| /* | 
 |  * Copyright (C) 2016 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_ | 
 | #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_ | 
 |  | 
 | #include <map> | 
 | #include <unordered_set> | 
 | #include <vector> | 
 |  | 
 | #include "art_field-inl.h" | 
 | #include "debug/elf_compilation_unit.h" | 
 | #include "debug/elf_debug_loc_writer.h" | 
 | #include "debug/method_debug_info.h" | 
 | #include "dex/code_item_accessors-inl.h" | 
 | #include "dex/dex_file-inl.h" | 
 | #include "dex/dex_file.h" | 
 | #include "dwarf/debug_abbrev_writer.h" | 
 | #include "dwarf/debug_info_entry_writer.h" | 
 | #include "elf/elf_builder.h" | 
 | #include "heap_poisoning.h" | 
 | #include "linear_alloc.h" | 
 | #include "mirror/array.h" | 
 | #include "mirror/class-inl.h" | 
 | #include "mirror/class.h" | 
 | #include "oat_file.h" | 
 | #include "obj_ptr-inl.h" | 
 |  | 
 | namespace art { | 
 | namespace debug { | 
 |  | 
 | static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) { | 
 |   std::vector<const char*> names; | 
 |   DCHECK(mi->dex_file != nullptr); | 
 |   CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index); | 
 |   if (accessor.HasCodeItem()) { | 
 |     accessor.VisitParameterNames([&](const dex::StringIndex& id) { | 
 |       names.push_back(mi->dex_file->StringDataByIdx(id)); | 
 |     }); | 
 |   } | 
 |   return names; | 
 | } | 
 |  | 
 | // Helper class to write .debug_info and its supporting sections. | 
 | template<typename ElfTypes> | 
 | class ElfDebugInfoWriter { | 
 |   using Elf_Addr = typename ElfTypes::Addr; | 
 |  | 
 |  public: | 
 |   explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder) | 
 |       : builder_(builder), | 
 |         debug_abbrev_(&debug_abbrev_buffer_) { | 
 |   } | 
 |  | 
 |   void Start() { | 
 |     builder_->GetDebugInfo()->Start(); | 
 |   } | 
 |  | 
 |   void End() { | 
 |     builder_->GetDebugInfo()->End(); | 
 |     builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_); | 
 |     if (!debug_loc_.empty()) { | 
 |       builder_->WriteSection(".debug_loc", &debug_loc_); | 
 |     } | 
 |     if (!debug_ranges_.empty()) { | 
 |       builder_->WriteSection(".debug_ranges", &debug_ranges_); | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   ElfBuilder<ElfTypes>* builder_; | 
 |   std::vector<uint8_t> debug_abbrev_buffer_; | 
 |   dwarf::DebugAbbrevWriter<> debug_abbrev_; | 
 |   std::vector<uint8_t> debug_loc_; | 
 |   std::vector<uint8_t> debug_ranges_; | 
 |  | 
 |   std::unordered_set<const char*> defined_dex_classes_;  // For CHECKs only. | 
 |  | 
 |   template<typename ElfTypes2> | 
 |   friend class ElfCompilationUnitWriter; | 
 | }; | 
 |  | 
 | // Helper class to write one compilation unit. | 
 | // It holds helper methods and temporary state. | 
 | template<typename ElfTypes> | 
 | class ElfCompilationUnitWriter { | 
 |   using Elf_Addr = typename ElfTypes::Addr; | 
 |  | 
 |  public: | 
 |   explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner) | 
 |     : owner_(owner), | 
 |       info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) { | 
 |   } | 
 |  | 
 |   void Write(const ElfCompilationUnit& compilation_unit) { | 
 |     CHECK(!compilation_unit.methods.empty()); | 
 |     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative | 
 |         ? owner_->builder_->GetText()->GetAddress() | 
 |         : 0; | 
 |     const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa()); | 
 |     using namespace dwarf;  // NOLINT. For easy access to DWARF constants. | 
 |  | 
 |     info_.StartTag(DW_TAG_compile_unit); | 
 |     info_.WriteString(DW_AT_producer, "Android dex2oat"); | 
 |     info_.WriteData1(DW_AT_language, DW_LANG_Java); | 
 |     info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT"); | 
 |     // The low_pc acts as base address for several other addresses/ranges. | 
 |     info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address); | 
 |     info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset); | 
 |  | 
 |     // Write .debug_ranges entries covering code ranges of the whole compilation unit. | 
 |     dwarf::Writer<> debug_ranges(&owner_->debug_ranges_); | 
 |     info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size()); | 
