blob: 7bb866d4aaee6e17be1be2337a3c65681e978f84 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <inttypes.h>
#include "codegen_x86.h"
#include "dex/compiler_internals.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "mirror/array.h"
#include "mirror/string.h"
#include "x86_lir.h"
namespace art {
// FIXME: restore "static" when usage uncovered
/*static*/ int core_regs[] = {
rAX, rCX, rDX, rBX, rX86_SP, rBP, rSI, rDI
#ifdef TARGET_REX_SUPPORT
r8, r9, r10, r11, r12, r13, r14, 15
#endif
};
/*static*/ int ReservedRegs[] = {rX86_SP};
/*static*/ int core_temps[] = {rAX, rCX, rDX, rBX};
/*static*/ int FpRegs[] = {
fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
#ifdef TARGET_REX_SUPPORT
fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
#endif
};
/*static*/ int fp_temps[] = {
fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
#ifdef TARGET_REX_SUPPORT
fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
#endif
};
RegLocation X86Mir2Lir::LocCReturn() {
RegLocation res = X86_LOC_C_RETURN;
return res;
}
RegLocation X86Mir2Lir::LocCReturnWide() {
RegLocation res = X86_LOC_C_RETURN_WIDE;
return res;
}
RegLocation X86Mir2Lir::LocCReturnFloat() {
RegLocation res = X86_LOC_C_RETURN_FLOAT;
return res;
}
RegLocation X86Mir2Lir::LocCReturnDouble() {
RegLocation res = X86_LOC_C_RETURN_DOUBLE;
return res;
}
// Return a target-dependent special register.
int X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
int res = INVALID_REG;
switch (reg) {
case kSelf: res = rX86_SELF; break;
case kSuspend: res = rX86_SUSPEND; break;
case kLr: res = rX86_LR; break;
case kPc: res = rX86_PC; break;
case kSp: res = rX86_SP; break;
case kArg0: res = rX86_ARG0; break;
case kArg1: res = rX86_ARG1; break;
case kArg2: res = rX86_ARG2; break;
case kArg3: res = rX86_ARG3; break;
case kFArg0: res = rX86_FARG0; break;
case kFArg1: res = rX86_FARG1; break;
case kFArg2: res = rX86_FARG2; break;
case kFArg3: res = rX86_FARG3; break;
case kRet0: res = rX86_RET0; break;
case kRet1: res = rX86_RET1; break;
case kInvokeTgt: res = rX86_INVOKE_TGT; break;
case kHiddenArg: res = rAX; break;
case kHiddenFpArg: res = fr0; break;
case kCount: res = rX86_COUNT; break;
}
return res;
}
int X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
// For the 32-bit internal ABI, the first 3 arguments are passed in registers.
// TODO: This is not 64-bit compliant and depends on new internal ABI.
switch (arg_num) {
case 0:
return rX86_ARG1;
case 1:
return rX86_ARG2;
case 2:
return rX86_ARG3;
default:
return INVALID_REG;
}
}
// Create a double from a pair of singles.
int X86Mir2Lir::S2d(int low_reg, int high_reg) {
return X86_S2D(low_reg, high_reg);
}
// Return mask to strip off fp reg flags and bias.
uint32_t X86Mir2Lir::FpRegMask() {
return X86_FP_REG_MASK;
}
// True if both regs single, both core or both double.
bool X86Mir2Lir::SameRegType(int reg1, int reg2) {
return (X86_REGTYPE(reg1) == X86_REGTYPE(reg2));
}
/*
* Decode the register id.
*/
uint64_t X86Mir2Lir::GetRegMaskCommon(int reg) {
uint64_t seed;
int shift;
int reg_id;
reg_id = reg & 0xf;
/* Double registers in x86 are just a single FP register */
seed = 1;
/* FP register starts at bit position 16 */
shift = X86_FPREG(reg) ? kX86FPReg0 : 0;
/* Expand the double register id into single offset */
shift += reg_id;
return (seed << shift);
}
uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
/*
* FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
* able to clean up some of the x86/Arm_Mips differences
*/
LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
return 0ULL;
}
void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
DCHECK_EQ(cu_->instruction_set, kX86);
DCHECK(!lir->flags.use_def_invalid);
// X86-specific resource map setup here.
