blob: 838597d4ac6afe52e580fb18b5a6fc42327d58d2 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ssa_liveness_analysis.h"
#include "nodes.h"
namespace art {
void SsaLivenessAnalysis::Analyze() {
NumberInstructions();
ComputeSets();
}
void SsaLivenessAnalysis::NumberInstructions() {
int ssa_index = 0;
for (HReversePostOrderIterator it(graph_); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
for (HInstructionIterator it(*block->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasUses()) {
current->SetSsaIndex(ssa_index++);
}
}
for (HInstructionIterator it(*block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasUses()) {
current->SetSsaIndex(ssa_index++);
}
}
}
number_of_ssa_values_ = ssa_index;
}
void SsaLivenessAnalysis::ComputeSets() {
for (HReversePostOrderIterator it(graph_); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
block_infos_.Put(
block->GetBlockId(),
new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
}
// Compute the initial live_in, live_out, and kill sets. This method does not handle
// backward branches, therefore live_in and live_out sets are not yet correct.
ComputeInitialSets();
// Do a fixed point calculation to take into account backward branches,
// that will update live_in of loop headers, and therefore live_out and live_in
// of blocks in the loop.
ComputeLiveInAndLiveOutSets();
}
void SsaLivenessAnalysis::ComputeInitialSets() {
// Do a post orderr visit, adding inputs of instructions live in the block where
// that instruction is defined, and killing instructions that are being visited.
for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
BitVector* kill = GetKillSet(*block);
BitVector* live_in = GetLiveInSet(*block);
for (HBackwardInstructionIterator it(*block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasSsaIndex()) {
kill->SetBit(current->GetSsaIndex());
live_in->ClearBit(current->GetSsaIndex());
}
// All inputs of an instruction must be live.
for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
DCHECK(current->InputAt(i)->HasSsaIndex());
live_in->SetBit(current->InputAt(i)->GetSsaIndex());
}
if (current->HasEnvironment()) {
// All instructions in the environment must be live.
GrowableArray<HInstruction*>* environment = current->GetEnvironment()->GetVRegs();
for (size_t i = 0, e = environment->Size(); i < e; ++i) {
HInstruction* instruction = environment->Get(i);
if (instruction != nullptr) {
DCHECK(instruction->HasSsaIndex());
live_in->SetBit(instruction->GetSsaIndex());
}
}
}
}
for (HInstructionIterator it(*block->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasSsaIndex()) {
kill->SetBit(current->GetSsaIndex());
live_in->ClearBit(current->GetSsaIndex());
}
// Mark a phi input live_in for its corresponding predecessor.
for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
HInstruction* input = current->InputAt(i);
HBasicBlock* predecessor = block->GetPredecessors()->Get(i);
size_t ssa_index = input->GetSsaIndex();
BitVector* predecessor_kill = GetKillSet(*predecessor);
BitVector* predecessor_live_in = GetLiveInSet(*predecessor);
// Phi inputs from a back edge have already been visited. If the back edge
// block defines that input, we should not add it to its live_in.
if (!predecessor_kill->IsBitSet(ssa_index)) {
predecessor_live_in->SetBit(ssa_index);
}
}
}
}
}
void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
bool changed;
do {
changed = false;
for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
const HBasicBlock& block = *it.Current();
// The live_in set depends on the kill set (which does not
// change in this loop), and the live_out set. If the live_out
// set does not change, there is no need to update the live_in set.
if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
changed = true;
}
}
} while (changed);
}
bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
BitVector* live_out = GetLiveOutSet(block);
bool changed = false;
// The live_out set of a block is the union of live_in sets of its successors.
for (size_t i = 0, e = block.GetSuccessors()->Size(); i < e; ++i) {
HBasicBlock* successor = block.GetSuccessors()->Get(i);
if (live_out->Union(GetLiveInSet(*successor))) {
changed = true;
}
}
return changed;
}
bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
BitVector* live_out = GetLiveOutSet(block);
BitVector* kill = GetKillSet(block);
BitVector* live_in = GetLiveInSet(block);
// If live_out is updated (because of backward branches), we need to make
// sure instructions in live_out are also in live_in, unless they are killed
// by this block.
return live_in->UnionIfNotIn(live_out, kill);
}
} // namespace art