blob: 680c8ad1d080a47e6c00867580aa941494af7192 [file] [log] [blame]
%def header():
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is a #include, not a %include, because we want the C pre-processor
* to expand the macros into assembler assignment statements.
*/
#include "asm_support.h"
#include "arch/arm/asm_support_arm.S"
/**
* ARM EABI general notes:
*
* r0-r3 hold first 4 args to a method; they are not preserved across method calls
* r4-r8 are available for general use
* r9 is given special treatment in some situations, but not for us
* r10 (sl) seems to be generally available
* r11 (fp) is used by gcc (unless -fomit-frame-pointer is set)
* r12 (ip) is scratch -- not preserved across method calls
* r13 (sp) should be managed carefully in case a signal arrives
* r14 (lr) must be preserved
* r15 (pc) can be tinkered with directly
*
* r0 holds returns of <= 4 bytes
* r0-r1 hold returns of 8 bytes, low word in r0
*
* Callee must save/restore r4+ (except r12) if it modifies them. If VFP
* is present, registers s16-s31 (a/k/a d8-d15, a/k/a q4-q7) must be preserved,
* s0-s15 (d0-d7, q0-a3) do not need to be.
*
* Stack is "full descending". Only the arguments that don't fit in the first 4
* registers are placed on the stack. "sp" points at the first stacked argument
* (i.e. the 5th arg).
*
* Native ABI uses soft-float, single-precision results are in r0,
* double-precision results in r0-r1.
*
* In the EABI, "sp" must be 64-bit aligned on entry to a function, and any
* 64-bit quantities (long long, double) must be 64-bit aligned.
*
* Nterp notes:
*
* The following registers have fixed assignments:
*
* reg nick purpose
* r5 rFP interpreted frame pointer, used for accessing locals and args
* r6 rREFS base of object references of dex registers
* r7 rINST first 16-bit code unit of current instruction
* r8 rMR marking register
* r9 rSELF self (Thread) pointer
* r10 rIBASE interpreted instruction base pointer, used for computed goto
* r11 rPC interpreted program counter, used for fetching instructions
*
* r4, ip, and lr can be used as temporary
*
* Note that r4 is a callee-save register in ARM EABI, but not in managed code.
*
*/
/* single-purpose registers, given names for clarity */
#define CFI_DEX 11 // DWARF register number of the register holding dex-pc (rPC).
#define CFI_TMP 0 // DWARF register number of the first argument register (r0).
#define CFI_REFS 6
#define rFP r5
#define rREFS r6
#define rINST r7
#define rSELF r9
#define rIBASE r10
#define rPC r11
// To avoid putting ifdefs arond the use of rMR, make sure it's defined.
// IsNterpSupported returns false for configurations that don't have rMR (typically CMS).
#ifndef rMR
#define rMR r8
#endif
// Temporary registers while setting up a frame.
#define rNEW_FP r8
#define rNEW_REFS r10
#define CFI_NEW_REFS 10
#define CALLEE_SAVES_SIZE (9 * 4 + 16 * 4)
// +4 for the ArtMethod of the caller.
#define OFFSET_TO_FIRST_ARGUMENT_IN_STACK (CALLEE_SAVES_SIZE + 4)
/*
* Fetch the next instruction from rPC into rINST. Does not advance rPC.
*/
.macro FETCH_INST
ldrh rINST, [rPC]
.endm
/*
* Fetch the next instruction from the specified offset. Advances rPC
* to point to the next instruction. "count" is in 16-bit code units.
*
* Because of the limited size of immediate constants on ARM, this is only
* suitable for small forward movements (i.e. don't try to implement "goto"
* with this).
*
* This must come AFTER anything that can throw an exception, or the
* exception catch may miss. (This also implies that it must come after
* EXPORT_PC.)
*/
.macro FETCH_ADVANCE_INST count
ldrh rINST, [rPC, #((\count)*2)]!
.endm
/*
* Similar to FETCH_ADVANCE_INST, but does not update xPC. Used to load
* rINST ahead of possible exception point. Be sure to manually advance xPC
* later.
*/
.macro PREFETCH_INST count
ldrh rINST, [rPC, #((\count)*2)]
.endm
/* Advance xPC by some number of code units. */
.macro ADVANCE count
add rPC, #((\count)*2)
.endm
/*
* Fetch the next instruction from an offset specified by "reg" and advance xPC.
* xPC to point to the next instruction. "reg" must specify the distance
* in bytes, *not* 16-bit code units, and may be a signed value.
*/
.macro FETCH_ADVANCE_INST_RB reg
ldrh rINST, [rPC, \reg]!
.endm
/*
* Fetch a half-word code unit from an offset past the current PC. The
* "count" value is in 16-bit code units. Does not advance xPC.
*
* The "_S" variant works the same but treats the value as signed.
*/
.macro FETCH reg, count
ldrh \reg, [rPC, #((\count)*2)]
.endm
.macro FETCH_S reg, count
ldrsh \reg, [rPC, #((\count)*2)]
.endm
/*
* Fetch one byte from an offset past the current PC. Pass in the same
* "count" as you would for FETCH, and an additional 0/1 indicating which
* byte of the halfword you want (lo/hi).
*/
.macro FETCH_B reg, count, byte
ldrb \reg, [rPC, #((\count)*2+(\byte))]
.endm
/*
* Put the instruction's opcode field into the specified register.
*/
.macro GET_INST_OPCODE reg
and \reg, rINST, #255
.endm
/*
* Begin executing the opcode in _reg. Clobbers reg
*/
.macro GOTO_OPCODE reg
add pc, rIBASE, \reg, lsl #${handler_size_bits}
.endm
/*
* Get/set value from a Dalvik register.
*/
.macro GET_VREG reg, vreg
ldr \reg, [rFP, \vreg, lsl #2]
.endm
.macro GET_VREG_OBJECT reg, vreg
ldr \reg, [rREFS, \vreg, lsl #2]
.endm
.macro SET_VREG reg, vreg
str \reg, [rFP, \vreg, lsl #2]
mov \reg, #0
str \reg, [rREFS, \vreg, lsl #2]
.endm
.macro SET_VREG_OBJECT reg, vreg
str \reg, [rFP, \vreg, lsl #2]
str \reg, [rREFS, \vreg, lsl #2]
.endm
.macro SET_VREG_FLOAT reg, vreg, tmpreg
add \tmpreg, rFP, \vreg, lsl #2
vstr \reg, [\tmpreg]
mov \tmpreg, #0
str \tmpreg, [rREFS, \vreg, lsl #2]
.endm
.macro GET_VREG_WIDE_BY_ADDR reg0, reg1, addr
ldmia \addr, {\reg0, \reg1}
.endm
.macro SET_VREG_WIDE_BY_ADDR reg0, reg1, addr
stmia \addr, {\reg0, \reg1}
.endm
.macro GET_VREG_FLOAT sreg, vreg
ldr \vreg, [rFP, \vreg, lsl #2]
vmov \sreg, \vreg
.endm
.macro GET_VREG_FLOAT_BY_ADDR reg, addr
vldr \reg, [\addr]
.endm
.macro SET_VREG_FLOAT_BY_ADDR reg, addr
vstr \reg, [\addr]
.endm
.macro GET_VREG_DOUBLE_BY_ADDR reg, addr
vldr \reg, [\addr]
.endm
.macro SET_VREG_DOUBLE_BY_ADDR reg, addr
vstr \reg, [\addr]
.endm
.macro SET_VREG_SHADOW reg, vreg
str \reg, [rREFS, \vreg, lsl #2]
.endm
.macro CLEAR_SHADOW_PAIR vreg, tmp1, tmp2
mov \tmp1, #0
add \tmp2, \vreg, #1
SET_VREG_SHADOW \tmp1, \vreg
SET_VREG_SHADOW \tmp1, \tmp2
.endm
.macro VREG_INDEX_TO_ADDR reg, vreg
add \reg, rFP, \vreg, lsl #2
.endm
// An assembly entry that has a OatQuickMethodHeader prefix.
.macro OAT_ENTRY name, end
.arm
.type \name, #function
.hidden \name
.global \name
.balign 16
// Padding of 8 bytes to get 16 bytes alignment of code entry.