if (flags & REG_USE_SP) {
lir->u.m.use_mask |= ENCODE_X86_REG_SP;
}
if (flags & REG_DEF_SP) {
lir->u.m.def_mask |= ENCODE_X86_REG_SP;
}
if (flags & REG_DEFA) {
SetupRegMask(&lir->u.m.def_mask, rAX);
}
if (flags & REG_DEFD) {
SetupRegMask(&lir->u.m.def_mask, rDX);
}
if (flags & REG_USEA) {
SetupRegMask(&lir->u.m.use_mask, rAX);
}
if (flags & REG_USEC) {
SetupRegMask(&lir->u.m.use_mask, rCX);
}
if (flags & REG_USED) {
SetupRegMask(&lir->u.m.use_mask, rDX);
}
if (flags & REG_USEB) {
SetupRegMask(&lir->u.m.use_mask, rBX);
}
// Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
if (lir->opcode == kX86RepneScasw) {
SetupRegMask(&lir->u.m.use_mask, rAX);
SetupRegMask(&lir->u.m.use_mask, rCX);
SetupRegMask(&lir->u.m.use_mask, rDI);
SetupRegMask(&lir->u.m.def_mask, rDI);
}
}
/* For dumping instructions */
static const char* x86RegName[] = {
"rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};
static const char* x86CondName[] = {
"O",
"NO",
"B/NAE/C",
"NB/AE/NC",
"Z/EQ",
"NZ/NE",
"BE/NA",
"NBE/A",
"S",
"NS",
"P/PE",
"NP/PO",
"L/NGE",
"NL/GE",
"LE/NG",
"NLE/G"
};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.cc.
*/
std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
std::string buf;
size_t i = 0;
size_t fmt_len = strlen(fmt);
while (i < fmt_len) {
if (fmt[i] != '!') {
buf += fmt[i];
i++;
} else {
i++;
DCHECK_LT(i, fmt_len);
char operand_number_ch = fmt[i];
i++;
if (operand_number_ch == '!') {
buf += "!";
} else {
int operand_number = operand_number_ch - '0';
DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
DCHECK_LT(i, fmt_len);
int operand = lir->operands[operand_number];
switch (fmt[i]) {
case 'c':
DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
buf += x86CondName[operand];
break;
case 'd':
buf += StringPrintf("%d", operand);
break;
case 'p': {
EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
buf += StringPrintf("0x%08x", tab_rec->offset);
break;
}
case 'r':
if (X86_FPREG(operand) || X86_DOUBLEREG(operand)) {
int fp_reg = operand & X86_FP_REG_MASK;
buf += StringPrintf("xmm%d", fp_reg);
} else {
DCHECK_LT(static_cast<size_t>(operand), sizeof(x86RegName));
buf += x86RegName[operand];
}
break;
case 't':
buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
lir->target);
break;
default:
buf += StringPrintf("DecodeError '%c'", fmt[i]);
break;
}
i++;
}
}
}
return buf;
}
void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
char buf[256];
buf[0] = 0;
if (mask == ENCODE_ALL) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kX86RegEnd; i++) {
if (mask & (1ULL << i)) {
snprintf(num, arraysize(num), "%d ", i);
strcat(buf, num);
}
}
if (mask & ENCODE_CCODE) {
strcat(buf, "cc ");
}
/* Memory bits */
if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
(DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
}
if (mask & ENCODE_LITERAL) {
strcat(buf, "lit ");
}
if (mask & ENCODE_HEAP_REF) {
strcat(buf, "heap ");
}
if (mask & ENCODE_MUST_NOT_ALIAS) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
void X86Mir2Lir::AdjustSpillMask() {
// Adjustment for LR spilling, x86 has no LR so nothing to do here
core_spill_mask_ |= (1 << rRET);
num_core_spills_++;
}
/*
* Mark a callee-save fp register as promoted. Note that
* vpush/vpop uses contiguous register lists so we must
* include any holes in the mask. Associate holes with
* Dalvik register INVALID_VREG (0xFFFFU).
