)
beqz v0, MterpException
FETCH_ADVANCE_INST(4)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_polymorphic_range: /* 0xfb */
/*
* invoke-polymorphic handler wrapper.
*/
/* op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB, proto@HHHH */
.extern MterpInvokePolymorphicRange
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokePolymorphicRange)
beqz v0, MterpException
FETCH_ADVANCE_INST(4)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_custom: /* 0xfc */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeCustom
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeCustom)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_invoke_custom_range: /* 0xfd */
/*
* Generic invoke handler wrapper.
*/
/* op vB, {vD, vE, vF, vG, vA}, class@CCCC */
/* op {vCCCC..v(CCCC+AA-1)}, meth@BBBB */
.extern MterpInvokeCustomRange
EXPORT_PC()
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rPC
move a3, rINST
JAL(MterpInvokeCustomRange)
beqz v0, MterpException
FETCH_ADVANCE_INST(3)
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* ------------------------------ */
.balign 128
.L_op_const_method_handle: /* 0xfe */
/* const/class vAA, type@BBBB */
/* const/method-handle vAA, method_handle@BBBB */
/* const/method-type vAA, proto@BBBB */
/* const/string vAA, string@@BBBB */
.extern MterpConstMethodHandle
EXPORT_PC()
FETCH(a0, 1) # a0 <- BBBB
GET_OPA(a1) # a1 <- AA
addu a2, rFP, OFF_FP_SHADOWFRAME # a2 <- shadow frame
move a3, rSELF
JAL(MterpConstMethodHandle) # v0 <- Mterp(index, tgt_reg, shadow_frame, self)
PREFETCH_INST(2) # load rINST
bnez v0, MterpPossibleException
ADVANCE(2) # advance rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/* ------------------------------ */
.balign 128
.L_op_const_method_type: /* 0xff */
/* const/class vAA, type@BBBB */
/* const/method-handle vAA, method_handle@BBBB */
/* const/method-type vAA, proto@BBBB */
/* const/string vAA, string@@BBBB */
.extern MterpConstMethodType
EXPORT_PC()
FETCH(a0, 1) # a0 <- BBBB
GET_OPA(a1) # a1 <- AA
addu a2, rFP, OFF_FP_SHADOWFRAME # a2 <- shadow frame
move a3, rSELF
JAL(MterpConstMethodType) # v0 <- Mterp(index, tgt_reg, shadow_frame, self)
PREFETCH_INST(2) # load rINST
bnez v0, MterpPossibleException
ADVANCE(2) # advance rPC
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
.balign 128
.global artMterpAsmInstructionEnd
artMterpAsmInstructionEnd:
.global artMterpAsmSisterStart
.text
.balign 4
artMterpAsmSisterStart:
#ifndef MIPS32REVGE6
.Lop_float_to_long_get_opcode:
GET_INST_OPCODE(t1) # extract opcode from rINST
.Lop_float_to_long_set_vreg:
SET_VREG64_GOTO(rRESULT0, rRESULT1, rOBJ, t1) # vA/vA+1 <- v0/v1
#endif
#ifndef MIPS32REVGE6
.Lop_double_to_long_get_opcode:
GET_INST_OPCODE(t1) # extract opcode from rINST
.Lop_double_to_long_set_vreg:
SET_VREG64_GOTO(rRESULT0, rRESULT1, rOBJ, t1) # vA/vA+1 <- v0/v1
#endif
.Lop_mul_long_finish:
GET_INST_OPCODE(t0) # extract opcode from rINST
SET_VREG64_GOTO(v0, v1, a0, t0) # vAA/vAA+1 <- v0(low)/v1(high)
.Lop_shl_long_finish:
SET_VREG64_GOTO(zero, v0, t2, t0) # vAA/vAA+1 <- rlo/rhi
.Lop_shr_long_finish:
sra a3, a1, 31 # a3<- sign(ah)
SET_VREG64_GOTO(v1, a3, t3, t0) # vAA/VAA+1 <- rlo/rhi
.Lop_ushr_long_finish:
SET_VREG64_GOTO(v1, zero, rOBJ, t0) # vAA/vAA+1 <- rlo/rhi
.Lop_shl_long_2addr_finish:
SET_VREG64_GOTO(zero, v0, rOBJ, t0) # vA/vA+1 <- rlo/rhi
.Lop_shr_long_2addr_finish:
sra a3, a1, 31 # a3<- sign(ah)
SET_VREG64_GOTO(v1, a3, t2, t0) # vA/vA+1 <- rlo/rhi
.Lop_ushr_long_2addr_finish:
SET_VREG64_GOTO(v1, zero, t3, t0) # vA/vA+1 <- rlo/rhi
.global artMterpAsmSisterEnd
artMterpAsmSisterEnd:
.global artMterpAsmAltInstructionStart
artMterpAsmAltInstructionStart = .L_ALT_op_nop
.text
/* ------------------------------ */
.balign 128
.L_ALT_op_nop: /* 0x00 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (0 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move: /* 0x01 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (1 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_from16: /* 0x02 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (2 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_16: /* 0x03 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (3 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_wide: /* 0x04 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (4 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_wide_from16: /* 0x05 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (5 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_wide_16: /* 0x06 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (6 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_object: /* 0x07 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (7 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_object_from16: /* 0x08 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (8 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_object_16: /* 0x09 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (9 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_result: /* 0x0a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (10 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_result_wide: /* 0x0b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (11 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_result_object: /* 0x0c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (12 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_move_exception: /* 0x0d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (13 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_return_void: /* 0x0e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (14 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_return: /* 0x0f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (15 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_return_wide: /* 0x10 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (16 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_return_object: /* 0x11 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (17 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_4: /* 0x12 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (18 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_16: /* 0x13 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (19 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const: /* 0x14 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (20 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_high16: /* 0x15 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (21 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_wide_16: /* 0x16 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (22 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_wide_32: /* 0x17 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (23 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_wide: /* 0x18 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (24 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_wide_high16: /* 0x19 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (25 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_string: /* 0x1a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (26 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_string_jumbo: /* 0x1b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (27 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_class: /* 0x1c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (28 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_monitor_enter: /* 0x1d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (29 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_monitor_exit: /* 0x1e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (30 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_check_cast: /* 0x1f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (31 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_instance_of: /* 0x20 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (32 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_array_length: /* 0x21 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (33 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_new_instance: /* 0x22 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (34 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_new_array: /* 0x23 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (35 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_filled_new_array: /* 0x24 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (36 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_filled_new_array_range: /* 0x25 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (37 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_fill_array_data: /* 0x26 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (38 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_throw: /* 0x27 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (39 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_goto: /* 0x28 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (40 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_goto_16: /* 0x29 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (41 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_goto_32: /* 0x2a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (42 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_packed_switch: /* 0x2b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (43 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sparse_switch: /* 0x2c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (44 