 |     for (auto mi : compilation_unit.methods) { | 
 |       uint64_t low_pc = mi->code_address - compilation_unit.code_address; | 
 |       uint64_t high_pc = low_pc + mi->code_size; | 
 |       if (is64bit) { | 
 |         debug_ranges.PushUint64(low_pc); | 
 |         debug_ranges.PushUint64(high_pc); | 
 |       } else { | 
 |         debug_ranges.PushUint32(low_pc); | 
 |         debug_ranges.PushUint32(high_pc); | 
 |       } | 
 |     } | 
 |     if (is64bit) { | 
 |       debug_ranges.PushUint64(0);  // End of list. | 
 |       debug_ranges.PushUint64(0); | 
 |     } else { | 
 |       debug_ranges.PushUint32(0);  // End of list. | 
 |       debug_ranges.PushUint32(0); | 
 |     } | 
 |  | 
 |     const char* last_dex_class_desc = nullptr; | 
 |     for (auto mi : compilation_unit.methods) { | 
 |       DCHECK(mi->dex_file != nullptr); | 
 |       const DexFile* dex = mi->dex_file; | 
 |       CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index); | 
 |       const dex::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index); | 
 |       const dex::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method); | 
 |       const dex::TypeList* dex_params = dex->GetProtoParameters(dex_proto); | 
 |       const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method); | 
 |       const bool is_static = (mi->access_flags & kAccStatic) != 0; | 
 |  | 
 |       // Enclose the method in correct class definition. | 
 |       if (last_dex_class_desc != dex_class_desc) { | 
 |         if (last_dex_class_desc != nullptr) { | 
 |           EndClassTag(); | 
 |         } | 
 |         // Write reference tag for the class we are about to declare. | 
 |         size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type); | 
 |         type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset); | 
 |         size_t type_attrib_offset = info_.size(); | 
 |         info_.WriteRef4(DW_AT_type, 0); | 
 |         info_.EndTag(); | 
 |         // Declare the class that owns this method. | 
 |         size_t class_offset = StartClassTag(dex_class_desc); | 
 |         info_.UpdateUint32(type_attrib_offset, class_offset); | 
 |         info_.WriteFlagPresent(DW_AT_declaration); | 
 |         // Check that each class is defined only once. | 
 |         bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second; | 
 |         CHECK(unique) << "Redefinition of " << dex_class_desc; | 
 |         last_dex_class_desc = dex_class_desc; | 
 |       } | 
 |  | 
 |       int start_depth = info_.Depth(); | 
 |       info_.StartTag(DW_TAG_subprogram); | 
 |       WriteName(dex->GetMethodName(dex_method)); | 
 |       info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address); | 
 |       info_.WriteUdata(DW_AT_high_pc, mi->code_size); | 
 |       std::vector<uint8_t> expr_buffer; | 
 |       Expression expr(&expr_buffer); | 
 |       expr.WriteOpCallFrameCfa(); | 
 |       info_.WriteExprLoc(DW_AT_frame_base, expr); | 
 |       WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto)); | 
 |  | 
 |       // Decode dex register locations for all stack maps. | 
 |       // It might be expensive, so do it just once and reuse the result. | 
 |       std::unique_ptr<const CodeInfo> code_info; | 
 |       std::vector<DexRegisterMap> dex_reg_maps; | 
 |       if (accessor.HasCodeItem() && mi->code_info != nullptr) { | 
 |         code_info.reset(new CodeInfo(mi->code_info)); | 
 |         for (StackMap stack_map : code_info->GetStackMaps()) { | 
 |           dex_reg_maps.push_back(code_info->GetDexRegisterMapOf(stack_map)); | 
 |         } | 
 |       } | 
 |  | 
 |       // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not | 
 |       // guarantee order or uniqueness so it is safer to iterate over them manually. | 
 |       // DecodeDebugLocalInfo might not also be available if there is no debug info. | 
 |       std::vector<const char*> param_names = GetParamNames(mi); | 
 |       uint32_t arg_reg = 0; | 
 |       if (!is_static) { | 
 |         info_.StartTag(DW_TAG_formal_parameter); | 
 |         WriteName("this"); | 
 |         info_.WriteFlagPresent(DW_AT_artificial); | 
 |         WriteLazyType(dex_class_desc); | 
 |         if (accessor.HasCodeItem()) { | 
 |           // Write the stack location of the parameter. | 
