blob: 622bec10b3549821419b43d8cbb4eed92537a3bc [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBPROFILE_PROFILE_PROFILE_COMPILATION_INFO_H_
#define ART_LIBPROFILE_PROFILE_PROFILE_COMPILATION_INFO_H_
#include <list>
#include <set>
#include <vector>
#include "base/arena_containers.h"
#include "base/arena_object.h"
#include "base/atomic.h"
#include "base/bit_memory_region.h"
#include "base/hash_set.h"
#include "base/malloc_arena_pool.h"
#include "base/mem_map.h"
#include "base/safe_map.h"
#include "dex/dex_file.h"
#include "dex/dex_file_types.h"
#include "dex/method_reference.h"
#include "dex/type_reference.h"
namespace art {
/**
* Convenient class to pass around profile information (including inline caches)
* without the need to hold GC-able objects.
*/
struct ProfileMethodInfo {
struct ProfileInlineCache {
ProfileInlineCache(uint32_t pc,
bool missing_types,
const std::vector<TypeReference>& profile_classes,
// Only used by profman for creating profiles from text
bool megamorphic = false)
: dex_pc(pc),
is_missing_types(missing_types),
classes(profile_classes),
is_megamorphic(megamorphic) {}
const uint32_t dex_pc;
const bool is_missing_types;
const std::vector<TypeReference> classes;
const bool is_megamorphic;
};
explicit ProfileMethodInfo(MethodReference reference) : ref(reference) {}
ProfileMethodInfo(MethodReference reference, const std::vector<ProfileInlineCache>& caches)
: ref(reference),
inline_caches(caches) {}
MethodReference ref;
std::vector<ProfileInlineCache> inline_caches;
};
class FlattenProfileData;
/**
* Profile information in a format suitable to be queried by the compiler and
* performing profile guided compilation.
* It is a serialize-friendly format based on information collected by the
* interpreter (ProfileInfo).
* Currently it stores only the hot compiled methods.
*/
class ProfileCompilationInfo {
public:
static const uint8_t kProfileMagic[];
static const uint8_t kProfileVersion[];
static const uint8_t kProfileVersionForBootImage[];
static const char kDexMetadataProfileEntry[];
static constexpr size_t kProfileVersionSize = 4;
static constexpr uint8_t kIndividualInlineCacheSize = 5;
// Data structures for encoding the offline representation of inline caches.
// This is exposed as public in order to make it available to dex2oat compilations
// (see compiler/optimizing/inliner.cc).
// A profile reference to the dex file (profile key, dex checksum and number of methods).
//
// This contains references to internal std::string data of a profile key. The profile
// key must not be modified or destroyed for the entire lifetime of a `DexReference`.
struct DexReference {
DexReference() : dex_checksum(0), num_method_ids(0) {}
DexReference(std::string_view key, uint32_t checksum, uint32_t num_methods)
: profile_key(key), dex_checksum(checksum), num_method_ids(num_methods) {}
bool operator==(const DexReference& other) const {
return dex_checksum == other.dex_checksum &&
profile_key == other.profile_key &&
num_method_ids == other.num_method_ids;
}
bool MatchesDex(const DexFile* dex_file) const {
return dex_checksum == dex_file->GetLocationChecksum() &&
GetBaseKeyViewFromAugmentedKey(profile_key) ==
GetProfileDexFileBaseKeyView(dex_file->GetLocation());
}
std::string_view profile_key;
uint32_t dex_checksum;
uint32_t num_method_ids;
};
// The types used to manipulate the profile index of dex files.
// They set an upper limit to how many dex files a given profile can recored.
//
// Boot profiles have more needs than regular profiles as they contain data from
// many apps merged together. As such they set the default type for data manipulation.
//
// Regular profiles don't record a lot of dex files, and use a smaller data type
// in order to save disk and ram.
//
// In-memory all profiles will use ProfileIndexType to represent the indices. However,
// when serialized, the profile type (boot or regular) will determine which data type
// is used to write the data.
using ProfileIndexType = uint16_t;
using ProfileIndexTypeRegular = uint8_t;
// Encodes a class reference in the profile.
// The owning dex file is encoded as the index (dex_profile_index) it has in the
// profile rather than as a full DexRefence(location,checksum).
// This avoids excessive string copying when managing the profile data.
// The dex_profile_index is an index in either of:
// - OfflineProfileMethodInfo#dex_references vector (public use)
// - DexFileData#profile_index (internal use).
// Note that the dex_profile_index is not necessary the multidex index.
