blob: afed41323fba107fd0f1503c5f24d0dd37b6b224 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jni_macro_assembler_x86_64.h"
#include "base/casts.h"
#include "base/memory_region.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "lock_word.h"
#include "thread.h"
namespace art {
namespace x86_64 {
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::X86_64Core(static_cast<int>(reg));
}
static dwarf::Reg DWARFReg(FloatRegister reg) {
return dwarf::Reg::X86_64Fp(static_cast<int>(reg));
}
constexpr size_t kFramePointerSize = 8;
static constexpr size_t kNativeStackAlignment = 16;
static_assert(kNativeStackAlignment == kStackAlignment);
static inline CpuRegister GetScratchRegister() {
return CpuRegister(R11);
}
#define __ asm_.
void X86_64JNIMacroAssembler::BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> spill_regs) {
DCHECK_EQ(CodeSize(), 0U); // Nothing emitted yet.
cfi().SetCurrentCFAOffset(8); // Return address on stack.
// Note: @CriticalNative tail call is not used (would have frame_size == kFramePointerSize).
if (method_reg.IsNoRegister()) {
CHECK_ALIGNED(frame_size, kNativeStackAlignment);
} else {
CHECK_ALIGNED(frame_size, kStackAlignment);
}
size_t gpr_count = 0u;
for (int i = spill_regs.size() - 1; i >= 0; --i) {
x86_64::X86_64ManagedRegister spill = spill_regs[i].AsX86_64();
if (spill.IsCpuRegister()) {
__ pushq(spill.AsCpuRegister());
gpr_count++;
cfi().AdjustCFAOffset(kFramePointerSize);
cfi().RelOffset(DWARFReg(spill.AsCpuRegister().AsRegister()), 0);
}
}
// return address then method on stack.
int64_t rest_of_frame = static_cast<int64_t>(frame_size)
- (gpr_count * kFramePointerSize)
- kFramePointerSize /*return address*/;
if (rest_of_frame != 0) {
__ subq(CpuRegister(RSP), Immediate(rest_of_frame));
cfi().AdjustCFAOffset(rest_of_frame);
}
// spill xmms
int64_t offset = rest_of_frame;
for (int i = spill_regs.size() - 1; i >= 0; --i) {
x86_64::X86_64ManagedRegister spill = spill_regs[i].AsX86_64();
if (spill.IsXmmRegister()) {
offset -= sizeof(double);
__ movsd(Address(CpuRegister(RSP), offset), spill.AsXmmRegister());
cfi().RelOffset(DWARFReg(spill.AsXmmRegister().AsFloatRegister()), offset);
}
}
static_assert(static_cast<size_t>(kX86_64PointerSize) == kFramePointerSize,
"Unexpected frame pointer size.");
if (method_reg.IsRegister()) {
__ movq(Address(CpuRegister(RSP), 0), method_reg.AsX86_64().AsCpuRegister());
}
}
void X86_64JNIMacroAssembler::RemoveFrame(size_t frame_size,
ArrayRef<const ManagedRegister> spill_regs,
bool may_suspend ATTRIBUTE_UNUSED) {
CHECK_ALIGNED(frame_size, kNativeStackAlignment);
cfi().RememberState();
int gpr_count = 0;
// unspill xmms
int64_t offset = static_cast<int64_t>(frame_size)
- (spill_regs.size() * kFramePointerSize)
- kFramePointerSize;
for (size_t i = 0; i < spill_regs.size(); ++i) {
x86_64::X86_64ManagedRegister spill = spill_regs[i].AsX86_64();
if (spill.IsXmmRegister()) {
__ movsd(spill.AsXmmRegister(), Address(CpuRegister(RSP), offset));
cfi().Restore(DWARFReg(spill.AsXmmRegister().AsFloatRegister()));
offset += sizeof(double);
} else {
gpr_count++;
}
}
DCHECK_EQ(static_cast<size_t>(offset),
frame_size - (gpr_count * kFramePointerSize) - kFramePointerSize);
if (offset != 0) {
__ addq(CpuRegister(RSP), Immediate(offset));
cfi().AdjustCFAOffset(-offset);
}
for (size_t i = 0; i < spill_regs.size(); ++i) {
x86_64::X86_64ManagedRegister spill = spill_regs[i].AsX86_64();
if (spill.IsCpuRegister()) {
__ popq(spill.AsCpuRegister());
cfi().AdjustCFAOffset(-static_cast<int>(kFramePointerSize));
cfi().Restore(DWARFReg(spill.AsCpuRegister().AsRegister()));
}
}
__ ret();
// The CFI should be restored for any code that follows the exit block.