 |           const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg; | 
 |           const bool is64bitValue = false; | 
 |           WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address); | 
 |         } | 
 |         arg_reg++; | 
 |         info_.EndTag(); | 
 |       } | 
 |       if (dex_params != nullptr) { | 
 |         for (uint32_t i = 0; i < dex_params->Size(); ++i) { | 
 |           info_.StartTag(DW_TAG_formal_parameter); | 
 |           // Parameter names may not be always available. | 
 |           if (i < param_names.size()) { | 
 |             WriteName(param_names[i]); | 
 |           } | 
 |           // Write the type. | 
 |           const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_); | 
 |           WriteLazyType(type_desc); | 
 |           const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J'; | 
 |           if (accessor.HasCodeItem()) { | 
 |             // Write the stack location of the parameter. | 
 |             const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg; | 
 |             WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address); | 
 |           } | 
 |           arg_reg += is64bitValue ? 2 : 1; | 
 |           info_.EndTag(); | 
 |         } | 
 |         if (accessor.HasCodeItem()) { | 
 |           DCHECK_EQ(arg_reg, accessor.InsSize()); | 
 |         } | 
 |       } | 
 |  | 
 |       // Write local variables. | 
 |       std::vector<DexFile::LocalInfo> local_infos; | 
 |       if (accessor.DecodeDebugLocalInfo(is_static, | 
 |                                         mi->dex_method_index, | 
 |                                         [&](const DexFile::LocalInfo& entry) { | 
 |                                           local_infos.push_back(entry); | 
 |                                         })) { | 
 |         for (const DexFile::LocalInfo& var : local_infos) { | 
 |           if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) { | 
 |             info_.StartTag(DW_TAG_variable); | 
 |             WriteName(var.name_); | 
 |             WriteLazyType(var.descriptor_); | 
 |             bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J'; | 
 |             WriteRegLocation(mi, | 
 |                              dex_reg_maps, | 
 |                              var.reg_, | 
 |                              is64bitValue, | 
 |                              compilation_unit.code_address, | 
 |                              var.start_address_, | 
 |                              var.end_address_); | 
 |             info_.EndTag(); | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       info_.EndTag(); | 
 |       CHECK_EQ(info_.Depth(), start_depth);  // Balanced start/end. | 
 |     } | 
 |     if (last_dex_class_desc != nullptr) { | 
 |       EndClassTag(); | 
 |     } | 
 |     FinishLazyTypes(); | 
 |     CloseNamespacesAboveDepth(0); | 
 |     info_.EndTag();  // DW_TAG_compile_unit | 
 |     CHECK_EQ(info_.Depth(), 0); | 
 |     std::vector<uint8_t> buffer; | 
 |     buffer.reserve(info_.data()->size() + KB); | 
 |     // All compilation units share single table which is at the start of .debug_abbrev. | 
 |     const size_t debug_abbrev_offset = 0; | 
 |     WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer); | 
 |     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size()); | 
 |   } | 
 |  | 
 |   void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) { | 
 |     using namespace dwarf;  // NOLINT. For easy access to DWARF constants. | 
 |  | 
 |     info_.StartTag(DW_TAG_compile_unit); | 
 |     info_.WriteString(DW_AT_producer, "Android dex2oat"); | 
 |     info_.WriteData1(DW_AT_language, DW_LANG_Java); | 
 |  | 
 |     // Base class references to be patched at the end. | 
 |     std::map<size_t, mirror::Class*> base_class_references; | 
 |  | 
 |     // Already written declarations or definitions. | 
 |     std::map<mirror::Class*, size_t> class_declarations; | 
 |  | 
 |     std::vector<uint8_t> expr_buffer; | 
 |     for (mirror::Class* type : types) { | 
 |       if (type->IsPrimitive()) { | 
 |         // For primitive types the definition and the declaration is the same. | 
 |         if (type->GetPrimitiveType() != Primitive::kPrimVoid) { | 