// We cannot rely on the actual multidex index because a single profile may store
// data from multiple splits. This means that a profile may contain a classes2.dex from split-A
// and one from split-B.
struct ClassReference : public ValueObject {
ClassReference(ProfileIndexType dex_profile_idx, const dex::TypeIndex type_idx) :
dex_profile_index(dex_profile_idx), type_index(type_idx) {}
bool operator==(const ClassReference& other) const {
return dex_profile_index == other.dex_profile_index && type_index == other.type_index;
}
bool operator<(const ClassReference& other) const {
return dex_profile_index == other.dex_profile_index
? type_index < other.type_index
: dex_profile_index < other.dex_profile_index;
}
ProfileIndexType dex_profile_index; // the index of the owning dex in the profile info
dex::TypeIndex type_index; // the type index of the class
};
// The set of classes that can be found at a given dex pc.
using ClassSet = ArenaSet<ClassReference>;
// Encodes the actual inline cache for a given dex pc (whether or not the receiver is
// megamorphic and its possible types).
// If the receiver is megamorphic or is missing types the set of classes will be empty.
struct DexPcData : public ArenaObject<kArenaAllocProfile> {
explicit DexPcData(ArenaAllocator* allocator)
: is_missing_types(false),
is_megamorphic(false),
classes(std::less<ClassReference>(), allocator->Adapter(kArenaAllocProfile)) {}
void AddClass(uint16_t dex_profile_idx, const dex::TypeIndex& type_idx);
void SetIsMegamorphic() {
if (is_missing_types) return;
is_megamorphic = true;
classes.clear();
}
void SetIsMissingTypes() {
is_megamorphic = false;
is_missing_types = true;
classes.clear();
}
bool operator==(const DexPcData& other) const {
return is_megamorphic == other.is_megamorphic &&
is_missing_types == other.is_missing_types &&
classes == other.classes;
}
// Not all runtime types can be encoded in the profile. For example if the receiver
// type is in a dex file which is not tracked for profiling its type cannot be
// encoded. When types are missing this field will be set to true.
bool is_missing_types;
bool is_megamorphic;
ClassSet classes;
};
// The inline cache map: DexPc -> DexPcData.
using InlineCacheMap = ArenaSafeMap<uint16_t, DexPcData>;
// Maps a method dex index to its inline cache.
using MethodMap = ArenaSafeMap<uint16_t, InlineCacheMap>;
// Profile method hotness information for a single method. Also includes a pointer to the inline
// cache map.
class MethodHotness {
public:
enum Flag {
// Marker flag used to simplify iterations.
kFlagFirst = 1 << 0,
// The method is profile-hot (this is implementation specific, e.g. equivalent to JIT-warm)
kFlagHot = 1 << 0,
// Executed during the app startup as determined by the runtime.
kFlagStartup = 1 << 1,
// Executed after app startup as determined by the runtime.
kFlagPostStartup = 1 << 2,
// Marker flag used to simplify iterations.
kFlagLastRegular = 1 << 2,
// Executed by a 32bit process.
kFlag32bit = 1 << 3,
// Executed by a 64bit process.
kFlag64bit = 1 << 4,
// Executed on sensitive thread (e.g. UI).
kFlagSensitiveThread = 1 << 5,
// Executed during the app startup as determined by the framework (equivalent to am start).
kFlagAmStartup = 1 << 6,
// Executed after the app startup as determined by the framework (equivalent to am start).
kFlagAmPostStartup = 1 << 7,
// Executed during system boot.
kFlagBoot = 1 << 8,
// Executed after the system has booted.
kFlagPostBoot = 1 << 9,
// The startup bins captured the relative order of when a method become hot. There are 6
// total bins supported and each hot method will have at least one bit set. If the profile was
// merged multiple times more than one bit may be set as a given method may become hot at
// various times during subsequent executions.
// The granularity of the bins is unspecified (i.e. the runtime is free to change the
// values it uses - this may be 100ms, 200ms etc...).
kFlagStartupBin = 1 << 10,
kFlagStartupMaxBin = 1 << 15,
// Marker flag used to simplify iterations.
kFlagLastBoot = 1 << 15,
};
bool IsHot() const {
return (flags_ & kFlagHot) != 0;
}
bool IsStartup() const {
return (flags_ & kFlagStartup) != 0;
}
bool IsPostStartup() const {
return (flags_ & kFlagPostStartup) != 0;
}
void AddFlag(Flag flag) {
flags_ |= flag;
}
uint32_t GetFlags() const {
return flags_;
}
bool HasFlagSet(MethodHotness::Flag flag) {
return (flags_ & flag ) != 0;
}
bool IsInProfile() const {
return flags_ != 0;
}
private:
const InlineCacheMap* inline_cache_map_ = nullptr;
uint32_t flags_ = 0;
const InlineCacheMap* GetInlineCacheMap() const {
return inline_cache_map_;
}
void SetInlineCacheMap(const InlineCacheMap* info) {
inline_cache_map_ = info;
}
friend class ProfileCompilationInfo;
};
// Encodes the full set of inline caches for a given method.
//
// The `dex_references` vector is indexed according to the ClassReference::dex_profile_index.
// i.e. the dex file of any ClassReference present in the inline caches can be found at
// dex_references[ClassReference::dex_profile_index].