*/
void X86Mir2Lir::MarkPreservedSingle(int v_reg, int reg) {
UNIMPLEMENTED(WARNING) << "MarkPreservedSingle";
#if 0
LOG(FATAL) << "No support yet for promoted FP regs";
#endif
}
void X86Mir2Lir::FlushRegWide(int reg1, int reg2) {
RegisterInfo* info1 = GetRegInfo(reg1);
RegisterInfo* info2 = GetRegInfo(reg2);
DCHECK(info1 && info2 && info1->pair && info2->pair &&
(info1->partner == info2->reg) &&
(info2->partner == info1->reg));
if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
if (!(info1->is_temp && info2->is_temp)) {
/* Should not happen. If it does, there's a problem in eval_loc */
LOG(FATAL) << "Long half-temp, half-promoted";
}
info1->dirty = false;
info2->dirty = false;
if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg))
info1 = info2;
int v_reg = mir_graph_->SRegToVReg(info1->s_reg);
StoreBaseDispWide(rX86_SP, VRegOffset(v_reg), info1->reg, info1->partner);
}
}
void X86Mir2Lir::FlushReg(int reg) {
RegisterInfo* info = GetRegInfo(reg);
if (info->live && info->dirty) {
info->dirty = false;
int v_reg = mir_graph_->SRegToVReg(info->s_reg);
StoreBaseDisp(rX86_SP, VRegOffset(v_reg), reg, kWord);
}
}
/* Give access to the target-dependent FP register encoding to common code */
bool X86Mir2Lir::IsFpReg(int reg) {
return X86_FPREG(reg);
}
/* Clobber all regs that might be used by an external C call */
void X86Mir2Lir::ClobberCallerSave() {
Clobber(rAX);
Clobber(rCX);
Clobber(rDX);
Clobber(rBX);
}
RegLocation X86Mir2Lir::GetReturnWideAlt() {
RegLocation res = LocCReturnWide();
CHECK(res.low_reg == rAX);
CHECK(res.high_reg == rDX);
Clobber(rAX);
Clobber(rDX);
MarkInUse(rAX);
MarkInUse(rDX);
MarkPair(res.low_reg, res.high_reg);
return res;
}
RegLocation X86Mir2Lir::GetReturnAlt() {
RegLocation res = LocCReturn();
res.low_reg = rDX;
Clobber(rDX);
MarkInUse(rDX);
return res;
}
/* To be used when explicitly managing register use */
void X86Mir2Lir::LockCallTemps() {
LockTemp(rX86_ARG0);
LockTemp(rX86_ARG1);
LockTemp(rX86_ARG2);
LockTemp(rX86_ARG3);
}
/* To be used when explicitly managing register use */
void X86Mir2Lir::FreeCallTemps() {
FreeTemp(rX86_ARG0);
FreeTemp(rX86_ARG1);
FreeTemp(rX86_ARG2);
FreeTemp(rX86_ARG3);
}
void X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
#if ANDROID_SMP != 0
// TODO: optimize fences
NewLIR0(kX86Mfence);
#endif
}
/*
* Alloc a pair of core registers, or a double. Low reg in low byte,
* high reg in next byte.
*/
int X86Mir2Lir::AllocTypedTempPair(bool fp_hint,
int reg_class) {
int high_reg;
int low_reg;
int res = 0;
if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
low_reg = AllocTempDouble();
high_reg = low_reg; // only one allocated!
res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
return res;
}
low_reg = AllocTemp();
high_reg = AllocTemp();
res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
return res;
}
int X86Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) {
if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
return AllocTempFloat();
}
return AllocTemp();
}
void X86Mir2Lir::CompilerInitializeRegAlloc() {
int num_regs = sizeof(core_regs)/sizeof(*core_regs);
int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
int num_temps = sizeof(core_temps)/sizeof(*core_temps);
int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
reg_pool_ = static_cast<RegisterPool*>(arena_->Alloc(sizeof(*reg_pool_),
ArenaAllocator::kAllocRegAlloc));
reg_pool_->num_core_regs = num_regs;
reg_pool_->core_regs =
static_cast<RegisterInfo*>(arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs),
ArenaAllocator::kAllocRegAlloc));
reg_pool_->num_fp_regs = num_fp_regs;
reg_pool_->FPRegs =
static_cast<RegisterInfo *>(arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs),
ArenaAllocator::kAllocRegAlloc));
CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs);
CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs);
// Keep special registers from being allocated
for (int i = 0; i < num_reserved; i++) {
MarkInUse(ReservedRegs[i]);
}
// Mark temp regs - all others not in use can be used for promotion
for (int i = 0; i < num_temps; i++) {
MarkTemp(core_temps[i]);
}
for (int i = 0; i < num_fp_temps; i++) {
MarkTemp(fp_temps[i]);
}
}
void X86Mir2Lir::FreeRegLocTemps(RegLocation rl_keep,
RegLocation rl_free) {
if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) &&
(rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) {
// No overlap, free both
FreeTemp(rl_free.low_reg);
FreeTemp(rl_free.high_reg);
}
}
void X86Mir2Lir::SpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
// Spill mask not including fake return address register
uint32_t mask = core_spill_mask_ & ~(1 << rRET);
int offset = frame_size_ - (4 * num_core_spills_);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
StoreWordDisp(rX86_SP, offset, reg);
offset += 4;
}
}
}
void X86Mir2Lir::UnSpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
// Spill mask not including fake return address register
uint32_t mask = core_spill_mask_ & ~(1 << rRET);
int offset = frame_size_ - (4 * num_core_spills_);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
LoadWordDisp(rX86_SP, offset, reg);
offset += 4;
}
}
}
bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
}
X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena),
method_address_insns_(arena, 100, kGrowableArrayMisc),
class_type_address_insns_(arena, 100, kGrowableArrayMisc),
call_method_insns_(arena, 100, kGrowableArrayMisc),
stack_decrement_(nullptr), stack_increment_(nullptr) {
store_method_addr_used_ = false;
for (int i = 0; i < kX86Last; i++) {
if (X86Mir2Lir::EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
}
}
}
Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new X86Mir2Lir(cu, mir_graph, arena);
}
// Not used in x86
int X86Mir2Lir::LoadHelper(ThreadOffset offset) {
LOG(FATAL) << "Unexpected use of LoadHelper in x86";
return INVALID_REG;
}
uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].flags;
}
const char* X86Mir2Lir::GetTargetInstName(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].name;
}
const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].fmt;
}
/*
* Return an updated location record with current in-register status.