cfi().RestoreState();
cfi().DefCFAOffset(frame_size);
}
void X86_64JNIMacroAssembler::IncreaseFrameSize(size_t adjust) {
if (adjust != 0u) {
CHECK_ALIGNED(adjust, kNativeStackAlignment);
__ addq(CpuRegister(RSP), Immediate(-static_cast<int64_t>(adjust)));
cfi().AdjustCFAOffset(adjust);
}
}
static void DecreaseFrameSizeImpl(size_t adjust, X86_64Assembler* assembler) {
if (adjust != 0u) {
CHECK_ALIGNED(adjust, kNativeStackAlignment);
assembler->addq(CpuRegister(RSP), Immediate(adjust));
assembler->cfi().AdjustCFAOffset(-adjust);
}
}
void X86_64JNIMacroAssembler::DecreaseFrameSize(size_t adjust) {
DecreaseFrameSizeImpl(adjust, &asm_);
}
ManagedRegister X86_64JNIMacroAssembler::CoreRegisterWithSize(ManagedRegister src, size_t size) {
DCHECK(src.AsX86_64().IsCpuRegister());
DCHECK(size == 4u || size == 8u) << size;
return src;
}
void X86_64JNIMacroAssembler::Store(FrameOffset offs, ManagedRegister msrc, size_t size) {
Store(X86_64ManagedRegister::FromCpuRegister(RSP), MemberOffset(offs.Int32Value()), msrc, size);
}
void X86_64JNIMacroAssembler::Store(ManagedRegister mbase,
MemberOffset offs,
ManagedRegister msrc,
size_t size) {
X86_64ManagedRegister base = mbase.AsX86_64();
X86_64ManagedRegister src = msrc.AsX86_64();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCpuRegister()) {
if (size == 4) {
CHECK_EQ(4u, size);
__ movl(Address(base.AsCpuRegister(), offs), src.AsCpuRegister());
} else {
CHECK_EQ(8u, size);
__ movq(Address(base.AsCpuRegister(), offs), src.AsCpuRegister());
}
} else if (src.IsX87Register()) {
if (size == 4) {
__ fstps(Address(base.AsCpuRegister(), offs));
} else {
__ fstpl(Address(base.AsCpuRegister(), offs));
}
} else {
CHECK(src.IsXmmRegister());
if (size == 4) {
__ movss(Address(base.AsCpuRegister(), offs), src.AsXmmRegister());
} else {
__ movsd(Address(base.AsCpuRegister(), offs), src.AsXmmRegister());
}
}
}
void X86_64JNIMacroAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
X86_64ManagedRegister src = msrc.AsX86_64();
CHECK(src.IsCpuRegister());
__ movl(Address(CpuRegister(RSP), dest), src.AsCpuRegister());
}
void X86_64JNIMacroAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
X86_64ManagedRegister src = msrc.AsX86_64();
CHECK(src.IsCpuRegister());
