blob: 4250ff8c70abe60b85f974149584d1f93ff8eaab [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_
#define ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_
#include "array-inl.h"
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "base/bit_utils.h"
#include "base/casts.h"
#include "class.h"
#include "gc/heap-inl.h"
#include "obj_ptr-inl.h"
#include "runtime.h"
namespace art {
namespace mirror {
static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
DCHECK_GE(component_count, 0);
size_t component_size = 1U << component_size_shift;
size_t header_size = Array::DataOffset(component_size).SizeValue();
size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
size_t size = header_size + data_size;
// Check for size_t overflow if this was an unreasonable request
// but let the caller throw OutOfMemoryError.
#ifdef __LP64__
// 64-bit. No overflow as component_count is 32-bit and the maximum
// component size is 8.
DCHECK_LE((1U << component_size_shift), 8U);
#else
// 32-bit.
DCHECK_NE(header_size, 0U);
DCHECK_EQ(RoundUp(header_size, component_size), header_size);
// The array length limit (exclusive).
const size_t length_limit = (0U - header_size) >> component_size_shift;
if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
return 0; // failure
}
#endif
return size;
}
// Used for setting the array length in the allocation code path to ensure it is guarded by a
// StoreStore fence.
class SetLengthVisitor {
public:
explicit SetLengthVisitor(int32_t length) : length_(length) {
}
void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
REQUIRES_SHARED(Locks::mutator_lock_) {
// Avoid AsArray as object is not yet in live bitmap or allocation stack.
ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
// DCHECK(array->IsArrayInstance());
array->SetLength(length_);
}
private:
const int32_t length_;
DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
};
// Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
// array.
class SetLengthToUsableSizeVisitor {
public:
SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
size_t component_size_shift) :
minimum_length_(min_length), header_size_(header_size),
component_size_shift_(component_size_shift) {
}
void operator()(ObjPtr<Object> obj, size_t usable_size) const
REQUIRES_SHARED(Locks::mutator_lock_) {
// Avoid AsArray as object is not yet in live bitmap or allocation stack.
ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
// DCHECK(array->IsArrayInstance());
int32_t length = (usable_size - header_size_) >> component_size_shift_;
DCHECK_GE(length, minimum_length_);
uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
minimum_length_));
uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
length));
// Ensure space beyond original allocation is zeroed.
memset(old_end, 0, new_end - old_end);
array->SetLength(length);
}
private:
const int32_t minimum_length_;
const size_t header_size_;
const size_t component_size_shift_;
DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
};
template <bool kIsInstrumented, bool kFillUsable>
inline ObjPtr<Array> Array::Alloc(Thread* self,
ObjPtr<Class> array_class,
int32_t component_count,
size_t component_size_shift,
gc::AllocatorType allocator_type) {
DCHECK(allocator_type != gc::kAllocatorTypeLOS);
DCHECK(array_class != nullptr);
DCHECK(array_class->IsArrayClass());
DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
size_t size = ComputeArraySize(component_count, component_size_shift);
#ifdef __LP64__
// 64-bit. No size_t overflow.
DCHECK_NE(size, 0U);
#else
// 32-bit.
if (UNLIKELY(size == 0)) {
self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
array_class->PrettyDescriptor().c_str(),
component_count).c_str());
return nullptr;
}
#endif
gc::Heap* heap = Runtime::Current()->GetHeap();
ObjPtr<Array> result;
if (!kFillUsable) {
SetLengthVisitor visitor(component_count);
result = ObjPtr<Array>::DownCast(MakeObjPtr(
heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
allocator_type, visitor)));
} else {
SetLengthToUsableSizeVisitor visitor(component_count,
DataOffset(1U << component_size_shift).SizeValue(),
component_size_shift);
result = ObjPtr<Array>::DownCast(MakeObjPtr(
heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
allocator_type, visitor)));
}
if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
array_class = result->GetClass(); // In case the array class moved.
CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
if (!kFillUsable) {
CHECK_EQ(result->SizeOf(), size);
} else {
CHECK_GE(result->SizeOf(), size);
}
}
return result;
}
template<typename T>
inline ObjPtr<PrimitiveArray<T>> PrimitiveArray<T>::AllocateAndFill(Thread* self,
const T* data,
size_t length) {
StackHandleScope<1> hs(self);
Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
if (!arr.IsNull()) {
// Copy it in. Just skip if it's null
memcpy(arr->GetData(), data, sizeof(T) * length);
}
return arr.Get();
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_