* If the value lives in live temps, reflect that fact. No code
* is generated. If the live value is part of an older pair,
* clobber both low and high.
*/
// TODO: Reunify with common code after 'pair mess' has been fixed
RegLocation X86Mir2Lir::UpdateLocWide(RegLocation loc) {
DCHECK(loc.wide);
DCHECK(CheckCorePoolSanity());
if (loc.location != kLocPhysReg) {
DCHECK((loc.location == kLocDalvikFrame) ||
(loc.location == kLocCompilerTemp));
// Are the dalvik regs already live in physical registers?
RegisterInfo* info_lo = AllocLive(loc.s_reg_low, kAnyReg);
// Handle FP registers specially on x86.
if (info_lo && IsFpReg(info_lo->reg)) {
bool match = true;
// We can't match a FP register with a pair of Core registers.
match = match && (info_lo->pair == 0);
if (match) {
// We can reuse;update the register usage info.
loc.low_reg = info_lo->reg;
loc.high_reg = info_lo->reg; // Play nice with existing code.
loc.location = kLocPhysReg;
loc.vec_len = kVectorLength8;
DCHECK(IsFpReg(loc.low_reg));
return loc;
}
// We can't easily reuse; clobber and free any overlaps.
if (info_lo) {
Clobber(info_lo->reg);
FreeTemp(info_lo->reg);
if (info_lo->pair)
Clobber(info_lo->partner);
}
} else {
RegisterInfo* info_hi = AllocLive(GetSRegHi(loc.s_reg_low), kAnyReg);
bool match = true;
match = match && (info_lo != NULL);
match = match && (info_hi != NULL);
// Are they both core or both FP?
match = match && (IsFpReg(info_lo->reg) == IsFpReg(info_hi->reg));
// If a pair of floating point singles, are they properly aligned?
if (match && IsFpReg(info_lo->reg)) {
match &= ((info_lo->reg & 0x1) == 0);
match &= ((info_hi->reg - info_lo->reg) == 1);
}
// If previously used as a pair, it is the same pair?
if (match && (info_lo->pair || info_hi->pair)) {
match = (info_lo->pair == info_hi->pair);
match &= ((info_lo->reg == info_hi->partner) &&
(info_hi->reg == info_lo->partner));
}
if (match) {
// Can reuse - update the register usage info
loc.low_reg = info_lo->reg;
loc.high_reg = info_hi->reg;
loc.location = kLocPhysReg;
MarkPair(loc.low_reg, loc.high_reg);
DCHECK(!IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
return loc;
}
// Can't easily reuse - clobber and free any overlaps
if (info_lo) {
Clobber(info_lo->reg);
FreeTemp(info_lo->reg);
if (info_lo->pair)
Clobber(info_lo->partner);
}
if (info_hi) {
Clobber(info_hi->reg);
FreeTemp(info_hi->reg);
if (info_hi->pair)
Clobber(info_hi->partner);
}
}
}
return loc;
}
// TODO: Reunify with common code after 'pair mess' has been fixed
RegLocation X86Mir2Lir::EvalLocWide(RegLocation loc, int reg_class, bool update) {
DCHECK(loc.wide);
int32_t new_regs;
int32_t low_reg;
int32_t high_reg;
loc = UpdateLocWide(loc);
/* If it is already in a register, we can assume proper form. Is it the right reg class? */
if (loc.location == kLocPhysReg) {
DCHECK_EQ(IsFpReg(loc.low_reg), loc.IsVectorScalar());
if (!RegClassMatches(reg_class, loc.low_reg)) {
/* It is the wrong register class. Reallocate and copy. */
if (!IsFpReg(loc.low_reg)) {
// We want this in a FP reg, and it is in core registers.