.long 0
.long 0
// OatQuickMethodHeader.
.long 0
.long (\end - \name)
\name:
.endm
.macro SIZE name
.size \name, .-\name
.endm
.macro NAME_START name
.arm
.type \name, #function
.hidden \name // Hide this as a global symbol, so we do not incur plt calls.
.global \name
/* Cache alignment for function entry */
.balign 16
\name:
.endm
.macro NAME_END name
SIZE \name
.endm
// Macro for defining entrypoints into runtime. We don't need to save registers
// (we're not holding references there), but there is no
// kDontSave runtime method. So just use the kSaveRefsOnly runtime method.
.macro NTERP_TRAMPOLINE name, helper
ENTRY \name
SETUP_SAVE_REFS_ONLY_FRAME ip
bl \helper
RESTORE_SAVE_REFS_ONLY_FRAME
REFRESH_MARKING_REGISTER
RETURN_OR_DELIVER_PENDING_EXCEPTION
END \name
.endm
.macro CLEAR_STATIC_VOLATILE_MARKER reg
and \reg, \reg, #-2
.endm
.macro CLEAR_INSTANCE_VOLATILE_MARKER reg
rsb \reg, \reg, #0
.endm
.macro EXPORT_PC
str rPC, [rREFS, #-8]
.endm
.macro BRANCH
// Update method counter and do a suspend check if the branch is negative.
cmp rINST, #0
blt 2f
1:
add r2, rINST, rINST // r2<- byte offset
FETCH_ADVANCE_INST_RB r2 // update xPC, load rINST
GET_INST_OPCODE ip // extract opcode from rINST
GOTO_OPCODE ip // jump to next instruction
2:
ldr r0, [sp]
ldrh r2, [r0, #ART_METHOD_HOTNESS_COUNT_OFFSET]
add r2, r2, #1
ubfx r2, r2, #0, #NTERP_HOTNESS_BITS
strh r2, [r0, #ART_METHOD_HOTNESS_COUNT_OFFSET]
// If the counter overflows, handle this in the runtime.
cmp r2, #0
beq NterpHandleHotnessOverflow
// Otherwise, do a suspend check.
ldr r0, [rSELF, #THREAD_FLAGS_OFFSET]
ands r0, r0, #THREAD_SUSPEND_OR_CHECKPOINT_REQUEST
beq 1b
EXPORT_PC
bl art_quick_test_suspend
b 1b
.endm
// Expects:
// - ip and lr to be available.
// Outputs:
// - \registers contains the dex registers size
// - \outs contains the outs size
// - if load_ins is 1, \ins contains the ins
// - \code_item is replaced with a pointer to the instructions
.macro FETCH_CODE_ITEM_INFO code_item, registers, outs, ins, load_ins
tst \code_item, #1
beq 5f
bic \code_item, \code_item, #1 // Remove the extra bit that marks it's a compact dex file
ldrh lr, [\code_item, #COMPACT_CODE_ITEM_FIELDS_OFFSET]
ubfx \registers, lr, #COMPACT_CODE_ITEM_REGISTERS_SIZE_SHIFT, #4
ubfx \outs, lr, #COMPACT_CODE_ITEM_OUTS_SIZE_SHIFT, #4
.if \load_ins
ubfx \ins, lr, #COMPACT_CODE_ITEM_INS_SIZE_SHIFT, #4
.else
ubfx ip, lr, #COMPACT_CODE_ITEM_INS_SIZE_SHIFT, #4
add \registers, \registers, ip
.endif
ldrh lr, [\code_item, #COMPACT_CODE_ITEM_FLAGS_OFFSET]
tst lr, #COMPACT_CODE_ITEM_REGISTERS_INS_OUTS_FLAGS
beq 4f
mov ip, \code_item
tst lr, #COMPACT_CODE_ITEM_INSNS_FLAG
beq 1f
sub ip, ip, #4
1:
tst lr, #COMPACT_CODE_ITEM_REGISTERS_FLAG
beq 2f
ldrh lr, [ip, #-2]!
add \registers, \registers, lr
ldrh lr, [\code_item, #COMPACT_CODE_ITEM_FLAGS_OFFSET]
2:
tst lr, #COMPACT_CODE_ITEM_INS_FLAG
beq 3f
ldrh lr, [ip, #-2]!
.if \load_ins
add \ins, \ins, lr
.else
add \registers, \registers, lr
.endif
ldrh lr, [\code_item, #COMPACT_CODE_ITEM_FLAGS_OFFSET]
3:
tst lr, #COMPACT_CODE_ITEM_OUTS_FLAG
beq 4f
ldrh lr, [ip, #-2]!
add \outs, \outs, lr
4:
.if \load_ins
add \registers, \registers, \ins
.endif
add \code_item, \code_item, #COMPACT_CODE_ITEM_INSNS_OFFSET
b 6f
5:
// Fetch dex register size.
ldrh \registers, [\code_item, #CODE_ITEM_REGISTERS_SIZE_OFFSET]
// Fetch outs size.
ldrh \outs, [\code_item, #CODE_ITEM_OUTS_SIZE_OFFSET]
.if \load_ins
ldrh \ins, [\code_item, #CODE_ITEM_INS_SIZE_OFFSET]
.endif
add \code_item, \code_item, #CODE_ITEM_INSNS_OFFSET
6:
.endm
// Setup the stack to start executing the method. Expects:
// - r0 to contain the ArtMethod
// - \code_item to already contain the code item
// - rINST, ip, lr to be available
//
// Outputs
// - rINST contains the dex registers size
// - ip contains the old stack pointer.
// - \code_item is replaced with a pointer to the instructions
// - if load_ins is 1, r4 contains the ins
//
.macro SETUP_STACK_FRAME code_item, refs, fp, cfi_refs, load_ins
FETCH_CODE_ITEM_INFO \code_item, rINST, \refs, r4, \load_ins
// Compute required frame size: ((2 * rINST) + \refs) * 4 + 12
// 12 is for saving the previous frame, pc, and method being executed.
add ip, \refs, rINST, lsl #1
// Compute new stack pointer in lr
sub lr, sp, #12
sub lr, lr, ip, lsl #2
// Alignment
and lr, lr, #-16
// Set reference and dex registers.
add \refs, lr, \refs, lsl #2
add \refs, \refs, #12
add \fp, \refs, rINST, lsl #2
// Now setup the stack pointer.
mov ip, sp
.cfi_def_cfa_register ip
mov sp, lr
str ip, [\refs, #-4]
CFI_DEF_CFA_BREG_PLUS_UCONST \cfi_refs, -4, CALLEE_SAVES_SIZE
// Save the ArtMethod, and use r0 as a temporary.
str r0, [sp]
// Put nulls in reference frame.
cmp rINST, #0
beq 2f
mov lr, \refs
mov r0, #0
1:
str r0, [lr], #4
str r0, [lr], #4 // May clear vreg[0].
cmp lr, \fp
blo 1b
2:
ldr r0, [sp] // Reload the ArtMethod, expected by the callers.
.endm
// Increase method hotness and do suspend check before starting executing the method.
.macro START_EXECUTING_INSTRUCTIONS
ldr r0, [sp]
ldrh r2, [r0, #ART_METHOD_HOTNESS_COUNT_OFFSET]
add r2, r2, #1
ubfx r2, r2, #0, #NTERP_HOTNESS_BITS
strh r2, [r0, #ART_METHOD_HOTNESS_COUNT_OFFSET]
// If the counter overflows, handle this in the runtime.
cmp r2, #0
beq 2f
ldr r0, [rSELF, #THREAD_FLAGS_OFFSET]
tst r0, #THREAD_SUSPEND_OR_CHECKPOINT_REQUEST
bne 3f
1:
FETCH_INST
GET_INST_OPCODE ip
GOTO_OPCODE ip
2:
mov r1, #0
mov r2, rFP
bl nterp_hot_method
b 1b
3:
EXPORT_PC
bl art_quick_test_suspend
b 1b
.endm
.macro SPILL_ALL_CALLEE_SAVES
SPILL_ALL_CALLEE_SAVE_GPRS @ 9 words (36 bytes) of callee saves.
vpush {s16-s31} @ 16 words (64 bytes) of floats.