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_cmpl_float: /* 0x2d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (45 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_cmpg_float: /* 0x2e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (46 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_cmpl_double: /* 0x2f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (47 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_cmpg_double: /* 0x30 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (48 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_cmp_long: /* 0x31 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (49 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_eq: /* 0x32 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (50 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_ne: /* 0x33 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (51 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_lt: /* 0x34 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (52 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_ge: /* 0x35 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (53 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_gt: /* 0x36 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (54 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_le: /* 0x37 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (55 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_eqz: /* 0x38 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (56 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_nez: /* 0x39 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (57 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_ltz: /* 0x3a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (58 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_gez: /* 0x3b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (59 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_gtz: /* 0x3c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (60 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_if_lez: /* 0x3d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (61 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_3e: /* 0x3e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (62 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_3f: /* 0x3f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (63 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_40: /* 0x40 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (64 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_41: /* 0x41 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (65 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_42: /* 0x42 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (66 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_43: /* 0x43 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (67 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aget: /* 0x44 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (68 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aget_wide: /* 0x45 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (69 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aget_object: /* 0x46 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (70 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aget_boolean: /* 0x47 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (71 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aget_byte: /* 0x48 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (72 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aget_char: /* 0x49 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (73 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aget_short: /* 0x4a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (74 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aput: /* 0x4b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (75 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aput_wide: /* 0x4c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (76 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aput_object: /* 0x4d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (77 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aput_boolean: /* 0x4e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (78 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aput_byte: /* 0x4f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (79 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aput_char: /* 0x50 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (80 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_aput_short: /* 0x51 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (81 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget: /* 0x52 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (82 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_wide: /* 0x53 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (83 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_object: /* 0x54 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (84 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_boolean: /* 0x55 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (85 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_byte: /* 0x56 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (86 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_char: /* 0x57 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (87 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_short: /* 0x58 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (88 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput: /* 0x59 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (89 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_wide: /* 0x5a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (90 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_object: /* 0x5b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (91 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_boolean: /* 0x5c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (92 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_byte: /* 0x5d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (93 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_char: /* 0x5e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (94 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_short: /* 0x5f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (95 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sget: /* 0x60 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (96 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sget_wide: /* 0x61 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (97 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sget_object: /* 0x62 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (98 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sget_boolean: /* 0x63 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (99 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sget_byte: /* 0x64 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (100 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sget_char: /* 0x65 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (101 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sget_short: /* 0x66 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (102 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sput: /* 0x67 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (103 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sput_wide: /* 0x68 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (104 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sput_object: /* 0x69 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (105 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sput_boolean: /* 0x6a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (106 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sput_byte: /* 0x6b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (107 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sput_char: /* 0x6c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (108 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sput_short: /* 0x6d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (109 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_virtual: /* 0x6e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (110 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_super: /* 0x6f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (111 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_direct: /* 0x70 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (112 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_static: /* 0x71 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (113 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_interface: /* 0x72 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (114 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_return_void_no_barrier: /* 0x73 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (115 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_virtual_range: /* 0x74 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (116 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_super_range: /* 0x75 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (117 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_direct_range: /* 0x76 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (118 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_static_range: /* 0x77 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (119 