DCHECK(reg_class != kCoreReg);
// Allocate this into any FP reg, and mark it with the right size.
low_reg = AllocTypedTemp(true, reg_class);
OpVectorRegCopyWide(low_reg, loc.low_reg, loc.high_reg);
CopyRegInfo(low_reg, loc.low_reg);
Clobber(loc.low_reg);
Clobber(loc.high_reg);
loc.low_reg = low_reg;
loc.high_reg = low_reg; // Play nice with existing code.
loc.vec_len = kVectorLength8;
} else {
// The value is in a FP register, and we want it in a pair of core registers.
DCHECK_EQ(reg_class, kCoreReg);
DCHECK_EQ(loc.low_reg, loc.high_reg);
new_regs = AllocTypedTempPair(false, kCoreReg); // Force to core registers.
low_reg = new_regs & 0xff;
high_reg = (new_regs >> 8) & 0xff;
DCHECK_NE(low_reg, high_reg);
OpRegCopyWide(low_reg, high_reg, loc.low_reg, loc.high_reg);
CopyRegInfo(low_reg, loc.low_reg);
CopyRegInfo(high_reg, loc.high_reg);
Clobber(loc.low_reg);
Clobber(loc.high_reg);
loc.low_reg = low_reg;
loc.high_reg = high_reg;
MarkPair(loc.low_reg, loc.high_reg);
DCHECK(!IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
}
}
return loc;
}
DCHECK_NE(loc.s_reg_low, INVALID_SREG);
DCHECK_NE(GetSRegHi(loc.s_reg_low), INVALID_SREG);
new_regs = AllocTypedTempPair(loc.fp, reg_class);
loc.low_reg = new_regs & 0xff;
loc.high_reg = (new_regs >> 8) & 0xff;
if (loc.low_reg == loc.high_reg) {
DCHECK(IsFpReg(loc.low_reg));
loc.vec_len = kVectorLength8;
} else {
MarkPair(loc.low_reg, loc.high_reg);
}
if (update) {
loc.location = kLocPhysReg;
MarkLive(loc.low_reg, loc.s_reg_low);
if (loc.low_reg != loc.high_reg) {
MarkLive(loc.high_reg, GetSRegHi(loc.s_reg_low));
}
}
return loc;
}
// TODO: Reunify with common code after 'pair mess' has been fixed
RegLocation X86Mir2Lir::EvalLoc(RegLocation loc, int reg_class, bool update) {
int new_reg;
if (loc.wide)
return EvalLocWide(loc, reg_class, update);
loc = UpdateLoc(loc);
if (loc.location == kLocPhysReg) {
if (!RegClassMatches(reg_class, loc.low_reg)) {
/* Wrong register class. Realloc, copy and transfer ownership. */
new_reg = AllocTypedTemp(loc.fp, reg_class);
OpRegCopy(new_reg, loc.low_reg);
CopyRegInfo(new_reg, loc.low_reg);
Clobber(loc.low_reg);
loc.low_reg = new_reg;
if (IsFpReg(loc.low_reg) && reg_class != kCoreReg)
loc.vec_len = kVectorLength4;
}
return loc;
}
DCHECK_NE(loc.s_reg_low, INVALID_SREG);
new_reg = AllocTypedTemp(loc.fp, reg_class);
loc.low_reg = new_reg;
if (IsFpReg(loc.low_reg) && reg_class != kCoreReg)
loc.vec_len = kVectorLength4;
if (update) {
loc.location = kLocPhysReg;
MarkLive(loc.low_reg, loc.s_reg_low);
}
return loc;
}
int X86Mir2Lir::AllocTempDouble() {
// We really don't need a pair of registers.
return AllocTempFloat();
}
// TODO: Reunify with common code after 'pair mess' has been fixed
void X86Mir2Lir::ResetDefLocWide(RegLocation rl) {
DCHECK(rl.wide);
RegisterInfo* p_low = IsTemp(rl.low_reg);
if (IsFpReg(rl.low_reg)) {
// We are using only the low register.
if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
}
ResetDef(rl.low_reg);
} else {
RegisterInfo* p_high = IsTemp(rl.high_reg);
if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
DCHECK(p_low->pair);
NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
}
if (p_high && !(cu_->disable_opt & (1 << kSuppressLoads))) {
DCHECK(p_high->pair);
}
ResetDef(rl.low_reg);
ResetDef(rl.high_reg);
}
}
void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
// Can we do this directly to memory?
rl_dest = UpdateLocWide(rl_dest);
if ((rl_dest.location == kLocDalvikFrame) ||
(rl_dest.location == kLocCompilerTemp)) {
int32_t val_lo = Low32Bits(value);
int32_t val_hi = High32Bits(value);
int rBase = TargetReg(kSp);
int displacement = SRegOffset(rl_dest.s_reg_low);
LIR * store = NewLIR3(kX86Mov32MI, rBase, displacement + LOWORD_OFFSET, val_lo);
AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
store = NewLIR3(kX86Mov32MI, rBase, displacement + HIWORD_OFFSET, val_hi);
AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
return;
}
// Just use the standard code to do the generation.