.cfi_adjust_cfa_offset 64
.endm
.macro RESTORE_ALL_CALLEE_SAVES lr_to_pc=0
vpop {s16-s31}
.cfi_adjust_cfa_offset -64
pop {r4-r7}
.cfi_adjust_cfa_offset -16
.cfi_restore r4
.cfi_restore r5
.cfi_restore r6
.cfi_restore r7
// Don't restore r8, the marking register gets updated when coming back from runtime.
add sp, sp, #4
.cfi_adjust_cfa_offset -4
.if \lr_to_pc
pop {r9-r11, pc} @ 9 words of callee saves and args.
.else
pop {r9-r11, lr} @ 9 words of callee saves and args.
.cfi_adjust_cfa_offset -16
.cfi_restore r9
.cfi_restore r10
.cfi_restore r11
.cfi_restore lr
.endif
.endm
.macro SPILL_ALL_ARGUMENTS
// We spill r4 for stack alignment.
push {r0-r4}
.cfi_adjust_cfa_offset 20
.cfi_rel_offset r0, 0
.cfi_rel_offset r1, 4
.cfi_rel_offset r2, 8
.cfi_rel_offset r3, 12
.cfi_rel_offset r4, 16
vpush {s0-s15}
.cfi_adjust_cfa_offset 64
.endm
.macro RESTORE_ALL_ARGUMENTS
vpop {s0-s15}
.cfi_adjust_cfa_offset -64
pop {r0-r4}
.cfi_restore r0
.cfi_restore r1
.cfi_restore r2
.cfi_restore r3
.cfi_restore r4
.cfi_adjust_cfa_offset -20
.endm
// Helper to setup the stack after doing a nterp to nterp call. This will setup:
// - rNEW_FP: the new pointer to dex registers
// - rNEW_REFS: the new pointer to references
// - rPC: the new PC pointer to execute
// - r2: value in instruction to decode the number of arguments.
// - r3: first dex register for range invokes, up to 4 arguments for non-range invokes.
// - r4: top of dex register array
//
// The method expects:
// - r0 to contain the ArtMethod
// - r4 to contain the code item
.macro SETUP_STACK_FOR_INVOKE
// We do the same stack overflow check as the compiler. See CanMethodUseNterp
// in how we limit the maximum nterp frame size.
sub ip, sp, #STACK_OVERFLOW_RESERVED_BYTES
ldr ip, [ip]
// Spill all callee saves to have a consistent stack frame whether we
// are called by compiled code or nterp.
SPILL_ALL_CALLEE_SAVES
// Setup the frame.
SETUP_STACK_FRAME r4, rNEW_REFS, rNEW_FP, CFI_NEW_REFS, load_ins=0
// Fetch instruction information before replacing rPC.
FETCH_B r2, 0, 1
FETCH r3, 2
// Set the dex pc pointer.
mov rPC, r4
// Make r4 point to the top of the dex register array.
add r4, rNEW_FP, rINST, lsl #2
CFI_DEFINE_DEX_PC_WITH_OFFSET(CFI_TMP, CFI_DEX, 0)
.endm
// Setup arguments based on a non-range nterp to nterp call, and start executing
// the method. We expect:
// - rNEW_FP: the new pointer to dex registers
// - rPC: the new PC pointer to execute
// - r2: number of arguments (bits 4-7), 5th argument if any (bits 0-3)
// - r3: up to four dex register arguments
// - r4: top of dex register array
// - r1: receiver if non-static.
//
// Uses r0 and rINST as temporaries.
.macro SETUP_NON_RANGE_ARGUMENTS_AND_EXECUTE is_static=0, is_string_init=0
// /* op vA, vB, {vC...vG} */
.if \is_static
asrs r0, r2, #4
beq 6f
.else
asr r0, r2, #4
.endif
mov rINST, #-4
cmp r0, #2
blt 1f
beq 2f
cmp r0, #4
blt 3f
beq 4f
// We use a decrementing rINST to store references relative
// to rNEW_FP and dex registers relative to r4
//
// TODO: We could set up rINST as the number of registers (this can be an additional output from
// SETUP_STACK_FOR_INVOKE) and then just decrement it by one before copying each arg.
// Maybe even introduce macros NEW_VREG_ADDRESS/NEW_VREG_REF_ADDRESS.
5:
and r2, r2, #15
GET_VREG_OBJECT r0, r2
str r0, [rNEW_FP, rINST]
GET_VREG r0, r2
str r0, [r4, rINST]
sub rINST, rINST, #4
4:
asr r2, r3, #12
GET_VREG_OBJECT r0, r2
str r0, [rNEW_FP, rINST]
GET_VREG r0, r2
str r0, [r4, rINST]
sub rINST, rINST, #4
3:
ubfx r2, r3, #8, #4
GET_VREG_OBJECT r0, r2
str r0, [rNEW_FP, rINST]
GET_VREG r0, r2
str r0, [r4, rINST]
sub rINST, rINST, #4
2:
ubfx r2, r3, #4, #4
GET_VREG_OBJECT r0, r2
str r0, [rNEW_FP, rINST]
GET_VREG r0, r2
str r0, [r4, rINST]
.if !\is_string_init
sub rINST, rINST, #4
.endif
1:
.if \is_string_init
// Ignore the first argument
.elseif \is_static
and r2, r3, #0xf
GET_VREG_OBJECT r0, r2
str r0, [rNEW_FP, rINST]
GET_VREG r0, r2
str r0, [r4, rINST]
.else
str r1, [rNEW_FP, rINST]
str r1, [r4, rINST]
.endif
6:
// Start executing the method.
mov rFP, rNEW_FP
mov rREFS, rNEW_REFS
CFI_DEF_CFA_BREG_PLUS_UCONST CFI_REFS, -4, CALLEE_SAVES_SIZE
// r8 was used for setting up the frame, restore it now.
REFRESH_MARKING_REGISTER
// Branch to the main handler, which will reload rIBASE,
// that was used for setting up the frame.
b .Lexecute_instructions
.endm
// Setup arguments based on a range nterp to nterp call, and start executing
// the method.
// - rNEW_FP: the new pointer to dex registers
// - rNEW_REFS: the new pointer to references
// - rPC: the new PC pointer to execute
// - r2: number of arguments
// - r3: first dex register
// - r4: top of dex register array
// - r1: receiver if non-static.
//
// Expects r0 to be available.
.macro SETUP_RANGE_ARGUMENTS_AND_EXECUTE is_static=0, is_string_init=0
mov r0, #-4
.if \is_string_init
// Ignore the first argument
sub r2, r2, #1
add r3, r3, #1
.elseif !\is_static
sub r2, r2, #1
add r3, r3, #1
.endif
cmp r2, #0
beq 2f
add rREFS, rREFS, r3, lsl #2 // pointer to first argument in reference array
add rREFS, rREFS, r2, lsl #2 // pointer to last argument in reference array
add rFP, rFP, r3, lsl #2 // pointer to first argument in register array
add rFP, rFP, r2, lsl #2 // pointer to last argument in register array
1:
ldr r3, [rREFS, #-4]!
str r3, [rNEW_FP, r0]
subs r2, r2, 1
ldr r3, [rFP, #-4]!
str r3, [r4, r0]
sub r0, r0, 4
bne 1b
2:
.if \is_string_init
// Ignore first argument
.elseif !\is_static
str r1, [rNEW_FP, r0]
str r1, [r4, r0]
.endif
mov rFP, rNEW_FP
mov rREFS, rNEW_REFS
CFI_DEF_CFA_BREG_PLUS_UCONST CFI_REFS, -4, CALLEE_SAVES_SIZE
// r8 was used for setting up the frame, restore it now.