 |           WriteTypeDeclaration(type->GetDescriptor(nullptr)); | 
 |         } | 
 |       } else if (type->IsArrayClass()) { | 
 |         ObjPtr<mirror::Class> element_type = type->GetComponentType(); | 
 |         uint32_t component_size = type->GetComponentSize(); | 
 |         uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value(); | 
 |         uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); | 
 |  | 
 |         CloseNamespacesAboveDepth(0);  // Declare in root namespace. | 
 |         info_.StartTag(DW_TAG_array_type); | 
 |         std::string descriptor_string; | 
 |         WriteLazyType(element_type->GetDescriptor(&descriptor_string)); | 
 |         WriteLinkageName(type); | 
 |         info_.WriteUdata(DW_AT_data_member_location, data_offset); | 
 |         info_.StartTag(DW_TAG_subrange_type); | 
 |         Expression count_expr(&expr_buffer); | 
 |         count_expr.WriteOpPushObjectAddress(); | 
 |         count_expr.WriteOpPlusUconst(length_offset); | 
 |         count_expr.WriteOpDerefSize(4);  // Array length is always 32-bit wide. | 
 |         info_.WriteExprLoc(DW_AT_count, count_expr); | 
 |         info_.EndTag();  // DW_TAG_subrange_type. | 
 |         info_.EndTag();  // DW_TAG_array_type. | 
 |       } else if (type->IsInterface()) { | 
 |         // Skip.  Variables cannot have an interface as a dynamic type. | 
 |         // We do not expose the interface information to the debugger in any way. | 
 |       } else { | 
 |         std::string descriptor_string; | 
 |         const char* desc = type->GetDescriptor(&descriptor_string); | 
 |         size_t class_offset = StartClassTag(desc); | 
 |         class_declarations.emplace(type, class_offset); | 
 |  | 
 |         if (!type->IsVariableSize()) { | 
 |           info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize()); | 
 |         } | 
 |  | 
 |         WriteLinkageName(type); | 
 |  | 
 |         if (type->IsObjectClass()) { | 
 |           // Generate artificial member which is used to get the dynamic type of variable. | 
 |           // The run-time value of this field will correspond to linkage name of some type. | 
 |           // We need to do it only once in j.l.Object since all other types inherit it. | 
 |           info_.StartTag(DW_TAG_member); | 
 |           WriteName(".dynamic_type"); | 
 |           WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I"); | 
 |           info_.WriteFlagPresent(DW_AT_artificial); | 
 |           // Create DWARF expression to get the value of the methods_ field. | 
 |           Expression expr(&expr_buffer); | 
 |           // The address of the object has been implicitly pushed on the stack. | 
 |           // Dereference the klass_ field of Object (32-bit; possibly poisoned). | 
 |           DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u); | 
 |           DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u); | 
 |           expr.WriteOpDerefSize(4); | 
 |           if (kPoisonHeapReferences) { | 
 |             expr.WriteOpNeg(); | 
 |             // DWARF stack is pointer sized. Ensure that the high bits are clear. | 
 |             expr.WriteOpConstu(0xFFFFFFFF); | 
 |             expr.WriteOpAnd(); | 
 |           } | 
 |           // Add offset to the methods_ field. | 
 |           expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value()); | 
 |           // Top of stack holds the location of the field now. | 
 |           info_.WriteExprLoc(DW_AT_data_member_location, expr); | 
 |           info_.EndTag();  // DW_TAG_member. | 
 |         } | 
 |  | 
 |         // Base class. | 
 |         ObjPtr<mirror::Class> base_class = type->GetSuperClass(); | 
 |         if (base_class != nullptr) { | 
 |           info_.StartTag(DW_TAG_inheritance); | 
 |           base_class_references.emplace(info_.size(), base_class.Ptr()); | 
 |           info_.WriteRef4(DW_AT_type, 0); | 
 |           info_.WriteUdata(DW_AT_data_member_location, 0); | 
 |           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public); | 
 |           info_.EndTag();  // DW_TAG_inheritance. | 
 |         } | 
 |  | 
 |         // Member variables. | 
 |         for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) { | 
 |           ArtField* field = type->GetInstanceField(i); | 