//
// The `dex_references` contains references to internal std::string data of profile keys.
// Those profile keys must not be modified or destroyed for the entire lifetime of the
// `OfflineProfileMethodInfo`. To ensure that, the `ProfileCompilationInfo` should not
// be modified or destroyed while an `OfflineProfileMethodInfo` is in use.
struct OfflineProfileMethodInfo {
explicit OfflineProfileMethodInfo(const InlineCacheMap* inline_cache_map)
: inline_caches(inline_cache_map) {}
bool operator==(const OfflineProfileMethodInfo& other) const;
// Checks that this offline representation of inline caches matches the runtime view of the
// data.
bool operator==(const std::vector<ProfileMethodInfo::ProfileInlineCache>& other) const;
const InlineCacheMap* const inline_caches;
std::vector<DexReference> dex_references;
};
// Encapsulates metadata that can be associated with the methods and classes added to the profile.
// The additional metadata is serialized in the profile and becomes part of the profile key
// representation. It can be used to differentiate the samples that are added to the profile
// based on the supported criteria (e.g. keep track of which app generated what sample when
// constructing a boot profile.).
class ProfileSampleAnnotation {
public:
explicit ProfileSampleAnnotation(const std::string& package_name) :
origin_package_name_(package_name) {}
const std::string& GetOriginPackageName() const { return origin_package_name_; }
bool operator==(const ProfileSampleAnnotation& other) const;
bool operator<(const ProfileSampleAnnotation& other) const {
return origin_package_name_ < other.origin_package_name_;
}
// A convenient empty annotation object that can be used to denote that no annotation should
// be associated with the profile samples.
static const ProfileSampleAnnotation kNone;
private:
// The name of the package that generated the samples.
const std::string origin_package_name_;
};
// Public methods to create, extend or query the profile.
ProfileCompilationInfo();
explicit ProfileCompilationInfo(bool for_boot_image);
explicit ProfileCompilationInfo(ArenaPool* arena_pool);
ProfileCompilationInfo(ArenaPool* arena_pool, bool for_boot_image);
~ProfileCompilationInfo();
// Add the given methods to the current profile object.
//
// Note: if an annotation is provided, the methods/classes will be associated with the group
// (dex_file, sample_annotation). Each group keeps its unique set of methods/classes.
bool AddMethods(const std::vector<ProfileMethodInfo>& methods,
MethodHotness::Flag flags,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone);
// Add multiple type ids for classes in a single dex file. Iterator is for type_ids not
// class_defs.
//
// Note: see AddMethods docs for the handling of annotations.
template <class Iterator>
bool AddClassesForDex(
const DexFile* dex_file,
Iterator index_begin,
Iterator index_end,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) {
DexFileData* data = GetOrAddDexFileData(dex_file, annotation);
if (data == nullptr) {
return false;
}
data->class_set.insert(index_begin, index_end);
return true;
}
// Add a method to the profile using its online representation (containing runtime structures).
//
// Note: see AddMethods docs for the handling of annotations.
bool AddMethod(const ProfileMethodInfo& pmi,
MethodHotness::Flag flags,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone);
// Bulk add sampled methods and/or hot methods for a single dex, fast since it only has one
// GetOrAddDexFileData call.
//
// Note: see AddMethods docs for the handling of annotations.
template <class Iterator>
bool AddMethodsForDex(
MethodHotness::Flag flags,
const DexFile* dex_file,
Iterator index_begin,
Iterator index_end,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) {
DexFileData* data = GetOrAddDexFileData(dex_file, annotation);
if (data == nullptr) {
return false;
}
for (Iterator it = index_begin; it != index_end; ++it) {
DCHECK_LT(*it, data->num_method_ids);
if (!data->AddMethod(flags, *it)) {
return false;
}
}
return true;
}
// Load or Merge profile information from the given file descriptor.
// If the current profile is non-empty the load will fail.
// If merge_classes is set to false, classes will not be merged/loaded.
// If filter_fn is present, it will be used to filter out profile data belonging
// to dex file which do not comply with the filter
// (i.e. for which filter_fn(dex_location, dex_checksum) is false).
using ProfileLoadFilterFn = std::function<bool(const std::string&, uint32_t)>;
// Profile filter method which accepts all dex locations.
// This is convenient to use when we need to accept all locations without repeating the same
// lambda.
static bool ProfileFilterFnAcceptAll(const std::string& dex_location, uint32_t checksum);
bool Load(
int fd,
bool merge_classes = true,
const ProfileLoadFilterFn& filter_fn = ProfileFilterFnAcceptAll);
// Verify integrity of the profile file with the provided dex files.
// If there exists a DexData object which maps to a dex_file, then it verifies that:
// - The checksums of the DexData and dex_file are equals.
// - No method id exceeds NumMethodIds corresponding to the dex_file.
// - No class id exceeds NumTypeIds corresponding to the dex_file.