REFRESH_MARKING_REGISTER
// Branch to the main handler, which will reload rIBASE,
// that was used for setting up the frame.
b .Lexecute_instructions
.endm
.macro GET_SHORTY dest, is_interface, is_polymorphic, is_custom
push {r0-r3}
.if \is_polymorphic
ldr r0, [sp, #16]
mov r1, rPC
bl NterpGetShortyFromInvokePolymorphic
.elseif \is_custom
ldr r0, [sp, #16]
mov r1, rPC
bl NterpGetShortyFromInvokeCustom
.elseif \is_interface
ldr r0, [sp, #16]
FETCH r1, 1
bl NterpGetShortyFromMethodId
.else
bl NterpGetShorty
.endif
mov \dest, r0
pop {r0-r3}
.endm
// Input: r0 contains the ArtMethod
// Output: r4 contains the code item
.macro GET_CODE_ITEM
ldr r4, [r0, #ART_METHOD_DATA_OFFSET_32]
.endm
.macro DO_ENTRY_POINT_CHECK call_compiled_code, name
// On entry, the method is r0, the instance is r1
ldr r2, .Lfetch_nterp_\name
.Lfetch_location_\name:
// Note that this won't work for thumb.
sub r2, pc, r2
ldr r3, [r0, #ART_METHOD_QUICK_CODE_OFFSET_32]
cmp r2, r3
bne \call_compiled_code
.endm
// Expects ip and lr to be available.
.macro UPDATE_REGISTERS_FOR_STRING_INIT old_value, new_value
mov ip, #0
1:
GET_VREG_OBJECT lr, ip
cmp lr, \old_value
bne 2f
SET_VREG_OBJECT \new_value, ip
2:
add ip, ip, #1
add lr, rREFS, ip, lsl #2
cmp lr, rFP
bne 1b
.endm
// Puts the next floating point argument into the expected register,
// fetching values based on a non-range invoke.
// Uses ip and lr.
.macro LOOP_OVER_SHORTY_LOADING_FPS dreg, sreg, inst, shorty, arg_index, finished, if_double
1: // LOOP
ldrb ip, [\shorty], #1 // Load next character in shorty, and increment.
cmp ip, #0
beq \finished // if (ip == '\0') goto finished
cmp ip, #68 // if (ip == 'D') goto FOUND_DOUBLE
beq 2f
cmp ip, #70 // if (ip == 'F') goto FOUND_FLOAT
beq 3f
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
// Handle extra argument in arg array taken by a long.
cmp ip, #74 // if (ip != 'J') goto LOOP
bne 1b
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
b 1b // goto LOOP
2: // FOUND_DOUBLE
and ip, \inst, #0xf
GET_VREG ip, ip
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
cmp \arg_index, #4
beq 5f
and lr, \inst, #0xf
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
b 6f
5:
FETCH_B lr, 0, 1
and lr, lr, #0xf
6:
GET_VREG lr, lr
vmov \dreg, ip, lr
b \if_double
3: // FOUND_FLOAT
cmp \arg_index, #4
beq 7f
and ip, \inst, #0xf
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
b 8f
7:
FETCH_B ip, 0, 1
and ip, ip, #0xf
8:
GET_VREG_FLOAT \sreg, ip
.endm
// Puts the next int/long/object argument in the expected register,
// fetching values based on a non-range invoke.
// Uses ip.
.macro LOOP_OVER_SHORTY_LOADING_GPRS gpr_reg, inst, shorty, arg_index, finished, if_long, is_r3
1: // LOOP
ldrb ip, [\shorty], #1 // Load next character in shorty, and increment.
cmp ip, #0
beq \finished // if (ip == '\0') goto finished
cmp ip, #74 // if (ip == 'J') goto FOUND_LONG
beq 2f
cmp ip, #70 // if (ip == 'F') goto SKIP_FLOAT
beq 3f
cmp ip, #68 // if (ip == 'D') goto SKIP_DOUBLE
beq 4f
cmp \arg_index, #4
beq 7f
and ip, \inst, #0xf
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
b 8f
7:
FETCH_B ip, 0, 1
and ip, ip, #0xf
8:
GET_VREG \gpr_reg, ip
b 5f
2: // FOUND_LONG
.if \is_r3
// Put back shorty and exit
sub \shorty, \shorty, #1
b 5f
.endif
and ip, \inst, #0xf
GET_VREG ip, ip
// The only one possible for non-range long is r2-r3
mov r2, ip
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
cmp \arg_index, #4
beq 9f
and ip, \inst, #0xf
lsr \inst, \inst, #4
b 10f
9:
FETCH_B ip, 0, 1
and ip, ip, #0xf
10:
GET_VREG ip, ip
// The only one possible for non-range long is r2-r3
mov r3, ip
add \arg_index, \arg_index, #1
b \if_long
3: // SKIP_FLOAT
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
b 1b
4: // SKIP_DOUBLE
lsr \inst, \inst, #8
add \arg_index, \arg_index, #2
b 1b
5:
.endm
// Puts the next int/long/object argument in the expected stack slot,
// fetching values based on a non-range invoke.
// Uses ip as temporary.
.macro LOOP_OVER_SHORTY_LOADING_INTs shorty, inst, arg_index, finished, is_string_init
1: // LOOP
ldrb ip, [\shorty], #1 // Load next character in shorty, and increment.
cmp ip, #0
beq \finished // if (ip == '\0') goto finished
cmp ip, #74 // if (ip == 'J') goto FOUND_LONG
beq 2f
cmp ip, #70 // if (ip == 'F') goto SKIP_FLOAT
beq 3f
cmp ip, #68 // if (ip == 'D') goto SKIP_DOUBLE
beq 4f
.if \is_string_init
cmp \arg_index, #4
.else
cmp \arg_index, #(4+1) // +1 for ArtMethod
.endif
beq 7f
and ip, \inst, #0xf
lsr \inst, \inst, #4
b 8f
7:
FETCH_B ip, 0, 1
and ip, ip, #0xf
8:
GET_VREG ip, ip
str ip, [sp, \arg_index, lsl #2]
add \arg_index, \arg_index, #1
b 1b
2: // FOUND_LONG
and ip, \inst, #0xf
GET_VREG ip, ip
str ip, [sp, \arg_index, lsl #2]
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
.if \is_string_init
cmp \arg_index, #4
.else
cmp \arg_index, #(4+1) // +1 for ArtMethod
.endif
beq 9f
and ip, \inst, #0xf
lsr \inst, \inst, #4
b 10f
9:
FETCH_B ip, 0, 1
and ip, ip, #0xf
10:
GET_VREG ip, ip
str ip, [sp, \arg_index, lsl #2]
add \arg_index, \arg_index, #1
b 1b
3: // SKIP_FLOAT
lsr \inst, \inst, #4
add \arg_index, \arg_index, #1
b 1b
4: // SKIP_DOUBLE
lsr \inst, \inst, #8
add \arg_index, \arg_index, #2
b 1b
.endm
.macro COMMON_INVOKE_NON_RANGE is_static=0, is_interface=0, suffix="", is_string_init=0, is_polymorphic=0, is_custom=0
.if \is_polymorphic
// We always go to compiled code for polymorphic calls.
.elseif \is_custom
// We always go to compiled code for custom calls.
.else
DO_ENTRY_POINT_CHECK .Lcall_compiled_code_\suffix, \suffix
GET_CODE_ITEM
.if \is_string_init
bl nterp_to_nterp_string_init_non_range
.elseif \is_static
bl nterp_to_nterp_static_non_range
.else
bl nterp_to_nterp_instance_non_range
.endif
b .Ldone_return_\suffix
.Lfetch_nterp_\suffix:
.word (.Lfetch_location_\suffix+8) - ExecuteNterpImpl
.endif
.Lcall_compiled_code_\suffix:
GET_SHORTY rINST, \is_interface, \is_polymorphic, \is_custom
// From this point:
// - rINST contains shorty (in callee-save to switch over return value after call).
// - r0 contains method
// - r1 contains 'this' pointer for instance method.