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_interface_range: /* 0x78 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (120 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_79: /* 0x79 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (121 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_7a: /* 0x7a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (122 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_neg_int: /* 0x7b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (123 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_not_int: /* 0x7c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (124 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_neg_long: /* 0x7d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (125 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_not_long: /* 0x7e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (126 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_neg_float: /* 0x7f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (127 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_neg_double: /* 0x80 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (128 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_int_to_long: /* 0x81 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (129 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_int_to_float: /* 0x82 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (130 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_int_to_double: /* 0x83 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (131 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_long_to_int: /* 0x84 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (132 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_long_to_float: /* 0x85 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (133 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_long_to_double: /* 0x86 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (134 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_float_to_int: /* 0x87 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (135 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_float_to_long: /* 0x88 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (136 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_float_to_double: /* 0x89 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (137 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_double_to_int: /* 0x8a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (138 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_double_to_long: /* 0x8b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (139 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_double_to_float: /* 0x8c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (140 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_int_to_byte: /* 0x8d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (141 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_int_to_char: /* 0x8e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (142 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_int_to_short: /* 0x8f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (143 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_int: /* 0x90 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (144 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sub_int: /* 0x91 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (145 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_int: /* 0x92 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (146 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_int: /* 0x93 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (147 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_int: /* 0x94 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (148 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_and_int: /* 0x95 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (149 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_or_int: /* 0x96 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (150 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_xor_int: /* 0x97 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (151 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shl_int: /* 0x98 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (152 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shr_int: /* 0x99 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (153 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_ushr_int: /* 0x9a */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (154 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_long: /* 0x9b */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (155 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sub_long: /* 0x9c */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (156 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_long: /* 0x9d */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (157 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_long: /* 0x9e */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (158 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_long: /* 0x9f */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (159 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_and_long: /* 0xa0 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (160 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_or_long: /* 0xa1 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (161 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_xor_long: /* 0xa2 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (162 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shl_long: /* 0xa3 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (163 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shr_long: /* 0xa4 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (164 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_ushr_long: /* 0xa5 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (165 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_float: /* 0xa6 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (166 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sub_float: /* 0xa7 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (167 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_float: /* 0xa8 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (168 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_float: /* 0xa9 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (169 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_float: /* 0xaa */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (170 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_double: /* 0xab */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (171 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sub_double: /* 0xac */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (172 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_double: /* 0xad */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (173 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_double: /* 0xae */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (174 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_double: /* 0xaf */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (175 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_int_2addr: /* 0xb0 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (176 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sub_int_2addr: /* 0xb1 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (177 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_int_2addr: /* 0xb2 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (178 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_int_2addr: /* 0xb3 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (179 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_int_2addr: /* 0xb4 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (180 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_and_int_2addr: /* 0xb5 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (181 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_or_int_2addr: /* 0xb6 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (182 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_xor_int_2addr: /* 0xb7 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (183 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shl_int_2addr: /* 0xb8 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (184 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shr_int_2addr: /* 0xb9 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (185 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_ushr_int_2addr: /* 0xba */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (186 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_long_2addr: /* 0xbb */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (187 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sub_long_2addr: /* 0xbc */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (188 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_long_2addr: /* 0xbd */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (189 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_long_2addr: /* 0xbe */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (190 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_long_2addr: /* 0xbf */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (191 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_and_long_2addr: /* 0xc0 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (192 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_or_long_2addr: /* 0xc1 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (193 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_xor_long_2addr: /* 0xc2 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (194 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shl_long_2addr: /* 0xc3 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (195 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shr_long_2addr: /* 0xc4 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (196 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_ushr_long_2addr: /* 0xc5 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (197 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_float_2addr: /* 0xc6 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (198 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sub_float_2addr: /* 0xc7 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (199 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_float_2addr: /* 0xc8 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (200 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_float_2addr: /* 0xc9 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (201 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_float_2addr: /* 0xca */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (202 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_double_2addr: /* 0xcb */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (203 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_sub_double_2addr: /* 0xcc */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (204 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_double_2addr: /* 0xcd */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (205 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_double_2addr: /* 0xce */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (206 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_double_2addr: /* 0xcf */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (207 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_int_lit16: /* 0xd0 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (208 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rsub_int: /* 0xd1 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (209 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_int_lit16: /* 0xd2 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (210 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_int_lit16: /* 0xd3 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (211 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_int_lit16: /* 0xd4 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (212 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_and_int_lit16: /* 0xd5 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (213 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_or_int_lit16: /* 0xd6 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (214 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_xor_int_lit16: /* 0xd7 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (215 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_add_int_lit8: /* 0xd8 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (216 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rsub_int_lit8: /* 0xd9 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (217 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_mul_int_lit8: /* 0xda */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (218 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_div_int_lit8: /* 0xdb */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (219 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_rem_int_lit8: /* 0xdc */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (220 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_and_int_lit8: /* 0xdd */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (221 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_or_int_lit8: /* 0xde */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (222 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_xor_int_lit8: /* 0xdf */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (223 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shl_int_lit8: /* 0xe0 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (224 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_shr_int_lit8: /* 0xe1 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (225 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_ushr_int_lit8: /* 0xe2 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (226 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_quick: /* 0xe3 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (227 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_wide_quick: /* 0xe4 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (228 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_object_quick: /* 0xe5 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (229 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_quick: /* 0xe6 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (230 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_wide_quick: /* 0xe7 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (231 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_object_quick: /* 0xe8 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (232 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_virtual_quick: /* 0xe9 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (233 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_virtual_range_quick: /* 0xea */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (234 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_boolean_quick: /* 0xeb */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (235 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_byte_quick: /* 0xec */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (236 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_char_quick: /* 0xed */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (237 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iput_short_quick: /* 0xee */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (238 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_boolean_quick: /* 0xef */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (239 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_byte_quick: /* 0xf0 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (240 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_char_quick: /* 0xf1 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (241 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_iget_short_quick: /* 0xf2 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (242 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_f3: /* 0xf3 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (243 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_f4: /* 0xf4 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (244 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_f5: /* 0xf5 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (245 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_f6: /* 0xf6 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (246 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_f7: /* 0xf7 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (247 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_f8: /* 0xf8 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (248 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_unused_f9: /* 0xf9 */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (249 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_polymorphic: /* 0xfa */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (250 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_polymorphic_range: /* 0xfb */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (251 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_custom: /* 0xfc */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (252 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_invoke_custom_range: /* 0xfd */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (253 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_method_handle: /* 0xfe */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (254 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
/* ------------------------------ */
.balign 128
.L_ALT_op_const_method_type: /* 0xff */
/*
* Inter-instruction transfer stub. Call out to MterpCheckBefore to handle
* any interesting requests and then jump to the real instruction
* handler. Note that the call to MterpCheckBefore is done as a tail call.
*/
.extern MterpCheckBefore
la ra, artMterpAsmInstructionStart + (255 * 128) # Addr of primary handler
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF) # refresh IBASE
move a0, rSELF # arg0
addu a1, rFP, OFF_FP_SHADOWFRAME # arg1
move a2, rPC
la t9, MterpCheckBefore
jalr zero, t9 # Tail call to Mterp(self, shadow_frame, dex_pc_ptr)
.balign 128
.global artMterpAsmAltInstructionEnd
artMterpAsmAltInstructionEnd:
/*
* ===========================================================================
* Common subroutines and data
* ===========================================================================
*/
.text
.align 2
/*
* We've detected a condition that will result in an exception, but the exception
* has not yet been thrown. Just bail out to the reference interpreter to deal with it.