// - For every inline_caches, class_ids does not exceed NumTypeIds corresponding to
// the dex_file they are in.
bool VerifyProfileData(const std::vector<const DexFile *> &dex_files);
// Load profile information from the given file
// If the current profile is non-empty the load will fail.
// If clear_if_invalid is true and the file is invalid the method clears the
// the file and returns true.
bool Load(const std::string& filename, bool clear_if_invalid);
// Merge the data from another ProfileCompilationInfo into the current object. Only merges
// classes if merge_classes is true. This is used for creating the boot profile since
// we don't want all of the classes to be image classes.
bool MergeWith(const ProfileCompilationInfo& info, bool merge_classes = true);
// Merge profile information from the given file descriptor.
bool MergeWith(const std::string& filename);
// Save the profile data to the given file descriptor.
bool Save(int fd);
// Save the current profile into the given file. The file will be cleared before saving.
bool Save(const std::string& filename, uint64_t* bytes_written);
// Return the number of methods that were profiled.
uint32_t GetNumberOfMethods() const;
// Return the number of resolved classes that were profiled.
uint32_t GetNumberOfResolvedClasses() const;
// Returns the profile method info for a given method reference.
//
// Note that if the profile was built with annotations, the same dex file may be
// represented multiple times in the profile (due to different annotation associated with it).
// If so, and if no annotation is passed to this method, then only the first dex file is searched.
//
// Implementation details: It is suitable to pass kNone for regular profile guided compilation
// because during compilation we generally don't care about annotations. The metadata is
// useful for boot profiles which need the extra information.
MethodHotness GetMethodHotness(
const MethodReference& method_ref,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const;
// Return true if the class's type is present in the profiling info.
//
// Note: see GetMethodHotness docs for the handling of annotations.
bool ContainsClass(
const DexFile& dex_file,
dex::TypeIndex type_idx,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const;
// Return the hot method info for the given location and index from the profiling info.
// If the method index is not found or the checksum doesn't match, null is returned.
// Note: the inline cache map is a pointer to the map stored in the profile and
// its allocation will go away if the profile goes out of scope.
//
// Note: see GetMethodHotness docs for the handling of annotations.
std::unique_ptr<OfflineProfileMethodInfo> GetHotMethodInfo(
const MethodReference& method_ref,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const;
// Dump all the loaded profile info into a string and returns it.
// If dex_files is not empty then the method indices will be resolved to their
// names.
// This is intended for testing and debugging.
std::string DumpInfo(const std::vector<const DexFile*>& dex_files,
bool print_full_dex_location = true) const;
// Return the classes and methods for a given dex file through out args. The out args are the set
// of class as well as the methods and their associated inline caches. Returns true if the dex
// file is register and has a matching checksum, false otherwise.
//
// Note: see GetMethodHotness docs for the handling of annotations.
bool GetClassesAndMethods(
const DexFile& dex_file,
/*out*/std::set<dex::TypeIndex>* class_set,
/*out*/std::set<uint16_t>* hot_method_set,
/*out*/std::set<uint16_t>* startup_method_set,
/*out*/std::set<uint16_t>* post_startup_method_method_set,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const;
// Returns true iff both profiles have the same version.
bool SameVersion(const ProfileCompilationInfo& other) const;
// Perform an equality test with the `other` profile information.
bool Equals(const ProfileCompilationInfo& other);
// Return the base profile key associated with the given dex location. The base profile key
// is solely constructed based on the dex location (as opposed to the one produced by
// GetProfileDexFileAugmentedKey which may include additional metadata like the origin
// package name)
static std::string GetProfileDexFileBaseKey(const std::string& dex_location);
// Returns a base key without the annotation information.
static std::string GetBaseKeyFromAugmentedKey(const std::string& profile_key);
// Returns the annotations from an augmented key.
// If the key is a base key it return ProfileSampleAnnotation::kNone.
static ProfileSampleAnnotation GetAnnotationFromKey(const std::string& augmented_key);
// Generate a test profile which will contain a percentage of the total maximum
// number of methods and classes (method_ratio and class_ratio).
static bool GenerateTestProfile(int fd,
uint16_t number_of_dex_files,
uint16_t method_ratio,
uint16_t class_ratio,
uint32_t random_seed);
// Generate a test profile which will randomly contain classes and methods from
// the provided list of dex files.
static bool GenerateTestProfile(int fd,
std::vector<std::unique_ptr<const DexFile>>& dex_files,
uint16_t method_percentage,
uint16_t class_percentage,
uint32_t random_seed);
// Check that the given profile method info contain the same data.
static bool Equals(const ProfileCompilationInfo::OfflineProfileMethodInfo& pmi1,
const ProfileCompilationInfo::OfflineProfileMethodInfo& pmi2);
ArenaAllocator* GetAllocator() { return &allocator_; }
// Return all of the class descriptors in the profile for a set of dex files.
// Note: see GetMethodHotness docs for the handling of annotations..