// We need three registers.
add r3, rINST, #1 // shorty + 1 ; ie skip return arg character
FETCH r2, 2 // arguments
.if \is_string_init
lsr r2, r2, #4
mov r4, #1 // ignore first argument
.elseif \is_static
mov r4, #0 // arg_index
.else
lsr r2, r2, #4
mov r4, #1 // ignore first argument
.endif
LOOP_OVER_SHORTY_LOADING_FPS d0, s0, r2, r3, r4, .Lxmm_setup_finished_\suffix, .Ld1_s2_\suffix
.Ld1_s1_\suffix:
LOOP_OVER_SHORTY_LOADING_FPS d1, s1, r2, r3, r4, .Lxmm_setup_finished_\suffix, .Ld2_s1_\suffix
.Ld1_s2_\suffix:
LOOP_OVER_SHORTY_LOADING_FPS d1, s2, r2, r3, r4, .Lxmm_setup_finished_\suffix, .Ls4_\suffix
.Ld2_s3_\suffix:
LOOP_OVER_SHORTY_LOADING_FPS d2, s3, r2, r3, r4, .Lxmm_setup_finished_\suffix, .Lxmm_setup_finished_\suffix
b .Ls4_\suffix
.Ld2_s1_\suffix:
LOOP_OVER_SHORTY_LOADING_FPS d2, s1, r2, r3, r4, .Lxmm_setup_finished_\suffix, .Lxmm_setup_finished_\suffix
.Ls4_\suffix:
// If we arrive here, we can only have a float.
LOOP_OVER_SHORTY_LOADING_FPS d2, s4, r2, r3, r4, .Lxmm_setup_finished_\suffix, .Lxmm_setup_finished_\suffix
.Lxmm_setup_finished_\suffix:
add r4, rINST, #1 // shorty + 1 ; ie skip return arg character
FETCH r8, 2 // arguments
.if \is_string_init
lsr r8, r8, #4
mov lr, #1 // ignore first argument
LOOP_OVER_SHORTY_LOADING_GPRS r1, r8, r4, lr, .Lgpr_setup_finished_\suffix, .Lif_long_\suffix, is_r3=0
.elseif \is_static
mov lr, #0 // arg_index
LOOP_OVER_SHORTY_LOADING_GPRS r1, r8, r4, lr, .Lgpr_setup_finished_\suffix, .Lif_long_\suffix, is_r3=0
.else
lsr r8, r8, #4
mov lr, #1 // ignore first argument
.endif
LOOP_OVER_SHORTY_LOADING_GPRS r2, r8, r4, lr, .Lgpr_setup_finished_\suffix, .Lif_long_\suffix, is_r3=0
LOOP_OVER_SHORTY_LOADING_GPRS r3, r8, r4, lr, .Lgpr_setup_finished_\suffix, .Lif_long_\suffix, is_r3=1
.Lif_long_\suffix:
// Store in the outs array (stored above the ArtMethod in the stack). We only do this for non-string-init
// calls as the index is already adjusted above.
.if !\is_string_init
add lr, lr, #1
.endif
LOOP_OVER_SHORTY_LOADING_INTs r4, r8, lr, .Lgpr_setup_finished_\suffix, \is_string_init
.Lgpr_setup_finished_\suffix:
REFRESH_MARKING_REGISTER // r8 was used when setting parameters, restore it.
.if \is_polymorphic
bl art_quick_invoke_polymorphic
.elseif \is_custom
bl art_quick_invoke_custom
.else
.if \is_interface
// Setup hidden argument. As we don't have access to the interface method,
// just pass the method from the IMT. If the method is the conflict trampoline,
// this will make the stub go to runtime, otherwise the hidden argument is unused.
mov ip, r0
.endif
ldr lr, [r0, #ART_METHOD_QUICK_CODE_OFFSET_32]
blx lr
.endif
ldrb ip, [rINST]
cmp ip, #68 // Test if result type char == 'D'.
beq .Lreturn_double_\suffix
cmp ip, #70
bne .Ldone_return_\suffix
.Lreturn_float_\suffix:
vmov r0, s0
b .Ldone_return_\suffix
.Lreturn_double_\suffix:
vmov r0, r1, d0
.Ldone_return_\suffix:
/* resume execution of caller */
.if \is_string_init
FETCH ip, 2 // arguments
and ip, ip, #0xf
GET_VREG r1, ip
UPDATE_REGISTERS_FOR_STRING_INIT r1, r0
.endif
.if \is_polymorphic
FETCH_ADVANCE_INST 4
.else
FETCH_ADVANCE_INST 3
.endif
GET_INST_OPCODE ip
GOTO_OPCODE ip
.endm
// Puts the next int/long/object argument in the expected register,
// fetching values based on a range invoke.
// Uses ip as temporary.
.macro LOOP_RANGE_OVER_SHORTY_LOADING_GPRS reg32, shorty, arg_index, stack_index, finished, if_long, is_r3
1: // LOOP
ldrb ip, [\shorty], #1 // Load next character in shorty, and increment.
cmp ip, #0
beq \finished // if (ip == '\0') goto finished
cmp ip, #74 // if (ip == 'J') goto FOUND_LONG
beq 2f
cmp ip, #70 // if (ip == 'F') goto SKIP_FLOAT
beq 3f
cmp ip, #68 // if (ip == 'D') goto SKIP_DOUBLE
beq 4f
GET_VREG \reg32, \arg_index
add \arg_index, \arg_index, #1
add \stack_index, \stack_index, #1
b 5f
2: // FOUND_LONG
.if \is_r3
// Put back shorty and jump to \if_long
sub \shorty, \shorty, #1
.else
GET_VREG r2, \arg_index
add \arg_index, \arg_index, #1
add \stack_index, \stack_index, #1
GET_VREG r3, \arg_index
add \arg_index, \arg_index, #1
add \stack_index, \stack_index, #1
.endif
b \if_long
3: // SKIP_FLOAT
add \arg_index, \arg_index, #1
add \stack_index, \stack_index, #1
b 1b
4: // SKIP_DOUBLE
add \arg_index, \arg_index, #2
add \stack_index, \stack_index, #2
b 1b
5:
.endm
// Puts the next int/long/object argument in the expected stack slot,
// fetching values based on a range invoke.
// Uses ip as temporary.
.macro LOOP_RANGE_OVER_INTs shorty, arg_index, stack_index, finished
1: // LOOP
ldrb ip, [\shorty], #1 // Load next character in shorty, and increment.
cmp ip, #0
beq \finished // if (ip == '\0') goto finished
cmp ip, #74 // if (ip == 'J') goto FOUND_LONG
beq 2f
cmp ip, #70 // if (ip == 'F') goto SKIP_FLOAT
beq 3f
cmp ip, #68 // if (ip == 'D') goto SKIP_DOUBLE
beq 4f
GET_VREG ip, \arg_index
str ip, [sp, \stack_index, lsl #2]
add \arg_index, \arg_index, #1
add \stack_index, \stack_index, #1
b 1b
2: // FOUND_LONG
GET_VREG ip, \arg_index
str ip, [sp, \stack_index, lsl #2]
add \arg_index, \arg_index, #1
add \stack_index, \stack_index, #1
GET_VREG ip, \arg_index
str ip, [sp, \stack_index, lsl #2]
add \arg_index, \arg_index, #1
add \stack_index, \stack_index, #1
b 1b
3: // SKIP_FLOAT
add \arg_index, \arg_index, #1
add \stack_index, \stack_index, #1
b 1b
4: // SKIP_DOUBLE
add \arg_index, \arg_index, #2
add \stack_index, \stack_index, #2
b 1b
.endm
.macro COMMON_INVOKE_RANGE is_static=0, is_interface=0, suffix="", is_string_init=0, is_polymorphic=0, is_custom=0
.if \is_polymorphic
// We always go to compiled code for polymorphic calls.
.elseif \is_custom
// We always go to compiled code for custom calls.
.else
DO_ENTRY_POINT_CHECK .Lcall_compiled_code_range_\suffix, range_\suffix
GET_CODE_ITEM
.if \is_string_init
bl nterp_to_nterp_string_init_range
.elseif \is_static
bl nterp_to_nterp_static_range
.else
bl nterp_to_nterp_instance_range
.endif
b .Ldone_return_range_\suffix
.Lfetch_nterp_range_\suffix:
.word (.Lfetch_location_range_\suffix+8) - ExecuteNterpImpl
.endif
.Lcall_compiled_code_range_\suffix:
GET_SHORTY rINST, \is_interface, \is_polymorphic, \is_custom
// From this point:
// - rINST contains shorty (in callee-save to switch over return value after call).
// - r0 contains method
// - r1 contains 'this' pointer for instance method.