* TUNING: for consistency, we may want to just go ahead and handle these here.
*/
common_errDivideByZero:
EXPORT_PC()
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
JAL(MterpLogDivideByZeroException)
#endif
b MterpCommonFallback
common_errArrayIndex:
EXPORT_PC()
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
JAL(MterpLogArrayIndexException)
#endif
b MterpCommonFallback
common_errNegativeArraySize:
EXPORT_PC()
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
JAL(MterpLogNegativeArraySizeException)
#endif
b MterpCommonFallback
common_errNoSuchMethod:
EXPORT_PC()
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
JAL(MterpLogNoSuchMethodException)
#endif
b MterpCommonFallback
common_errNullObject:
EXPORT_PC()
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
JAL(MterpLogNullObjectException)
#endif
b MterpCommonFallback
common_exceptionThrown:
EXPORT_PC()
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
JAL(MterpLogExceptionThrownException)
#endif
b MterpCommonFallback
MterpSuspendFallback:
EXPORT_PC()
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
lw a2, THREAD_FLAGS_OFFSET(rSELF)
JAL(MterpLogSuspendFallback)
#endif
b MterpCommonFallback
/*
* If we're here, something is out of the ordinary. If there is a pending
* exception, handle it. Otherwise, roll back and retry with the reference
* interpreter.
*/
MterpPossibleException:
lw a0, THREAD_EXCEPTION_OFFSET(rSELF)
beqz a0, MterpFallback # If exception, fall back to reference interpreter.
/* intentional fallthrough - handle pending exception. */
/*
* On return from a runtime helper routine, we've found a pending exception.
* Can we handle it here - or need to bail out to caller?
*
*/
MterpException:
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
JAL(MterpHandleException) # (self, shadow_frame)
beqz v0, MterpExceptionReturn # no local catch, back to caller.
lw a0, OFF_FP_DEX_INSTRUCTIONS(rFP)
lw a1, OFF_FP_DEX_PC(rFP)
lw rIBASE, THREAD_CURRENT_IBASE_OFFSET(rSELF)
EAS1(rPC, a0, a1) # generate new dex_pc_ptr
/* Do we need to switch interpreters? */
JAL(MterpShouldSwitchInterpreters)
bnez v0, MterpFallback
/* resume execution at catch block */
EXPORT_PC()
FETCH_INST()
GET_INST_OPCODE(t0)
GOTO_OPCODE(t0)
/* NOTE: no fallthrough */
/*
* Common handling for branches with support for Jit profiling.
* On entry:
* rINST <= signed offset
* rPROFILE <= signed hotness countdown (expanded to 32 bits)
*
* We have quite a few different cases for branch profiling, OSR detection and
* suspend check support here.
*
* Taken backward branches:
* If profiling active, do hotness countdown and report if we hit zero.
* If in osr check mode, see if our target is a compiled loop header entry and do OSR if so.
* Is there a pending suspend request? If so, suspend.
*
* Taken forward branches and not-taken backward branches:
* If in osr check mode, see if our target is a compiled loop header entry and do OSR if so.
*
* Our most common case is expected to be a taken backward branch with active jit profiling,
* but no full OSR check and no pending suspend request.
* Next most common case is not-taken branch with no full OSR check.
*/
MterpCommonTakenBranchNoFlags:
bgtz rINST, .L_forward_branch # don't add forward branches to hotness
/*
* We need to subtract 1 from positive values and we should not see 0 here,
* so we may use the result of the comparison with -1.