__ movq(Address(CpuRegister(RSP), dest), src.AsCpuRegister());
}
void X86_64JNIMacroAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm) {
__ movl(Address(CpuRegister(RSP), dest), Immediate(imm)); // TODO(64) movq?
}
void X86_64JNIMacroAssembler::StoreStackOffsetToThread(ThreadOffset64 thr_offs,
FrameOffset fr_offs) {
CpuRegister scratch = GetScratchRegister();
__ leaq(scratch, Address(CpuRegister(RSP), fr_offs));
__ gs()->movq(Address::Absolute(thr_offs, true), scratch);
}
void X86_64JNIMacroAssembler::StoreStackPointerToThread(ThreadOffset64 thr_offs) {
__ gs()->movq(Address::Absolute(thr_offs, true), CpuRegister(RSP));
}
void X86_64JNIMacroAssembler::StoreSpanning(FrameOffset /*dst*/,
ManagedRegister /*src*/,
FrameOffset /*in_off*/) {
UNIMPLEMENTED(FATAL); // this case only currently exists for ARM
}
void X86_64JNIMacroAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
Load(mdest, X86_64ManagedRegister::FromCpuRegister(RSP), MemberOffset(src.Int32Value()), size);
}
void X86_64JNIMacroAssembler::Load(ManagedRegister mdest,
ManagedRegister mbase,
MemberOffset offs,
size_t size) {
X86_64ManagedRegister dest = mdest.AsX86_64();
X86_64ManagedRegister base = mbase.AsX86_64();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
if (size == 4) {
CHECK_EQ(4u, size);
__ movl(dest.AsCpuRegister(), Address(base.AsCpuRegister(), offs));
} else {
CHECK_EQ(8u, size);
__ movq(dest.AsCpuRegister(), Address(base.AsCpuRegister(), offs));
}
} else if (dest.IsX87Register()) {
if (size == 4) {
__ flds(Address(base.AsCpuRegister(), offs));
} else {
__ fldl(Address(base.AsCpuRegister(), offs));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
__ movss(dest.AsXmmRegister(), Address(base.AsCpuRegister(), offs));
} else {
__ movsd(dest.AsXmmRegister(), Address(base.AsCpuRegister(), offs));
}
}
}
void X86_64JNIMacroAssembler::LoadFromThread(ManagedRegister mdest,
ThreadOffset64 src, size_t size) {
X86_64ManagedRegister dest = mdest.AsX86_64();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
if (size == 1u) {
__ gs()->movzxb(dest.AsCpuRegister(), Address::Absolute(src, true));
} else {
CHECK_EQ(4u, size);
__ gs()->movl(dest.AsCpuRegister(), Address::Absolute(src, true));
}
} else if (dest.IsRegisterPair()) {
CHECK_EQ(8u, size);
__ gs()->movq(dest.AsRegisterPairLow(), Address::Absolute(src, true));
} else if (dest.IsX87Register()) {
if (size == 4) {
__ gs()->flds(Address::Absolute(src, true));
} else {
__ gs()->fldl(Address::Absolute(src, true));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
__ gs()->movss(dest.AsXmmRegister(), Address::Absolute(src, true));
} else {
__ gs()->movsd(dest.AsXmmRegister(), Address::Absolute(src, true));
}
}
}
void X86_64JNIMacroAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(dest.IsCpuRegister());
__ movq(dest.AsCpuRegister(), Address(CpuRegister(RSP), src));
}
void X86_64JNIMacroAssembler::LoadRef(ManagedRegister mdest,
ManagedRegister mbase,
MemberOffset offs,
bool unpoison_reference) {
X86_64ManagedRegister base = mbase.AsX86_64();
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(base.IsCpuRegister());
CHECK(dest.IsCpuRegister());
__ movl(dest.AsCpuRegister(), Address(base.AsCpuRegister(), offs));
if (unpoison_reference) {
__ MaybeUnpoisonHeapReference(dest.AsCpuRegister());
}
}
void X86_64JNIMacroAssembler::LoadRawPtr(ManagedRegister mdest,
ManagedRegister mbase,
Offset offs) {
X86_64ManagedRegister base = mbase.AsX86_64();
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(base.IsCpuRegister());
CHECK(dest.IsCpuRegister());
__ movq(dest.AsCpuRegister(), Address(base.AsCpuRegister(), offs));
}
void X86_64JNIMacroAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) {
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(dest.IsCpuRegister());
__ gs()->movq(dest.AsCpuRegister(), Address::Absolute(offs, true));
}
void X86_64JNIMacroAssembler::SignExtend(ManagedRegister mreg, size_t size) {
X86_64ManagedRegister reg = mreg.AsX86_64();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
__ movsxb(reg.AsCpuRegister(), reg.AsCpuRegister());
} else {
__ movsxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86_64JNIMacroAssembler::ZeroExtend(ManagedRegister mreg, size_t size) {
X86_64ManagedRegister reg = mreg.AsX86_64();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
__ movzxb(reg.AsCpuRegister(), reg.AsCpuRegister());
} else {
__ movzxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86_64JNIMacroAssembler::MoveArguments(ArrayRef<ArgumentLocation> dests,
ArrayRef<ArgumentLocation> srcs) {
DCHECK_EQ(dests.size(), srcs.size());
auto get_mask = [](ManagedRegister reg) -> uint32_t {
X86_64ManagedRegister x86_64_reg = reg.AsX86_64();
if (x86_64_reg.IsCpuRegister()) {
size_t cpu_reg_number = static_cast<size_t>(x86_64_reg.AsCpuRegister().AsRegister());
DCHECK_LT(cpu_reg_number, 16u);
return 1u << cpu_reg_number;
} else {
DCHECK(x86_64_reg.IsXmmRegister());
size_t xmm_reg_number = static_cast<size_t>(x86_64_reg.AsXmmRegister().AsFloatRegister());
DCHECK_LT(xmm_reg_number, 16u);
return (1u << 16u) << xmm_reg_number;
}
};
// Collect registers to move while storing/copying args to stack slots.