//
// Save r0 and r1 before calling NterpSetupArm32Fprs.
push {r0, r1}
add r0, rINST, #1 // shorty + 1 ; ie skip return arg character
FETCH r1, 2 // arguments
.if \is_string_init
add r1, r1, #1 // arg start index
mov r2, #1 // index in stack
.elseif \is_static
mov r2, #0 // index in stack
.else
add r1, r1, #1 // arg start index
mov r2, #1 // index in stack
.endif
vpush {s0-s15}
mov r3, sp
// Pass the stack address for arguments, +16 for fprs, +2 for saved registers,
// +1 for ArtMethod.
add lr, sp, #((16 + 2 + 1) * 4)
push {rFP, lr}
bl NterpSetupArm32Fprs
add sp, sp, #8
vpop {s0-s15}
pop {r0, r1}
.Lxmm_setup_finished_range_\suffix:
add r8, rINST, #1 // shorty + 1 ; ie skip return arg character
FETCH lr, 2 // arguments
.if \is_string_init
add lr, lr, #1 // arg start index
mov r4, #0 // index in stack
LOOP_RANGE_OVER_SHORTY_LOADING_GPRS r1, r8, lr, r4, .Lgpr_setup_finished_range_\suffix, .Lif_long_range_\suffix, is_r3=0
.elseif \is_static
mov r4, #0 // index in stack
LOOP_RANGE_OVER_SHORTY_LOADING_GPRS r1, r8, lr, r4, .Lgpr_setup_finished_range_\suffix, .Lif_long_range_\suffix, is_r3=0
.else
add lr, lr, #1 // arg start index
mov r4, #1 // index in stack
.endif
LOOP_RANGE_OVER_SHORTY_LOADING_GPRS r2, r8, lr, r4, .Lgpr_setup_finished_range_\suffix, .Lif_long_range_\suffix, is_r3=0
LOOP_RANGE_OVER_SHORTY_LOADING_GPRS r3, r8, lr, r4, .Lgpr_setup_finished_range_\suffix, .Lif_long_range_\suffix, is_r3=1
.Lif_long_range_\suffix:
// Add 1 word for the ArtMethod stored before the outs.
add r4, r4, #1
LOOP_RANGE_OVER_INTs r8, lr, r4, .Lgpr_setup_finished_range_\suffix
.Lgpr_setup_finished_range_\suffix:
REFRESH_MARKING_REGISTER // r8 was used when setting parameters, restore it.
.if \is_polymorphic
bl art_quick_invoke_polymorphic
.elseif \is_custom
bl art_quick_invoke_custom
.else
.if \is_interface
// Setup hidden argument. As we don't have access to the interface method,
// just pass the method from the IMT. If the method is the conflict trampoline,
// this will make the stub go to runtime, otherwise the hidden argument is unused.
mov ip, r0
.endif
ldr lr, [r0, #ART_METHOD_QUICK_CODE_OFFSET_32]
blx lr
.endif
ldrb ip, [rINST]
cmp ip, #68 // Test if result type char == 'D'.
beq .Lreturn_double_range_\suffix
cmp ip, #70
bne .Ldone_return_range_\suffix
.Lreturn_float_range_\suffix:
vmov r0, s0
b .Ldone_return_range_\suffix
.Lreturn_double_range_\suffix:
vmov r0, r1, d0
.Ldone_return_range_\suffix:
/* resume execution of caller */
.if \is_string_init
FETCH ip, 2 // arguments
GET_VREG r1, ip
UPDATE_REGISTERS_FOR_STRING_INIT r1, r0
.endif
.if \is_polymorphic
FETCH_ADVANCE_INST 4
.else
FETCH_ADVANCE_INST 3
.endif
GET_INST_OPCODE ip
GOTO_OPCODE ip
.endm
.macro WRITE_BARRIER_IF_OBJECT is_object, value, holder, label, tmp
.if \is_object
// In T32, we would use `SMART_CBZ \value, \label`
cmp \value, #0
beq \label
ldr ip, [rSELF, #THREAD_CARD_TABLE_OFFSET]
lsr \tmp, \holder, #CARD_TABLE_CARD_SHIFT
strb ip, [ip, \tmp]
\label:
.endif
.endm
.macro LDREXD_STREXD_LOOP addr, load1, load2, store1, store2, tmp, label
\label:
ldrexd \load1, \load2, [\addr]
strexd \tmp, \store1, \store2, [\addr]
cmp \tmp, #0
bne \label
.endm
.macro ATOMIC_LOAD64 addr, load1, load2, tmp, label
LDREXD_STREXD_LOOP \addr, \load1, \load2, \load1, \load2, \tmp, \label
.endm
.macro ATOMIC_STORE64 addr, store1, store2, tmp1, tmp2, label
LDREXD_STREXD_LOOP \addr, \tmp1, \tmp2, \store1, \store2, \tmp1, \label
.endm
// Fetch some information from the thread cache.
// Uses ip and lr as temporaries.
.macro FETCH_FROM_THREAD_CACHE dest_reg, slow_path
add ip, rSELF, #THREAD_INTERPRETER_CACHE_OFFSET // cache address
ubfx lr, rPC, #2, #THREAD_INTERPRETER_CACHE_SIZE_LOG2 // entry index
add ip, ip, lr, lsl #3 // entry address within the cache
// In T32, we would use `ldrd ip, \dest_reg, [ip]`
ldr \dest_reg, [ip, #4] // value (offset)
ldr ip, [ip] // entry key (pc)
cmp ip, rPC
bne \slow_path
.endm
// Puts the next int/long/object parameter passed in physical register
// in the expected dex register array entry, and in case of object in the
// expected reference array entry.
// Uses ip as temporary.
.macro LOOP_OVER_SHORTY_STORING_GPRS gpr_32, shorty, arg_offset, regs, refs, finished, if_long, is_r3
1: // LOOP
ldrb ip, [\shorty], #1 // Load next character in shorty, and increment.
cmp ip, #0
beq \finished // if (ip == '\0') goto finished
cmp ip, #74 // if (ip == 'J') goto FOUND_LONG
beq 2f
cmp ip, #70 // if (ip == 'F') goto SKIP_FLOAT
beq 3f
cmp ip, #68 // if (ip == 'D') goto SKIP_DOUBLE
beq 4f
str \gpr_32, [\regs, \arg_offset]
cmp ip, #76 // if (ip != 'L') goto NOT_REFERENCE
bne 6f
str \gpr_32, [\refs, \arg_offset]
6: // NOT_REFERENCE
add \arg_offset, \arg_offset, #4
b 5f
2: // FOUND_LONG
.if \is_r3
// Put back shorty and jump to \if_long
sub \shorty, \shorty, #1
.else
// A long can only be in r2, r3
str r2, [\regs, \arg_offset]
add \arg_offset, \arg_offset, #4
str r3, [\regs, \arg_offset]
add \arg_offset, \arg_offset, #4
.endif
b \if_long
3: // SKIP_FLOAT
add \arg_offset, \arg_offset, #4
b 1b
4: // SKIP_DOUBLE
add \arg_offset, \arg_offset, #8
b 1b
5:
.endm
// Puts the next int/long/object parameter passed in stack
// in the expected dex register array entry, and in case of object in the
// expected reference array entry.
.macro LOOP_OVER_INTs shorty, arg_offset, regs, refs, stack_ptr, tmp1, tmp2, finished
1: // LOOP
ldrb \tmp1, [\shorty], #1 // Load next character in shorty, and increment.
cmp \tmp1, #0
beq \finished // if (\tmp1 == '\0') goto finished
cmp \tmp1, #74 // if (\tmp1 == 'J') goto FOUND_LONG
beq 2f
cmp \tmp1, #70 // if (\tmp1 == 'F') goto SKIP_FLOAT
beq 3f
cmp \tmp1, #68 // if (\tmp1 == 'D') goto SKIP_DOUBLE
beq 4f
add \tmp2, \stack_ptr, \arg_offset
ldr \tmp2, [\tmp2, #OFFSET_TO_FIRST_ARGUMENT_IN_STACK]
str \tmp2, [\regs, \arg_offset]
cmp \tmp1, #76 // if (\tmp1 != 'L') goto loop
bne 3f
str \tmp2, [\refs, \arg_offset]
add \arg_offset, \arg_offset, #4
b 1b
2: // FOUND_LONG
add \tmp1, \stack_ptr, \arg_offset
ldr \tmp1, [\tmp1, #OFFSET_TO_FIRST_ARGUMENT_IN_STACK]
str \tmp1, [\regs, \arg_offset]
add \arg_offset, \arg_offset, #4
add \tmp1, \stack_ptr, \arg_offset
ldr \tmp1, [\tmp1, #OFFSET_TO_FIRST_ARGUMENT_IN_STACK]
str \tmp1, [\regs, \arg_offset]
add \arg_offset, \arg_offset, #4
b 1b
3: // SKIP_FLOAT
add \arg_offset, \arg_offset, #4
b 1b
4: // SKIP_DOUBLE
add \arg_offset, \arg_offset, #8
b 1b
.endm
%def entry():
/*
* ArtMethod entry point.