*/
#if JIT_CHECK_OSR != -1
# error "JIT_CHECK_OSR must be -1."
#endif
li t0, JIT_CHECK_OSR
beq rPROFILE, t0, .L_osr_check
blt rPROFILE, t0, .L_resume_backward_branch
subu rPROFILE, 1
beqz rPROFILE, .L_add_batch # counted down to zero - report
.L_resume_backward_branch:
lw ra, THREAD_FLAGS_OFFSET(rSELF)
REFRESH_IBASE()
addu a2, rINST, rINST # a2<- byte offset
FETCH_ADVANCE_INST_RB(a2) # update rPC, load rINST
and ra, THREAD_SUSPEND_OR_CHECKPOINT_REQUEST
bnez ra, .L_suspend_request_pending
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
.L_suspend_request_pending:
EXPORT_PC()
move a0, rSELF
JAL(MterpSuspendCheck) # (self)
bnez v0, MterpFallback
REFRESH_IBASE() # might have changed during suspend
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
.L_no_count_backwards:
li t0, JIT_CHECK_OSR # check for possible OSR re-entry
bne rPROFILE, t0, .L_resume_backward_branch
.L_osr_check:
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rINST
EXPORT_PC()
JAL(MterpMaybeDoOnStackReplacement) # (self, shadow_frame, offset)
bnez v0, MterpOnStackReplacement
b .L_resume_backward_branch
.L_forward_branch:
li t0, JIT_CHECK_OSR # check for possible OSR re-entry
beq rPROFILE, t0, .L_check_osr_forward
.L_resume_forward_branch:
add a2, rINST, rINST # a2<- byte offset
FETCH_ADVANCE_INST_RB(a2) # update rPC, load rINST
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
.L_check_osr_forward:
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rINST
EXPORT_PC()
JAL(MterpMaybeDoOnStackReplacement) # (self, shadow_frame, offset)
bnez v0, MterpOnStackReplacement
b .L_resume_forward_branch
.L_add_batch:
addu a1, rFP, OFF_FP_SHADOWFRAME
sh rPROFILE, SHADOWFRAME_HOTNESS_COUNTDOWN_OFFSET(a1)
lw a0, OFF_FP_METHOD(rFP)
move a2, rSELF
JAL(MterpAddHotnessBatch) # (method, shadow_frame, self)
move rPROFILE, v0 # restore new hotness countdown to rPROFILE
b .L_no_count_backwards
/*
* Entered from the conditional branch handlers when OSR check request active on
* not-taken path. All Dalvik not-taken conditional branch offsets are 2.
*/
.L_check_not_taken_osr:
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
li a2, 2
EXPORT_PC()
JAL(MterpMaybeDoOnStackReplacement) # (self, shadow_frame, offset)
bnez v0, MterpOnStackReplacement
FETCH_ADVANCE_INST(2)
GET_INST_OPCODE(t0) # extract opcode from rINST
GOTO_OPCODE(t0) # jump to next instruction
/*
* On-stack replacement has happened, and now we've returned from the compiled method.
*/
MterpOnStackReplacement:
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rINST
JAL(MterpLogOSR)
#endif
li v0, 1 # Signal normal return
b MterpDone
/*
* Bail out to reference interpreter.
*/
MterpFallback:
EXPORT_PC()
#if MTERP_LOGGING
move a0, rSELF
addu a1, rFP, OFF_FP_SHADOWFRAME
JAL(MterpLogFallback)
#endif
MterpCommonFallback:
move v0, zero # signal retry with reference interpreter.
b MterpDone
/*
* We pushed some registers on the stack in ExecuteMterpImpl, then saved
* SP and LR. Here we restore SP, restore the registers, and then restore
* LR to PC.
*
* On entry:
* uint32_t* rFP (should still be live, pointer to base of vregs)
*/
MterpExceptionReturn:
li v0, 1 # signal return to caller.
b MterpDone
MterpReturn:
lw a2, OFF_FP_RESULT_REGISTER(rFP)
sw v0, 0(a2)
sw v1, 4(a2)
li v0, 1 # signal return to caller.
MterpDone:
/*
* At this point, we expect rPROFILE to be non-zero. If negative, hotness is disabled or we're
* checking for OSR. If greater than zero, we might have unreported hotness to register
* (the difference between the ending rPROFILE and the cached hotness counter). rPROFILE
* should only reach zero immediately after a hotness decrement, and is then reset to either
* a negative special state or the new non-zero countdown value.
*/
blez rPROFILE, .L_pop_and_return # if > 0, we may have some counts to report.
MterpProfileActive:
move rINST, v0 # stash return value
/* Report cached hotness counts */
lw a0, OFF_FP_METHOD(rFP)
addu a1, rFP, OFF_FP_SHADOWFRAME
move a2, rSELF
sh rPROFILE, SHADOWFRAME_HOTNESS_COUNTDOWN_OFFSET(a1)
JAL(MterpAddHotnessBatch) # (method, shadow_frame, self)
move v0, rINST # restore return value
.L_pop_and_return:
/* Restore from the stack and return. Frame size = STACK_SIZE */
STACK_LOAD_FULL()
jalr zero, ra
.cfi_endproc
.end ExecuteMterpImpl