HashSet<std::string> GetClassDescriptors(
const std::vector<const DexFile*>& dex_files,
const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone);
// Return true if the fd points to a profile file.
bool IsProfileFile(int fd);
// Update the profile keys corresponding to the given dex files based on their current paths.
// This method allows fix-ups in the profile for dex files that might have been renamed.
// The new profile key will be constructed based on the current dex location.
//
// The matching [profile key <-> dex_file] is done based on the dex checksum and the number of
// methods ids. If neither is a match then the profile key is not updated.
//
// If the new profile key would collide with an existing key (for a different dex)
// the method returns false. Otherwise it returns true.
bool UpdateProfileKeys(const std::vector<std::unique_ptr<const DexFile>>& dex_files);
// Checks if the profile is empty.
bool IsEmpty() const;
// Clears all the data from the profile.
void ClearData();
// Clears all the data from the profile and adjust the object version.
void ClearDataAndAdjustVersion(bool for_boot_image);
// Prepare the profile to store aggregation counters.
// This will change the profile version and allocate extra storage for the counters.
// It allocates 2 bytes for every possible method and class, so do not use in performance
// critical code which needs to be memory efficient.
void PrepareForAggregationCounters();
// Returns true if the profile is configured to store aggregation counters.
bool IsForBootImage() const;
// Return the version of this profile.
const uint8_t* GetVersion() const;
// Extracts the data that the profile has on the given dex files:
// - for each method and class, a list of the corresponding annotations and flags
// - the maximum number of aggregations for classes and classes across dex files with different
// annotations (essentially this sums up how many different packages used the corresponding
// method). This information is reconstructible from the other two pieces of info, but it's
// convenient to have it precomputed.
std::unique_ptr<FlattenProfileData> ExtractProfileData(
const std::vector<std::unique_ptr<const DexFile>>& dex_files) const;
private:
enum ProfileLoadStatus {
kProfileLoadWouldOverwiteData,
kProfileLoadIOError,
kProfileLoadVersionMismatch,
kProfileLoadBadData,
kProfileLoadSuccess
};
// Internal representation of the profile information belonging to a dex file.
// Note that we could do without profile_key (the key used to encode the dex
// file in the profile) and profile_index (the index of the dex file in the
// profile) fields in this struct because we can infer them from
// profile_key_map_ and info_. However, it makes the profiles logic much
// simpler if we have references here as well.
struct DexFileData : public DeletableArenaObject<kArenaAllocProfile> {
DexFileData(ArenaAllocator* allocator,
const std::string& key,
uint32_t location_checksum,
uint16_t index,
uint32_t num_methods,
bool for_boot_image)
: allocator_(allocator),
profile_key(key),
profile_index(index),
checksum(location_checksum),
method_map(std::less<uint16_t>(), allocator->Adapter(kArenaAllocProfile)),
class_set(std::less<dex::TypeIndex>(), allocator->Adapter(kArenaAllocProfile)),
num_method_ids(num_methods),
bitmap_storage(allocator->Adapter(kArenaAllocProfile)),
is_for_boot_image(for_boot_image) {
bitmap_storage.resize(ComputeBitmapStorage(is_for_boot_image, num_method_ids));
if (!bitmap_storage.empty()) {
method_bitmap =
BitMemoryRegion(MemoryRegion(
&bitmap_storage[0],
bitmap_storage.size()),
0,
ComputeBitmapBits(is_for_boot_image, num_method_ids));
}
}
static size_t ComputeBitmapBits(bool is_for_boot_image, uint32_t num_method_ids) {
size_t flag_bitmap_index = FlagBitmapIndex(is_for_boot_image
? MethodHotness::kFlagLastBoot
: MethodHotness::kFlagLastRegular);
return num_method_ids * (flag_bitmap_index + 1);
}
static size_t ComputeBitmapStorage(bool is_for_boot_image, uint32_t num_method_ids) {
return RoundUp(ComputeBitmapBits(is_for_boot_image, num_method_ids), kBitsPerByte) /
kBitsPerByte;
}
bool operator==(const DexFileData& other) const {
return checksum == other.checksum &&
num_method_ids == other.num_method_ids &&
method_map == other.method_map &&
class_set == other.class_set &&
(BitMemoryRegion::Compare(method_bitmap, other.method_bitmap) == 0);
}
// Mark a method as executed at least once.
bool AddMethod(MethodHotness::Flag flags, size_t index);
void MergeBitmap(const DexFileData& other) {
DCHECK_EQ(bitmap_storage.size(), other.bitmap_storage.size());
for (size_t i = 0; i < bitmap_storage.size(); ++i) {
bitmap_storage[i] |= other.bitmap_storage[i];
}
}
void SetMethodHotness(size_t index, MethodHotness::Flag flags);
MethodHotness GetHotnessInfo(uint32_t dex_method_index) const;
bool ContainsClass(const dex::TypeIndex type_index) const;
// The allocator used to allocate new inline cache maps.