*
* On entry:
* r0 ArtMethod* callee
* rest method parameters
*/
OAT_ENTRY ExecuteNterpImpl, EndExecuteNterpImpl
.cfi_startproc
sub ip, sp, #STACK_OVERFLOW_RESERVED_BYTES
ldr ip, [ip]
/* Spill callee save regs */
SPILL_ALL_CALLEE_SAVES
// TODO: Get shorty in a better way and remove below
SPILL_ALL_ARGUMENTS
bl NterpGetShorty
// Save shorty in callee-save rIBASE.
mov rIBASE, r0
RESTORE_ALL_ARGUMENTS
ldr rPC, [r0, #ART_METHOD_DATA_OFFSET_32]
// Setup the stack for executing the method.
SETUP_STACK_FRAME rPC, rREFS, rFP, CFI_REFS, load_ins=1
// Setup the parameters
cmp r4, #0
beq .Lxmm_setup_finished
sub r4, rINST, r4
lsl r4, r4, #2 // r4 is now the offset for inputs into the registers array.
mov lr, ip // lr contains the old stack pointer
ldr ip, [r0, #ART_METHOD_ACCESS_FLAGS_OFFSET]
// r0 is now available.
// Setup shorty, pointer to inputs in FP and pointer to inputs in REFS
add r0, rIBASE, #1 // shorty + 1 ; ie skip return arg character
add r7, rFP, r4
add r8, rREFS, r4
tst ip, #ART_METHOD_IS_STATIC_FLAG
bne .Lhandle_static_method
str r1, [r7], #4
str r1, [r8], #4
add lr, lr, #4
mov r4, #0
b .Lcontinue_setup_gprs
.Lhandle_static_method:
mov r4, #0
LOOP_OVER_SHORTY_STORING_GPRS r1, r0, r4, r7, r8, .Lgpr_setup_finished, .Lif_long, is_r3=0
.Lcontinue_setup_gprs:
LOOP_OVER_SHORTY_STORING_GPRS r2, r0, r4, r7, r8, .Lgpr_setup_finished, .Lif_long, is_r3=0
LOOP_OVER_SHORTY_STORING_GPRS r3, r0, r4, r7, r8, .Lgpr_setup_finished, .Lif_long, is_r3=1
.Lif_long:
LOOP_OVER_INTs r0, r4, r7, r8, lr, ip, r1, .Lgpr_setup_finished
.Lgpr_setup_finished:
add r0, rIBASE, #1 // shorty + 1 ; ie skip return arg character
mov r1, r7
add r2, lr, #OFFSET_TO_FIRST_ARGUMENT_IN_STACK
vpush {s0-s15}
mov r3, sp
bl NterpStoreArm32Fprs
add sp, sp, #(16 * 4)
.Lxmm_setup_finished:
CFI_DEFINE_DEX_PC_WITH_OFFSET(CFI_TMP, CFI_DEX, 0)
// r8 was used for setting up the frame, restore it now.
REFRESH_MARKING_REGISTER
.Lexecute_instructions:
// Set rIBASE
adr rIBASE, artNterpAsmInstructionStart
/* start executing the instruction at rPC */
START_EXECUTING_INSTRUCTIONS
/* NOTE: no fallthrough */
// cfi info continues, and covers the whole nterp implementation.
SIZE ExecuteNterpImpl
%def opcode_pre():
%def helpers():
%def footer():
/*
* ===========================================================================
* Common subroutines and data
* ===========================================================================
*/
.text
.align 2
// Note: mterp also uses the common_* names below for helpers, but that's OK
// as the assembler compiled each interpreter separately.
common_errDivideByZero:
EXPORT_PC
bl art_quick_throw_div_zero
// Expect index in r1, length in r3
common_errArrayIndex:
EXPORT_PC
mov r0, r1
mov r1, r3
bl art_quick_throw_array_bounds
common_errNullObject:
EXPORT_PC
bl art_quick_throw_null_pointer_exception
NterpCommonInvokeStatic:
COMMON_INVOKE_NON_RANGE is_static=1, suffix="invokeStatic"
NterpCommonInvokeStaticRange:
COMMON_INVOKE_RANGE is_static=1, suffix="invokeStatic"
NterpCommonInvokeInstance:
COMMON_INVOKE_NON_RANGE suffix="invokeInstance"
NterpCommonInvokeInstanceRange:
COMMON_INVOKE_RANGE suffix="invokeInstance"
NterpCommonInvokeInterface:
COMMON_INVOKE_NON_RANGE is_interface=1, suffix="invokeInterface"
NterpCommonInvokeInterfaceRange:
COMMON_INVOKE_RANGE is_interface=1, suffix="invokeInterface"
NterpCommonInvokePolymorphic:
COMMON_INVOKE_NON_RANGE is_polymorphic=1, suffix="invokePolymorphic"
NterpCommonInvokePolymorphicRange:
COMMON_INVOKE_RANGE is_polymorphic=1, suffix="invokePolymorphic"
NterpCommonInvokeCustom:
COMMON_INVOKE_NON_RANGE is_static=1, is_custom=1, suffix="invokeCustom"
NterpCommonInvokeCustomRange:
COMMON_INVOKE_RANGE is_static=1, is_custom=1, suffix="invokeCustom"
NterpHandleStringInit:
COMMON_INVOKE_NON_RANGE is_string_init=1, suffix="stringInit"
NterpHandleStringInitRange:
COMMON_INVOKE_RANGE is_string_init=1, suffix="stringInit"
NterpNewArray:
/* new-array vA, vB, class@CCCC */
EXPORT_PC
// Fast-path which gets the class from thread-local cache.
FETCH_FROM_THREAD_CACHE r0, 2f
cmp rMR, #0
bne 3f
1:
lsr r1, rINST, #12 // r1<- B
GET_VREG r1, r1 // r1<- vB (array length)
ldr lr, [rSELF, #THREAD_ALLOC_ARRAY_ENTRYPOINT_OFFSET]
blx lr
ubfx r1, rINST, #8, #4 // r1<- A
SET_VREG_OBJECT r0, r1
FETCH_ADVANCE_INST 2
GET_INST_OPCODE ip
GOTO_OPCODE ip
2:
mov r0, rSELF
ldr r1, [sp]
mov r2, rPC
bl nterp_get_class_or_allocate_object
b 1b
3:
bl art_quick_read_barrier_mark_reg00
b 1b
NterpHandleInvokeInterfaceOnObjectMethodRange:
// First argument is the 'this' pointer.
FETCH r1, 2
GET_VREG r1, r1
// Note: if r1 is null, this will be handled by our SIGSEGV handler.
ldr r2, [r1, #MIRROR_OBJECT_CLASS_OFFSET]
add r2, r2, #MIRROR_CLASS_VTABLE_OFFSET_32
ldr r0, [r2, r0, lsl #2]
b NterpCommonInvokeInstanceRange
NterpHandleInvokeInterfaceOnObjectMethod:
// First argument is the 'this' pointer.