Mir2Lir::GenConstWide(rl_dest, value);
}
// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
LOG(INFO) << "location: " << loc.location << ','
<< (loc.wide ? " w" : " ")
<< (loc.defined ? " D" : " ")
<< (loc.is_const ? " c" : " ")
<< (loc.fp ? " F" : " ")
<< (loc.core ? " C" : " ")
<< (loc.ref ? " r" : " ")
<< (loc.high_word ? " h" : " ")
<< (loc.home ? " H" : " ")
<< " vec_len: " << loc.vec_len
<< ", low: " << static_cast<int>(loc.low_reg)
<< ", high: " << static_cast<int>(loc.high_reg)
<< ", s_reg: " << loc.s_reg_low
<< ", orig: " << loc.orig_sreg;
}
void X86Mir2Lir::Materialize() {
// A good place to put the analysis before starting.
AnalyzeMIR();
// Now continue with regular code generation.
Mir2Lir::Materialize();
}
void X86Mir2Lir::LoadMethodAddress(int dex_method_index, InvokeType type,
SpecialTargetRegister symbolic_reg) {
/*
* For x86, just generate a 32 bit move immediate instruction, that will be filled
* in at 'link time'. For now, put a unique value based on target to ensure that
* code deduplication works.
*/
const DexFile::MethodId& id = cu_->dex_file->GetMethodId(dex_method_index);
uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
// Generate the move instruction with the unique pointer and save index and type.
LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg),
static_cast<int>(ptr), dex_method_index, type);
AppendLIR(move);
method_address_insns_.Insert(move);
}
void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
/*
* For x86, just generate a 32 bit move immediate instruction, that will be filled
* in at 'link time'. For now, put a unique value based on target to ensure that
* code deduplication works.
*/
const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
// Generate the move instruction with the unique pointer and save index and type.
LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg),
static_cast<int>(ptr), type_idx);
AppendLIR(move);
class_type_address_insns_.Insert(move);
}
LIR *X86Mir2Lir::CallWithLinkerFixup(int dex_method_index, InvokeType type) {
/*
* For x86, just generate a 32 bit call relative instruction, that will be filled
* in at 'link time'. For now, put a unique value based on target to ensure that
* code deduplication works.
*/
const DexFile::MethodId& id = cu_->dex_file->GetMethodId(dex_method_index);
uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
// Generate the call instruction with the unique pointer and save index and type.
LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(ptr), dex_method_index,
type);
AppendLIR(call);
call_method_insns_.Insert(call);
return call;
}
void X86Mir2Lir::InstallLiteralPools() {
// These are handled differently for x86.
DCHECK(code_literal_list_ == nullptr);
DCHECK(method_literal_list_ == nullptr);
DCHECK(class_literal_list_ == nullptr);
// Handle the fixups for methods.
for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
LIR* p = method_address_insns_.Get(i);
DCHECK_EQ(p->opcode, kX86Mov32RI);
uint32_t target = p->operands[2];
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
cu_->method_idx, cu_->invoke_type,
target, static_cast<InvokeType>(p->operands[3]),
patch_offset);
}
// Handle the fixups for class types.
for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
LIR* p = class_type_address_insns_.Get(i);
DCHECK_EQ(p->opcode, kX86Mov32RI);
uint32_t target = p->operands[2];
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
cu_->method_idx, target, patch_offset);
}
// And now the PC-relative calls to methods.
for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
LIR* p = call_method_insns_.Get(i);
DCHECK_EQ(p->opcode, kX86CallI);
uint32_t target = p->operands[1];
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
cu_->method_idx, cu_->invoke_type, target,
static_cast<InvokeType>(p->operands[2]),
patch_offset, -4 /* offset */);
}
// And do the normal processing.
Mir2Lir::InstallLiteralPools();
}
/*
* Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
* otherwise bails to standard library code.
*/
bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
ClobberCallerSave();
LockCallTemps(); // Using fixed registers
// EAX: 16 bit character being searched.
// ECX: count: number of words to be searched.
// EDI: String being searched.
// EDX: temporary during execution.
// EBX: temporary during execution.
RegLocation rl_obj = info->args[0];
RegLocation rl_char = info->args[1];
RegLocation rl_start = info->args[2];
uint32_t char_value =
rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
if (char_value > 0xFFFF) {
// We have to punt to the real String.indexOf.
return false;
}
// Okay, we are commited to inlining this.
RegLocation rl_return = GetReturn(false);
RegLocation rl_dest = InlineTarget(info);
// Is the string non-NULL?