ArenaAllocator* const allocator_;
// The profile key this data belongs to.
std::string profile_key;
// The profile index of this dex file (matches ClassReference#dex_profile_index).
ProfileIndexType profile_index;
// The dex checksum.
uint32_t checksum;
// The methods' profile information.
MethodMap method_map;
// The classes which have been profiled. Note that these don't necessarily include
// all the classes that can be found in the inline caches reference.
ArenaSet<dex::TypeIndex> class_set;
// Find the inline caches of the the given method index. Add an empty entry if
// no previous data is found.
InlineCacheMap* FindOrAddHotMethod(uint16_t method_index);
// Num method ids.
uint32_t num_method_ids;
ArenaVector<uint8_t> bitmap_storage;
BitMemoryRegion method_bitmap;
bool is_for_boot_image;
private:
size_t MethodFlagBitmapIndex(MethodHotness::Flag flag, size_t method_index) const;
static size_t FlagBitmapIndex(MethodHotness::Flag flag);
};
// Return the profile data for the given profile key or null if the dex location
// already exists but has a different checksum
DexFileData* GetOrAddDexFileData(const std::string& profile_key,
uint32_t checksum,
uint32_t num_method_ids);
DexFileData* GetOrAddDexFileData(const DexFile* dex_file,
const ProfileSampleAnnotation& annotation) {
return GetOrAddDexFileData(GetProfileDexFileAugmentedKey(dex_file->GetLocation(), annotation),
dex_file->GetLocationChecksum(),
dex_file->NumMethodIds());
}
// Encode the known dex_files into a vector. The index of a dex_reference will
// be the same as the profile index of the dex file (used to encode the ClassReferences).
void DexFileToProfileIndex(/*out*/std::vector<DexReference>* dex_references) const;
// Return the dex data associated with the given profile key or null if the profile
// doesn't contain the key.
const DexFileData* FindDexData(const std::string& profile_key,
uint32_t checksum,
bool verify_checksum = true) const;
// Same as FindDexData but performs the searching using the given annotation:
// - If the annotation is kNone then the search ignores it and only looks at the base keys.
// In this case only the first matching dex is searched.
// - If the annotation is not kNone, the augmented key is constructed and used to invoke
// the regular FindDexData.
const DexFileData* FindDexDataUsingAnnotations(
const DexFile* dex_file,
const ProfileSampleAnnotation& annotation) const;
// Same as FindDexDataUsingAnnotations but extracts the data for all annotations.
void FindAllDexData(
const DexFile* dex_file,
/*out*/ std::vector<const ProfileCompilationInfo::DexFileData*>* result) const;
// Inflate the input buffer (in_buffer) of size in_size. It returns a buffer of
// compressed data for the input buffer of "compressed_data_size" size.
std::unique_ptr<uint8_t[]> DeflateBuffer(const uint8_t* in_buffer,
uint32_t in_size,
/*out*/uint32_t* compressed_data_size);
// Inflate the input buffer(in_buffer) of size in_size. out_size is the expected output
// size of the buffer. It puts the output in out_buffer. It returns Z_STREAM_END on
// success. On error, it returns Z_STREAM_ERROR if the compressed data is inconsistent
// and Z_DATA_ERROR if the stream ended prematurely or the stream has extra data.
int InflateBuffer(const uint8_t* in_buffer,
uint32_t in_size,
uint32_t out_size,
/*out*/uint8_t* out_buffer);
// Parsing functionality.
// The information present in the header of each profile line.
struct ProfileLineHeader {
std::string profile_key;
uint16_t class_set_size;
uint32_t method_region_size_bytes;
uint32_t checksum;
uint32_t num_method_ids;
};
/**
* Encapsulate the source of profile data for loading.
* The source can be either a plain file or a zip file.
* For zip files, the profile entry will be extracted to
* the memory map.
*/
class ProfileSource {
public:
/**
* Create a profile source for the given fd. The ownership of the fd
* remains to the caller; as this class will not attempt to close it at any
* point.
*/
static ProfileSource* Create(int32_t fd) {
DCHECK_GT(fd, -1);
return new ProfileSource(fd, MemMap::Invalid());
}
/**
* Create a profile source backed by a memory map. The map can be null in
* which case it will the treated as an empty source.
*/
static ProfileSource* Create(MemMap&& mem_map) {
return new ProfileSource(/*fd*/ -1, std::move(mem_map));
}
/**
* Read bytes from this source.
* Reading will advance the current source position so subsequent
* invocations will read from the las position.
*/
ProfileLoadStatus Read(uint8_t* buffer,
size_t byte_count,
const std::string& debug_stage,
std::string* error);
/** Return true if the source has 0 data. */
bool HasEmptyContent() const;
/** Return true if all the information from this source has been read. */
bool HasConsumedAllData() const;
private:
ProfileSource(int32_t fd, MemMap&& mem_map)
: fd_(fd), mem_map_(std::move(mem_map)), mem_map_cur_(0) {}
bool IsMemMap() const { return fd_ == -1; }
int32_t fd_; // The fd is not owned by this class.