FETCH r1, 2
and r1, r1, #0xf
GET_VREG r1, r1
// Note: if r1 is null, this will be handled by our SIGSEGV handler.
ldr r2, [r1, #MIRROR_OBJECT_CLASS_OFFSET]
add r2, r2, #MIRROR_CLASS_VTABLE_OFFSET_32
ldr r0, [r2, r0, lsl #2]
b NterpCommonInvokeInstance
NterpHandleHotnessOverflow:
add r1, rPC, rINST, lsl #1
mov r2, rFP
bl nterp_hot_method
cmp r0, #0
bne 1f
add r2, rINST, rINST // w2<- byte offset
FETCH_ADVANCE_INST_RB r2 // update rPC, load rINST
GET_INST_OPCODE ip // extract opcode from rINST
GOTO_OPCODE ip // jump to next instruction
1:
// Drop the current frame.
ldr ip, [rREFS, #-4]
mov sp, ip
.cfi_def_cfa sp, CALLEE_SAVES_SIZE
// The transition frame of type SaveAllCalleeSaves saves r4, r8, and r9,
// but not managed ABI. So we need to restore callee-saves of the nterp frame,
// and save managed ABI callee saves, which will be restored by the callee upon
// return.
RESTORE_ALL_CALLEE_SAVES
push {r5-r7, r10-r11, lr}
.cfi_adjust_cfa_offset 24
.cfi_rel_offset r5, 0
.cfi_rel_offset r6, 4
.cfi_rel_offset r7, 8
.cfi_rel_offset r10, 12
.cfi_rel_offset r11, 16
.cfi_rel_offset lr, 20
vpush {s16-s31}
.cfi_adjust_cfa_offset 64
// Setup the new frame
ldr r1, [r0, #OSR_DATA_FRAME_SIZE]
// Given stack size contains all callee saved registers, remove them.
sub r1, r1, #(CALLEE_SAVES_SIZE - 12)
// We know r1 cannot be 0, as it at least contains the ArtMethod.
// Remember CFA in a callee-save register.
mov rINST, sp
.cfi_def_cfa_register rINST
sub sp, sp, r1
add r2, r0, #OSR_DATA_MEMORY
2:
sub r1, r1, #4
ldr ip, [r2, r1]
str ip, [sp, r1]
cmp r1, #0
bne 2b
// Fetch the native PC to jump to and save it in a callee-save register.
ldr rFP, [r0, #OSR_DATA_NATIVE_PC]
// Free the memory holding OSR Data.
bl free
// Jump to the compiled code.
bx rFP
// This is the logical end of ExecuteNterpImpl, where the frame info applies.
// EndExecuteNterpImpl includes the methods below as we want the runtime to
// see them as part of the Nterp PCs.
.cfi_endproc
nterp_to_nterp_static_non_range:
.cfi_startproc
SETUP_STACK_FOR_INVOKE
SETUP_NON_RANGE_ARGUMENTS_AND_EXECUTE is_static=1, is_string_init=0
.cfi_endproc
nterp_to_nterp_string_init_non_range:
.cfi_startproc
SETUP_STACK_FOR_INVOKE
SETUP_NON_RANGE_ARGUMENTS_AND_EXECUTE is_static=0, is_string_init=1
.cfi_endproc
nterp_to_nterp_instance_non_range:
.cfi_startproc
SETUP_STACK_FOR_INVOKE
SETUP_NON_RANGE_ARGUMENTS_AND_EXECUTE is_static=0, is_string_init=0
.cfi_endproc
nterp_to_nterp_static_range:
.cfi_startproc
SETUP_STACK_FOR_INVOKE
SETUP_RANGE_ARGUMENTS_AND_EXECUTE is_static=1, is_string_init=0
.cfi_endproc
nterp_to_nterp_string_init_range:
.cfi_startproc
SETUP_STACK_FOR_INVOKE
SETUP_RANGE_ARGUMENTS_AND_EXECUTE is_static=0, is_string_init=1
.cfi_endproc
nterp_to_nterp_instance_range:
.cfi_startproc
SETUP_STACK_FOR_INVOKE
SETUP_RANGE_ARGUMENTS_AND_EXECUTE is_static=0, is_string_init=0
.cfi_endproc
// This is the end of PCs contained by the OatQuickMethodHeader created for the interpreter
// entry point.
.type EndExecuteNterpImpl, #function
.hidden EndExecuteNterpImpl
.global EndExecuteNterpImpl
EndExecuteNterpImpl:
/*
* Convert the double in r0/r1 to a long in r0/r1.
*
* We have to clip values to long min/max per the specification. The
* expected common case is a "reasonable" value that converts directly
* to modest integer. The EABI convert function isn't doing this for us.
*/
nterp_d2l_doconv:
ubfx r2, r1, #20, #11 @ grab the exponent
movw r3, #0x43e
cmp r2, r3 @ MINLONG < x > MAXLONG?
bhs d2l_special_cases
b __aeabi_d2lz @ tail call to convert double to long
d2l_special_cases:
movw r3, #0x7ff
cmp r2, r3
beq d2l_maybeNaN @ NaN?
d2l_notNaN:
adds r1, r1, r1 @ sign bit to carry
mov r0, #0xffffffff @ assume maxlong for lsw
mov r1, #0x7fffffff @ assume maxlong for msw
adc r0, r0, #0
adc r1, r1, #0 @ convert maxlong to minlong if exp negative
bx lr @ return
d2l_maybeNaN:
orrs r3, r0, r1, lsl #12
beq d2l_notNaN @ if fraction is non-zero, it's a NaN
mov r0, #0
mov r1, #0
bx lr @ return 0 for NaN
/*
* Convert the float in r0 to a long in r0/r1.
*
* We have to clip values to long min/max per the specification. The
* expected common case is a "reasonable" value that converts directly
* to modest integer. The EABI convert function isn't doing this for us.
*/
nterp_f2l_doconv:
ubfx r2, r0, #23, #8 @ grab the exponent
cmp r2, #0xbe @ MININT < x > MAXINT?
bhs f2l_special_cases
b __aeabi_f2lz @ tail call to convert float to long
f2l_special_cases:
cmp r2, #0xff @ NaN or infinity?
beq f2l_maybeNaN
f2l_notNaN:
adds r0, r0, r0 @ sign bit to carry
mov r0, #0xffffffff @ assume maxlong for lsw
mov r1, #0x7fffffff @ assume maxlong for msw
adc r0, r0, #0
adc r1, r1, #0 @ convert maxlong to minlong if exp negative
bx lr @ return
f2l_maybeNaN:
lsls r3, r0, #9
beq f2l_notNaN @ if fraction is non-zero, it's a NaN
mov r0, #0
mov r1, #0
bx lr @ return 0 for NaN
// Entrypoints into runtime.
NTERP_TRAMPOLINE nterp_get_static_field, NterpGetStaticField
NTERP_TRAMPOLINE nterp_get_instance_field_offset, NterpGetInstanceFieldOffset
NTERP_TRAMPOLINE nterp_filled_new_array, NterpFilledNewArray
NTERP_TRAMPOLINE nterp_filled_new_array_range, NterpFilledNewArrayRange
NTERP_TRAMPOLINE nterp_get_class_or_allocate_object, NterpGetClassOrAllocateObject
NTERP_TRAMPOLINE nterp_get_method, NterpGetMethod
NTERP_TRAMPOLINE nterp_hot_method, NterpHotMethod
NTERP_TRAMPOLINE nterp_load_object, NterpLoadObject
// gen_mterp.py will inline the following definitions
// within [ExecuteNterpImpl, EndExecuteNterpImpl).
%def instruction_end():
.type artNterpAsmInstructionEnd, #object
.hidden artNterpAsmInstructionEnd
.global artNterpAsmInstructionEnd
artNterpAsmInstructionEnd:
// artNterpAsmInstructionEnd is used as landing pad for exception handling.
FETCH_INST
GET_INST_OPCODE ip
GOTO_OPCODE ip
%def instruction_start():
.type artNterpAsmInstructionStart, #object
.hidden artNterpAsmInstructionStart
.global artNterpAsmInstructionStart
artNterpAsmInstructionStart = .L_op_nop
.text
%def default_helper_prefix():
% return "nterp_"
%def opcode_start():
NAME_START nterp_${opcode}
%def opcode_end():
NAME_END nterp_${opcode}
%def helper_start(name):
NAME_START ${name}
%def helper_end(name):
NAME_END ${name}