LoadValueDirectFixed(rl_obj, rDX);
GenNullCheck(rl_obj.s_reg_low, rDX, info->opt_flags);
// Record that we have inlined & null checked the object.
info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
// Does the character fit in 16 bits?
LIR* launch_pad = nullptr;
if (rl_char.is_const) {
// We need the value in EAX.
LoadConstantNoClobber(rAX, char_value);
} else {
// Character is not a constant; compare at runtime.
LoadValueDirectFixed(rl_char, rAX);
launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
intrinsic_launchpads_.Insert(launch_pad);
OpCmpImmBranch(kCondGt, rAX, 0xFFFF, launch_pad);
}
// From here down, we know that we are looking for a char that fits in 16 bits.
// Location of reference to data array within the String object.
int value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count within the String object.
int count_offset = mirror::String::CountOffset().Int32Value();
// Starting offset within data array.
int offset_offset = mirror::String::OffsetOffset().Int32Value();
// Start of char data with array_.
int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
// Character is in EAX.
// Object pointer is in EDX.
// We need to preserve EDI, but have no spare registers, so push it on the stack.
// We have to remember that all stack addresses after this are offset by sizeof(EDI).
NewLIR1(kX86Push32R, rDI);
// Compute the number of words to search in to rCX.
LoadWordDisp(rDX, count_offset, rCX);
LIR *length_compare = nullptr;
int start_value = 0;
if (zero_based) {
// We have to handle an empty string. Use special instruction JECXZ.
length_compare = NewLIR0(kX86Jecxz8);
} else {
// We have to offset by the start index.
if (rl_start.is_const) {
start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
start_value = std::max(start_value, 0);
// Is the start > count?
length_compare = OpCmpImmBranch(kCondLe, rCX, start_value, nullptr);
if (start_value != 0) {
OpRegImm(kOpSub, rCX, start_value);
}
} else {
// Runtime start index.
rl_start = UpdateLoc(rl_start);
if (rl_start.location == kLocPhysReg) {
length_compare = OpCmpBranch(kCondLe, rCX, rl_start.low_reg, nullptr);
OpRegReg(kOpSub, rCX, rl_start.low_reg);
} else {
// Compare to memory to avoid a register load. Handle pushed EDI.
int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
OpRegMem(kOpCmp, rDX, rX86_SP, displacement);
length_compare = NewLIR2(kX86Jcc8, 0, kX86CondLe);
OpRegMem(kOpSub, rCX, rX86_SP, displacement);
}
}
}
DCHECK(length_compare != nullptr);
// ECX now contains the count in words to be searched.
// Load the address of the string into EBX.
// The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
LoadWordDisp(rDX, value_offset, rDI);
LoadWordDisp(rDX, offset_offset, rBX);
OpLea(rBX, rDI, rBX, 1, data_offset);
// Now compute into EDI where the search will start.
if (zero_based || rl_start.is_const) {
if (start_value == 0) {
OpRegCopy(rDI, rBX);
} else {
NewLIR3(kX86Lea32RM, rDI, rBX, 2 * start_value);
}
} else {
if (rl_start.location == kLocPhysReg) {
if (rl_start.low_reg == rDI) {
// We have a slight problem here. We are already using RDI!
// Grab the value from the stack.
LoadWordDisp(rX86_SP, 0, rDX);
OpLea(rDI, rBX, rDX, 1, 0);
} else {
OpLea(rDI, rBX, rl_start.low_reg, 1, 0);
}
} else {
OpRegCopy(rDI, rBX);
// Load the start index from stack, remembering that we pushed EDI.
int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
LoadWordDisp(rX86_SP, displacement, rDX);
OpLea(rDI, rBX, rDX, 1, 0);
}
}
// EDI now contains the start of the string to be searched.
// We are all prepared to do the search for the character.
NewLIR0(kX86RepneScasw);
// Did we find a match?
LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
// yes, we matched. Compute the index of the result.
// index = ((curr_ptr - orig_ptr) / 2) - 1.
OpRegReg(kOpSub, rDI, rBX);
OpRegImm(kOpAsr, rDI, 1);
NewLIR3(kX86Lea32RM, rl_return.low_reg, rDI, -1);
LIR *all_done = NewLIR1(kX86Jmp8, 0);
// Failed to match; return -1.
LIR *not_found = NewLIR0(kPseudoTargetLabel);
length_compare->target = not_found;
failed_branch->target = not_found;
LoadConstantNoClobber(rl_return.low_reg, -1);
// And join up at the end.
all_done->target = NewLIR0(kPseudoTargetLabel);
// Restore EDI from the stack.