 |           info_.StartTag(DW_TAG_member); | 
 |           WriteName(field->GetName()); | 
 |           WriteLazyType(field->GetTypeDescriptor()); | 
 |           info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value()); | 
 |           uint32_t access_flags = field->GetAccessFlags(); | 
 |           if (access_flags & kAccPublic) { | 
 |             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public); | 
 |           } else if (access_flags & kAccProtected) { | 
 |             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected); | 
 |           } else if (access_flags & kAccPrivate) { | 
 |             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private); | 
 |           } | 
 |           info_.EndTag();  // DW_TAG_member. | 
 |         } | 
 |  | 
 |         if (type->IsStringClass()) { | 
 |           // Emit debug info about an artifical class member for java.lang.String which represents | 
 |           // the first element of the data stored in a string instance. Consumers of the debug | 
 |           // info will be able to read the content of java.lang.String based on the count (real | 
 |           // field) and based on the location of this data member. | 
 |           info_.StartTag(DW_TAG_member); | 
 |           WriteName("value"); | 
 |           // We don't support fields with C like array types so we just say its type is java char. | 
 |           WriteLazyType("C");  // char. | 
 |           info_.WriteUdata(DW_AT_data_member_location, | 
 |                            mirror::String::ValueOffset().Uint32Value()); | 
 |           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private); | 
 |           info_.EndTag();  // DW_TAG_member. | 
 |         } | 
 |  | 
 |         EndClassTag(); | 
 |       } | 
 |     } | 
 |  | 
 |     // Write base class declarations. | 
 |     for (const auto& base_class_reference : base_class_references) { | 
 |       size_t reference_offset = base_class_reference.first; | 
 |       mirror::Class* base_class = base_class_reference.second; | 
 |       const auto it = class_declarations.find(base_class); | 
 |       if (it != class_declarations.end()) { | 
 |         info_.UpdateUint32(reference_offset, it->second); | 
 |       } else { | 
 |         // Declare base class.  We can not use the standard WriteLazyType | 
 |         // since we want to avoid the DW_TAG_reference_tag wrapping. | 
 |         std::string tmp_storage; | 
 |         const char* base_class_desc = base_class->GetDescriptor(&tmp_storage); | 
 |         size_t base_class_declaration_offset = StartClassTag(base_class_desc); | 
 |         info_.WriteFlagPresent(DW_AT_declaration); | 
 |         WriteLinkageName(base_class); | 
 |         EndClassTag(); | 
 |         class_declarations.emplace(base_class, base_class_declaration_offset); | 
 |         info_.UpdateUint32(reference_offset, base_class_declaration_offset); | 
 |       } | 
 |     } | 
 |  | 
 |     FinishLazyTypes(); | 
 |     CloseNamespacesAboveDepth(0); | 
 |     info_.EndTag();  // DW_TAG_compile_unit. | 
 |     CHECK_EQ(info_.Depth(), 0); | 
 |     std::vector<uint8_t> buffer; | 
 |     buffer.reserve(info_.data()->size() + KB); | 
 |     // All compilation units share single table which is at the start of .debug_abbrev. | 
 |     const size_t debug_abbrev_offset = 0; | 
 |     WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer); | 
 |     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size()); | 
 |   } | 
 |  | 
 |   // Write table into .debug_loc which describes location of dex register. | 
 |   // The dex register might be valid only at some points and it might | 
 |   // move between machine registers and stack. | 
 |   void WriteRegLocation(const MethodDebugInfo* method_info, | 
 |                         const std::vector<DexRegisterMap>& dex_register_maps, | 
 |                         uint16_t vreg, | 
 |                         bool is64bitValue, | 
 |                         uint64_t compilation_unit_code_address, | 
 |                         uint32_t dex_pc_low = 0, | 
 |                         uint32_t dex_pc_high = 0xFFFFFFFF) { | 
 |     WriteDebugLocEntry(method_info, | 
 |                        dex_register_maps, | 
 |                        vreg, | 