uint32_t src_regs = 0u;
uint32_t dest_regs = 0u;
for (size_t i = 0, arg_count = srcs.size(); i != arg_count; ++i) {
const ArgumentLocation& src = srcs[i];
const ArgumentLocation& dest = dests[i];
DCHECK_EQ(src.GetSize(), dest.GetSize());
if (dest.IsRegister()) {
if (src.IsRegister() && src.GetRegister().Equals(dest.GetRegister())) {
// Nothing to do.
} else {
if (src.IsRegister()) {
src_regs |= get_mask(src.GetRegister());
}
dest_regs |= get_mask(dest.GetRegister());
}
} else {
if (src.IsRegister()) {
Store(dest.GetFrameOffset(), src.GetRegister(), dest.GetSize());
} else {
Copy(dest.GetFrameOffset(), src.GetFrameOffset(), dest.GetSize());
}
}
}
// Fill destination registers.
// There should be no cycles, so this simple algorithm should make progress.
while (dest_regs != 0u) {
uint32_t old_dest_regs = dest_regs;
for (size_t i = 0, arg_count = srcs.size(); i != arg_count; ++i) {
const ArgumentLocation& src = srcs[i];
const ArgumentLocation& dest = dests[i];
if (!dest.IsRegister()) {
continue; // Stored in first loop above.
}
uint32_t dest_reg_mask = get_mask(dest.GetRegister());
if ((dest_reg_mask & dest_regs) == 0u) {
continue; // Equals source, or already filled in one of previous iterations.
}
if ((dest_reg_mask & src_regs) != 0u) {
continue; // Cannot clobber this register yet.
}
if (src.IsRegister()) {
Move(dest.GetRegister(), src.GetRegister(), dest.GetSize());
src_regs &= ~get_mask(src.GetRegister()); // Allow clobbering source register.
} else {
Load(dest.GetRegister(), src.GetFrameOffset(), dest.GetSize());
}
dest_regs &= ~get_mask(dest.GetRegister()); // Destination register was filled.