MemMap mem_map_;
size_t mem_map_cur_; // Current position in the map to read from.
};
// A helper structure to make sure we don't read past our buffers in the loops.
struct SafeBuffer {
public:
explicit SafeBuffer(size_t size) : storage_(new uint8_t[size]) {
ptr_current_ = storage_.get();
ptr_end_ = ptr_current_ + size;
}
// Reads the content of the descriptor at the current position.
ProfileLoadStatus Fill(ProfileSource& source,
const std::string& debug_stage,
/*out*/std::string* error);
// Reads an uint value (high bits to low bits) and advances the current pointer
// with the number of bits read.
template <typename T> bool ReadUintAndAdvance(/*out*/ T* value);
// Compares the given data with the content current pointer. If the contents are
// equal it advances the current pointer by data_size.
bool CompareAndAdvance(const uint8_t* data, size_t data_size);
// Advances current pointer by data_size.
void Advance(size_t data_size);
// Returns the count of unread bytes.
size_t CountUnreadBytes();
// Returns the current pointer.
const uint8_t* GetCurrentPtr();
// Get the underlying raw buffer.
uint8_t* Get() { return storage_.get(); }
private:
std::unique_ptr<uint8_t[]> storage_;
uint8_t* ptr_end_;
uint8_t* ptr_current_;
};
ProfileLoadStatus OpenSource(int32_t fd,
/*out*/ std::unique_ptr<ProfileSource>* source,
/*out*/ std::string* error);
// Entry point for profile loading functionality.
ProfileLoadStatus LoadInternal(
int32_t fd,
std::string* error,
bool merge_classes = true,
const ProfileLoadFilterFn& filter_fn = ProfileFilterFnAcceptAll);
// Read the profile header from the given fd and store the number of profile
// lines into number_of_dex_files.
ProfileLoadStatus ReadProfileHeader(ProfileSource& source,
/*out*/ProfileIndexType* number_of_dex_files,
/*out*/uint32_t* size_uncompressed_data,
/*out*/uint32_t* size_compressed_data,
/*out*/std::string* error);
// Read the header of a profile line from the given fd.
ProfileLoadStatus ReadProfileLineHeader(SafeBuffer& buffer,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error);
// Read individual elements from the profile line header.
bool ReadProfileLineHeaderElements(SafeBuffer& buffer,
/*out*/uint16_t* dex_location_size,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error);
// Read a single profile line from the given fd.
ProfileLoadStatus ReadProfileLine(
SafeBuffer& buffer,
ProfileIndexType number_of_dex_files,
const ProfileLineHeader& line_header,
const SafeMap<ProfileIndexType, ProfileIndexType>& dex_profile_index_remap,
bool merge_classes,
/*out*/std::string* error);
// Read all the classes from the buffer into the profile `info_` structure.
bool ReadClasses(SafeBuffer& buffer,
const ProfileLineHeader& line_header,
/*out*/std::string* error);
// Read all the methods from the buffer into the profile `info_` structure.
bool ReadMethods(SafeBuffer& buffer,
ProfileIndexType number_of_dex_files,
const ProfileLineHeader& line_header,
const SafeMap<ProfileIndexType, ProfileIndexType>& dex_profile_index_remap,
/*out*/std::string* error);
// The method generates mapping of profile indices while merging a new profile
// data into current data. It returns true, if the mapping was successful.
bool RemapProfileIndex(
const std::vector<ProfileLineHeader>& profile_line_headers,
const ProfileLoadFilterFn& filter_fn,
/*out*/SafeMap<ProfileIndexType, ProfileIndexType>* dex_profile_index_remap);
// Read the inline cache encoding from line_bufer into inline_cache.
bool ReadInlineCache(SafeBuffer& buffer,
ProfileIndexType number_of_dex_files,
const SafeMap<ProfileIndexType, ProfileIndexType>& dex_profile_index_remap,
/*out*/InlineCacheMap* inline_cache,
/*out*/std::string* error);
// Encode the inline cache into the given buffer.
void AddInlineCacheToBuffer(std::vector<uint8_t>* buffer,
const InlineCacheMap& inline_cache);
// Return the number of bytes needed to encode the profile information
// for the methods in dex_data.
uint32_t GetMethodsRegionSize(const DexFileData& dex_data);
// Group `classes` by their owning dex profile index and put the result in
// `dex_to_classes_map`.
void GroupClassesByDex(
const ClassSet& classes,
/*out*/SafeMap<ProfileIndexType, std::vector<dex::TypeIndex>>* dex_to_classes_map);
// Find the data for the dex_pc in the inline cache. Adds an empty entry
// if no previous data exists.