NewLIR1(kX86Pop32R, rDI);
// Out of line code returns here.
if (launch_pad != nullptr) {
LIR *return_point = NewLIR0(kPseudoTargetLabel);
launch_pad->operands[2] = WrapPointer(return_point);
}
StoreValue(rl_dest, rl_return);
return true;
}
/*
* @brief Enter a 32 bit quantity into the FDE buffer
* @param buf FDE buffer.
* @param data Data value.
*/
static void PushWord(std::vector<uint8_t>&buf, int data) {
buf.push_back(data & 0xff);
buf.push_back((data >> 8) & 0xff);
buf.push_back((data >> 16) & 0xff);
buf.push_back((data >> 24) & 0xff);
}
/*
* @brief Enter an 'advance LOC' into the FDE buffer
* @param buf FDE buffer.
* @param increment Amount by which to increase the current location.
*/
static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
if (increment < 64) {
// Encoding in opcode.
buf.push_back(0x1 << 6 | increment);
} else if (increment < 256) {
// Single byte delta.
buf.push_back(0x02);
buf.push_back(increment);
} else if (increment < 256 * 256) {
// Two byte delta.
buf.push_back(0x03);
buf.push_back(increment & 0xff);
buf.push_back((increment >> 8) & 0xff);
} else {
// Four byte delta.
buf.push_back(0x04);
PushWord(buf, increment);
}
}
std::vector<uint8_t>* X86CFIInitialization() {
return X86Mir2Lir::ReturnCommonCallFrameInformation();
}
std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
// Length of the CIE (except for this field).
PushWord(*cfi_info, 16);
// CIE id.
PushWord(*cfi_info, 0xFFFFFFFFU);
// Version: 3.
cfi_info->push_back(0x03);
// Augmentation: empty string.
cfi_info->push_back(0x0);
// Code alignment: 1.
cfi_info->push_back(0x01);
// Data alignment: -4.
cfi_info->push_back(0x7C);
// Return address register (R8).
cfi_info->push_back(0x08);
// Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
cfi_info->push_back(0x0C);
cfi_info->push_back(0x04);
cfi_info->push_back(0x04);
// Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
cfi_info->push_back(0x2 << 6 | 0x08);
cfi_info->push_back(0x01);
// And 2 Noops to align to 4 byte boundary.
cfi_info->push_back(0x0);
cfi_info->push_back(0x0);
DCHECK_EQ(cfi_info->size() & 3, 0U);
return cfi_info;
}
static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
uint8_t buffer[12];
uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
for (uint8_t *p = buffer; p < ptr; p++) {
buf.push_back(*p);
}
}
std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
// Generate the FDE for the method.
DCHECK_NE(data_offset_, 0U);
// Length (will be filled in later in this routine).
PushWord(*cfi_info, 0);
// CIE_pointer (can be filled in by linker); might be left at 0 if there is only
// one CIE for the whole debug_frame section.
PushWord(*cfi_info, 0);
// 'initial_location' (filled in by linker).
PushWord(*cfi_info, 0);
// 'address_range' (number of bytes in the method).
PushWord(*cfi_info, data_offset_);
// The instructions in the FDE.
if (stack_decrement_ != nullptr) {
// Advance LOC to just past the stack decrement.
uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
AdvanceLoc(*cfi_info, pc);
// Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
cfi_info->push_back(0x0e);
EncodeUnsignedLeb128(*cfi_info, frame_size_);
// We continue with that stack until the epilogue.
if (stack_increment_ != nullptr) {
uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
AdvanceLoc(*cfi_info, new_pc - pc);
// We probably have code snippets after the epilogue, so save the
// current state: DW_CFA_remember_state.
cfi_info->push_back(0x0a);
// We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
// PC on the stack now.
cfi_info->push_back(0x0e);
EncodeUnsignedLeb128(*cfi_info, 4);
// Everything after that is the same as before the epilogue.
// Stack bump was followed by RET instruction.
LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
if (post_ret_insn != nullptr) {
pc = new_pc;
new_pc = post_ret_insn->offset;
AdvanceLoc(*cfi_info, new_pc - pc);
// Restore the state: DW_CFA_restore_state.
cfi_info->push_back(0x0b);
}
}
}
// Padding to a multiple of 4
while ((cfi_info->size() & 3) != 0) {
// DW_CFA_nop is encoded as 0.
cfi_info->push_back(0);
}
// Set the length of the FDE inside the generated bytes.
uint32_t length = cfi_info->size() - 4;
(*cfi_info)[0] = length;
(*cfi_info)[1] = length >> 8;
(*cfi_info)[2] = length >> 16;
(*cfi_info)[3] = length >> 24;
return cfi_info;
}
} // namespace art