}
CHECK_NE(old_dest_regs, dest_regs);
DCHECK_EQ(0u, dest_regs & ~old_dest_regs);
}
}
void X86_64JNIMacroAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
DCHECK(!mdest.Equals(X86_64ManagedRegister::FromCpuRegister(GetScratchRegister().AsRegister())));
X86_64ManagedRegister dest = mdest.AsX86_64();
X86_64ManagedRegister src = msrc.AsX86_64();
if (!dest.Equals(src)) {
if (dest.IsCpuRegister() && src.IsCpuRegister()) {
__ movq(dest.AsCpuRegister(), src.AsCpuRegister());
} else if (src.IsX87Register() && dest.IsXmmRegister()) {
// Pass via stack and pop X87 register
__ subl(CpuRegister(RSP), Immediate(16));
if (size == 4) {
CHECK_EQ(src.AsX87Register(), ST0);
__ fstps(Address(CpuRegister(RSP), 0));
__ movss(dest.AsXmmRegister(), Address(CpuRegister(RSP), 0));
} else {
CHECK_EQ(src.AsX87Register(), ST0);
__ fstpl(Address(CpuRegister(RSP), 0));
__ movsd(dest.AsXmmRegister(), Address(CpuRegister(RSP), 0));
}
__ addq(CpuRegister(RSP), Immediate(16));
} else {
// TODO: x87, SSE
UNIMPLEMENTED(FATAL) << ": Move " << dest << ", " << src;
}
}
}
void X86_64JNIMacroAssembler::CopyRef(FrameOffset dest, FrameOffset src) {
CpuRegister scratch = GetScratchRegister();
__ movl(scratch, Address(CpuRegister(RSP), src));
__ movl(Address(CpuRegister(RSP), dest), scratch);
}
void X86_64JNIMacroAssembler::CopyRef(FrameOffset dest,
ManagedRegister base,
MemberOffset offs,
bool unpoison_reference) {
CpuRegister scratch = GetScratchRegister();
__ movl(scratch, Address(base.AsX86_64().AsCpuRegister(), offs));
if (unpoison_reference) {
__ MaybeUnpoisonHeapReference(scratch);
}
__ movl(Address(CpuRegister(RSP), dest), scratch);
}
void X86_64JNIMacroAssembler::CopyRawPtrFromThread(FrameOffset fr_offs, ThreadOffset64 thr_offs) {
CpuRegister scratch = GetScratchRegister();
__ gs()->movq(scratch, Address::Absolute(thr_offs, true));
__ movq(Address(CpuRegister(RSP), fr_offs), scratch);
}
void X86_64JNIMacroAssembler::CopyRawPtrToThread(ThreadOffset64 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
Load(scratch, fr_offs, 8);
__ gs()->movq(Address::Absolute(thr_offs, true), scratch.AsCpuRegister());
}
void X86_64JNIMacroAssembler::Copy(FrameOffset dest, FrameOffset src, size_t size) {
DCHECK(size == 4 || size == 8) << size;
CpuRegister scratch = GetScratchRegister();
if (size == 8) {
__ movq(scratch, Address(CpuRegister(RSP), src));
__ movq(Address(CpuRegister(RSP), dest), scratch);
} else {
__ movl(scratch, Address(CpuRegister(RSP), src));
__ movl(Address(CpuRegister(RSP), dest), scratch);
}
}
void X86_64JNIMacroAssembler::Copy(FrameOffset /*dst*/,
ManagedRegister /*src_base*/,
Offset /*src_offset*/,
ManagedRegister /*scratch*/,
size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void X86_64JNIMacroAssembler::Copy(ManagedRegister dest_base,
Offset dest_offset,
FrameOffset src,
ManagedRegister scratch,
size_t size) {
CHECK(scratch.IsNoRegister());
CHECK_EQ(size, 4u);
__ pushq(Address(CpuRegister(RSP), src));
__ popq(Address(dest_base.AsX86_64().AsCpuRegister(), dest_offset));
}
void X86_64JNIMacroAssembler::Copy(FrameOffset dest,
FrameOffset src_base,
Offset src_offset,
ManagedRegister mscratch,
size_t size) {
CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister();
CHECK_EQ(size, 4u);
__ movq(scratch, Address(CpuRegister(RSP), src_base));
__ movq(scratch, Address(scratch, src_offset));
__ movq(Address(CpuRegister(RSP), dest), scratch);
}
void X86_64JNIMacroAssembler::Copy(ManagedRegister dest,
Offset dest_offset,
ManagedRegister src,
Offset src_offset,
ManagedRegister scratch,
size_t size) {
CHECK_EQ(size, 4u);
CHECK(scratch.IsNoRegister());
__ pushq(Address(src.AsX86_64().AsCpuRegister(), src_offset));
__ popq(Address(dest.AsX86_64().AsCpuRegister(), dest_offset));
}
void X86_64JNIMacroAssembler::Copy(FrameOffset dest,
Offset dest_offset,
FrameOffset src,
Offset src_offset,
ManagedRegister mscratch,
size_t size) {
CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister();
CHECK_EQ(size, 4u);
CHECK_EQ(dest.Int32Value(), src.Int32Value());
__ movq(scratch, Address(CpuRegister(RSP), src));
__ pushq(Address(scratch, src_offset));
__ popq(Address(scratch, dest_offset));
}
void X86_64JNIMacroAssembler::MemoryBarrier(ManagedRegister) {
__ mfence();
}
void X86_64JNIMacroAssembler::CreateJObject(ManagedRegister mout_reg,
FrameOffset spilled_reference_offset,
ManagedRegister min_reg,
bool null_allowed) {
X86_64ManagedRegister out_reg = mout_reg.AsX86_64();
X86_64ManagedRegister in_reg = min_reg.AsX86_64();
if (in_reg.IsNoRegister()) { // TODO(64): && null_allowed
// Use out_reg as indicator of null.