DexPcData* FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc);
// Initializes the profile version to the desired one.
void InitProfileVersionInternal(const uint8_t version[]);
// Returns the threshold size (in bytes) which will trigger save/load warnings.
size_t GetSizeWarningThresholdBytes() const;
// Returns the threshold size (in bytes) which will cause save/load failures.
size_t GetSizeErrorThresholdBytes() const;
// Implementation of `GetProfileDexFileBaseKey()` but returning a subview
// referencing the same underlying data to avoid excessive heap allocations.
static std::string_view GetProfileDexFileBaseKeyView(std::string_view dex_location);
// Implementation of `GetBaseKeyFromAugmentedKey()` but returning a subview
// referencing the same underlying data to avoid excessive heap allocations.
static std::string_view GetBaseKeyViewFromAugmentedKey(std::string_view dex_location);
// Returns the augmented profile key associated with the given dex location.
// The return key will contain a serialized form of the information from the provided
// annotation. If the annotation is ProfileSampleAnnotation::kNone then no extra info is
// added to the key and this method is equivalent to GetProfileDexFileBaseKey.
static std::string GetProfileDexFileAugmentedKey(const std::string& dex_location,
const ProfileSampleAnnotation& annotation);
// Migrates the annotation from an augmented key to a base key.
static std::string MigrateAnnotationInfo(const std::string& base_key,
const std::string& augmented_key);
// Returns the maximum value for the profile index. It depends on the profile type.
// Boot profiles can store more dex files than regular profiles.
ProfileIndexType MaxProfileIndex() const;
// Returns the size of the profile index type used for serialization.
uint32_t SizeOfProfileIndexType() const;
// Writes the profile index to the buffer. The type of profile will determine the
// number of bytes used for serialization.
void WriteProfileIndex(std::vector<uint8_t>* buffer, ProfileIndexType value) const;
// Read the profile index from the buffer. The type of profile will determine the
// number of bytes used for serialization.
bool ReadProfileIndex(SafeBuffer& safe_buffer, ProfileIndexType* value) const;
friend class ProfileCompilationInfoTest;
friend class CompilerDriverProfileTest;
friend class ProfileAssistantTest;
friend class Dex2oatLayoutTest;
MallocArenaPool default_arena_pool_;
ArenaAllocator allocator_;
// Vector containing the actual profile info.
// The vector index is the profile index of the dex data and
// matched DexFileData::profile_index.
ArenaVector<DexFileData*> info_;
// Cache mapping profile keys to profile index.
// This is used to speed up searches since it avoids iterating
// over the info_ vector when searching by profile key.
ArenaSafeMap<const std::string, ProfileIndexType> profile_key_map_;
// The version of the profile.
uint8_t version_[kProfileVersionSize];
};
/**
* Flatten profile data that list all methods and type references together
* with their metadata (such as flags or annotation list).
*/
class FlattenProfileData {
public:
class ItemMetadata {
public:
ItemMetadata();
ItemMetadata(const ItemMetadata& other);
uint16_t GetFlags() const {
return flags_;
}
const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& GetAnnotations() const {
return annotations_;
}
void AddFlag(ProfileCompilationInfo::MethodHotness::Flag flag) {
flags_ |= flag;
}
bool HasFlagSet(ProfileCompilationInfo::MethodHotness::Flag flag) const {
return (flags_ & flag) != 0;
}
private:
// will be 0 for classes and MethodHotness::Flags for methods.
uint16_t flags_;
// This is a list that may contain duplicates after a merge operation.
// It represents that a method was used multiple times across different devices.
std::list<ProfileCompilationInfo::ProfileSampleAnnotation> annotations_;
friend class ProfileCompilationInfo;
friend class FlattenProfileData;
};
FlattenProfileData();
const SafeMap<MethodReference, ItemMetadata>& GetMethodData() const {
return method_metadata_;
}
const SafeMap<TypeReference, ItemMetadata>& GetClassData() const {
return class_metadata_;
}
uint32_t GetMaxAggregationForMethods() const {
return max_aggregation_for_methods_;
}
uint32_t GetMaxAggregationForClasses() const {
return max_aggregation_for_classes_;
}
void MergeData(const FlattenProfileData& other);
private:
// Method data.
SafeMap<MethodReference, ItemMetadata> method_metadata_;
// Class data.
SafeMap<TypeReference, ItemMetadata> class_metadata_;
// Maximum aggregation counter for all methods.
// This is essentially a cache equal to the max size of any method's annation set.
// It avoids the traversal of all the methods which can be quite expensive.
uint32_t max_aggregation_for_methods_;
// Maximum aggregation counter for all classes.
// Simillar to max_aggregation_for_methods_.
uint32_t max_aggregation_for_classes_;
friend class ProfileCompilationInfo;
};
std::ostream& operator<<(std::ostream& stream,
const ProfileCompilationInfo::DexReference& dex_ref);
} // namespace art
#endif // ART_LIBPROFILE_PROFILE_PROFILE_COMPILATION_INFO_H_