 |                        is64bitValue, | 
 |                        compilation_unit_code_address, | 
 |                        dex_pc_low, | 
 |                        dex_pc_high, | 
 |                        owner_->builder_->GetIsa(), | 
 |                        &info_, | 
 |                        &owner_->debug_loc_, | 
 |                        &owner_->debug_ranges_); | 
 |   } | 
 |  | 
 |   // Linkage name uniquely identifies type. | 
 |   // It is used to determine the dynamic type of objects. | 
 |   // We use the methods_ field of class since it is unique and it is not moved by the GC. | 
 |   void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) { | 
 |     auto* methods_ptr = type->GetMethodsPtr(); | 
 |     if (methods_ptr == nullptr) { | 
 |       // Some types might have no methods.  Allocate empty array instead. | 
 |       LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc(); | 
 |       void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>)); | 
 |       methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0); | 
 |       type->SetMethodsPtr(methods_ptr, 0, 0); | 
 |       DCHECK(type->GetMethodsPtr() != nullptr); | 
 |     } | 
 |     char name[32]; | 
 |     snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr)); | 
 |     info_.WriteString(dwarf::DW_AT_linkage_name, name); | 
 |   } | 
 |  | 
 |   // Some types are difficult to define as we go since they need | 
 |   // to be enclosed in the right set of namespaces. Therefore we | 
 |   // just define all types lazily at the end of compilation unit. | 
 |   void WriteLazyType(const char* type_descriptor) { | 
 |     if (type_descriptor != nullptr && type_descriptor[0] != 'V') { | 
 |       lazy_types_.emplace(std::string(type_descriptor), info_.size()); | 
 |       info_.WriteRef4(dwarf::DW_AT_type, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   void FinishLazyTypes() { | 
 |     for (const auto& lazy_type : lazy_types_) { | 
 |       info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first)); | 
 |     } | 
 |     lazy_types_.clear(); | 
 |   } | 
 |  | 
 |  private: | 
 |   void WriteName(const char* name) { | 
 |     if (name != nullptr) { | 
 |       info_.WriteString(dwarf::DW_AT_name, name); | 
 |     } | 
 |   } | 
 |  | 
 |   // Convert dex type descriptor to DWARF. | 
 |   // Returns offset in the compilation unit. | 
 |   size_t WriteTypeDeclaration(const std::string& desc) { | 
 |     using namespace dwarf;  // NOLINT. For easy access to DWARF constants. | 
 |  | 
 |     DCHECK(!desc.empty()); | 
 |     const auto it = type_cache_.find(desc); | 
 |     if (it != type_cache_.end()) { | 
 |       return it->second; | 
 |     } | 
 |  | 
 |     size_t offset; | 
 |     if (desc[0] == 'L') { | 
 |       // Class type. For example: Lpackage/name; | 
 |       size_t class_offset = StartClassTag(desc.c_str()); | 
 |       info_.WriteFlagPresent(DW_AT_declaration); | 
 |       EndClassTag(); | 
 |       // Reference to the class type. | 
 |       offset = info_.StartTag(DW_TAG_reference_type); | 
 |       info_.WriteRef(DW_AT_type, class_offset); | 
 |       info_.EndTag(); | 
 |     } else if (desc[0] == '[') { | 
 |       // Array type. | 
 |       size_t element_type = WriteTypeDeclaration(desc.substr(1)); | 
 |       CloseNamespacesAboveDepth(0);  // Declare in root namespace. | 
 |       size_t array_type = info_.StartTag(DW_TAG_array_type); | 
 |       info_.WriteFlagPresent(DW_AT_declaration); | 
 |       info_.WriteRef(DW_AT_type, element_type); | 
 |       info_.EndTag(); | 
 |       offset = info_.StartTag(DW_TAG_reference_type); | 
 |       info_.WriteRef4(DW_AT_type, array_type); | 
 |       info_.EndTag(); | 
 |     } else { | 
 |       // Primitive types. | 
 |       DCHECK_EQ(desc.size(), 1u); | 
 |  | 
 |       const char* name; | 
 |       uint32_t encoding; | 
 |       uint32_t byte_size; | 
 |       switch (desc[0]) { | 
 |       case 'B': | 
 |         name = "byte"; | 
 |         encoding = DW_ATE_signed; | 
 |         byte_size = 1; | 
 |         break; | 
 |       case 'C': | 
 |         name = "char"; | 
 |         encoding = DW_ATE_UTF; | 
 |         byte_size = 2; | 
 |         break; | 
 |       case 'D': | 
 |         name = "double"; | 
 |         encoding = DW_ATE_float; | 
 |         byte_size = 8; | 
 |         break; | 
 |       case 'F': | 
 |         name = "float"; | 
 |         encoding = DW_ATE_float; | 
 |         byte_size = 4; | 
 |         break; | 
 |       case 'I': | 
 |         name = "int"; | 
 |         encoding = DW_ATE_signed; | 
 |         byte_size = 4; | 
 |         break; | 
 |       case 'J': | 
 |         name = "long"; | 
 |         encoding = DW_ATE_signed; | 
 |         byte_size = 8; | 
 |         break; | 
 |       case 'S': | 
 |         name = "short"; | 
 |         encoding = DW_ATE_signed; | 
 |         byte_size = 2; | 
 |         break; | 
 |       case 'Z': | 
 |         name = "boolean"; | 
 |         encoding = DW_ATE_boolean; | 
 |         byte_size = 1; | 
 |         break; | 
 |       case 'V': | 
 |         LOG(FATAL) << "Void type should not be encoded"; | 
 |         UNREACHABLE(); | 
 |       default: | 
 |         LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\""; | 
 |         UNREACHABLE(); | 
 |       } | 
 |       CloseNamespacesAboveDepth(0);  // Declare in root namespace. | 
 |       offset = info_.StartTag(DW_TAG_base_type); | 
 |       WriteName(name); | 
 |       info_.WriteData1(DW_AT_encoding, encoding); | 
 |       info_.WriteData1(DW_AT_byte_size, byte_size); | 
 |       info_.EndTag(); | 
 |     } | 
 |  | 
 |     type_cache_.emplace(desc, offset); | 
 |     return offset; | 
 |   } | 
 |  | 
 |   // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags. | 
 |   // Returns offset of the class tag in the compilation unit. | 
 |   size_t StartClassTag(const char* desc) { | 
 |     std::string name = SetNamespaceForClass(desc); | 
 |     size_t offset = info_.StartTag(dwarf::DW_TAG_class_type); | 
 |     WriteName(name.c_str()); | 
 |     return offset; | 
 |   } | 
 |  | 
 |   void EndClassTag() { | 
 |     info_.EndTag(); | 
 |   } | 
 |  | 
 |   // Set the current namespace nesting to one required by the given class. | 
 |   // Returns the class name with namespaces, 'L', and ';' stripped. | 
 |   std::string SetNamespaceForClass(const char* desc) { | 
 |     DCHECK(desc != nullptr && desc[0] == 'L'); | 
 |     desc++;  // Skip the initial 'L'. | 
 |     size_t depth = 0; | 
 |     for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) { | 
 |       // Check whether the name at this depth is already what we need. | 
 |       if (depth < current_namespace_.size()) { | 
 |         const std::string& name = current_namespace_[depth]; | 
 |         if (name.compare(0, name.size(), desc, end - desc) == 0) { | 
 |           continue; | 
 |         } | 
 |       } | 
 |       // Otherwise we need to open a new namespace tag at this depth. | 
 |       CloseNamespacesAboveDepth(depth); | 
 |       info_.StartTag(dwarf::DW_TAG_namespace); | 
 |       std::string name(desc, end - desc); | 
 |       WriteName(name.c_str()); | 
 |       current_namespace_.push_back(std::move(name)); | 
 |     } | 
 |     CloseNamespacesAboveDepth(depth); | 
 |     return std::string(desc, strchr(desc, ';') - desc); | 
 |   } | 
 |  | 
 |   // Close namespace tags to reach the given nesting depth. | 
 |   void CloseNamespacesAboveDepth(size_t depth) { | 
 |     DCHECK_LE(depth, current_namespace_.size()); | 
 |     while (current_namespace_.size() > depth) { | 
 |       info_.EndTag(); | 
 |       current_namespace_.pop_back(); | 
 |     } | 
 |   } | 
 |  | 
 |   // For access to the ELF sections. | 
 |   ElfDebugInfoWriter<ElfTypes>* owner_; | 
 |   // Temporary buffer to create and store the entries. | 
 |   dwarf::DebugInfoEntryWriter<> info_; | 
 |   // Cache of already translated type descriptors. | 
 |   std::map<std::string, size_t> type_cache_;  // type_desc -> definition_offset. | 
 |   // 32-bit references which need to be resolved to a type later. | 
 |   // Given type may be used multiple times.  Therefore we need a multimap. | 
 |   std::multimap<std::string, size_t> lazy_types_;  // type_desc -> patch_offset. | 
 |   // The current set of open namespace tags which are active and not closed yet. | 
 |   std::vector<std::string> current_namespace_; | 
 | }; | 
 |  | 
 | }  // namespace debug | 
 | }  // namespace art | 
 |  | 
 | #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_ | 
 |  |