in_reg = out_reg;
// TODO: movzwl
__ movl(in_reg.AsCpuRegister(), Address(CpuRegister(RSP), spilled_reference_offset));
}
CHECK(in_reg.IsCpuRegister());
CHECK(out_reg.IsCpuRegister());
VerifyObject(in_reg, null_allowed);
if (null_allowed) {
Label null_arg;
if (!out_reg.Equals(in_reg)) {
__ xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
__ testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
__ j(kZero, &null_arg);
__ leaq(out_reg.AsCpuRegister(), Address(CpuRegister(RSP), spilled_reference_offset));
__ Bind(&null_arg);
} else {
__ leaq(out_reg.AsCpuRegister(), Address(CpuRegister(RSP), spilled_reference_offset));
}
}
void X86_64JNIMacroAssembler::CreateJObject(FrameOffset out_off,
FrameOffset spilled_reference_offset,
bool null_allowed) {
CpuRegister scratch = GetScratchRegister();
if (null_allowed) {
Label null_arg;
__ movl(scratch, Address(CpuRegister(RSP), spilled_reference_offset));
__ testl(scratch, scratch);
__ j(kZero, &null_arg);
__ leaq(scratch, Address(CpuRegister(RSP), spilled_reference_offset));
__ Bind(&null_arg);
} else {
__ leaq(scratch, Address(CpuRegister(RSP), spilled_reference_offset));
}
__ movq(Address(CpuRegister(RSP), out_off), scratch);
}
void X86_64JNIMacroAssembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86_64JNIMacroAssembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86_64JNIMacroAssembler::Jump(ManagedRegister mbase, Offset offset) {
X86_64ManagedRegister base = mbase.AsX86_64();
CHECK(base.IsCpuRegister());
__ jmp(Address(base.AsCpuRegister(), offset.Int32Value()));
}
void X86_64JNIMacroAssembler::Call(ManagedRegister mbase, Offset offset) {
X86_64ManagedRegister base = mbase.AsX86_64();
CHECK(base.IsCpuRegister());
__ call(Address(base.AsCpuRegister(), offset.Int32Value()));
// TODO: place reference map on call
}
void X86_64JNIMacroAssembler::Call(FrameOffset base, Offset offset) {
CpuRegister scratch = GetScratchRegister();
__ movq(scratch, Address(CpuRegister(RSP), base));
__ call(Address(scratch, offset));
}
void X86_64JNIMacroAssembler::CallFromThread(ThreadOffset64 offset) {
__ gs()->call(Address::Absolute(offset, true));
}
void X86_64JNIMacroAssembler::GetCurrentThread(ManagedRegister dest) {
__ gs()->movq(dest.AsX86_64().AsCpuRegister(),
Address::Absolute(Thread::SelfOffset<kX86_64PointerSize>(), true));
}
void X86_64JNIMacroAssembler::GetCurrentThread(FrameOffset offset) {
CpuRegister scratch = GetScratchRegister();
__ gs()->movq(scratch, Address::Absolute(Thread::SelfOffset<kX86_64PointerSize>(), true));
__ movq(Address(CpuRegister(RSP), offset), scratch);
}
void X86_64JNIMacroAssembler::SuspendCheck(JNIMacroLabel* label) {
__ gs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86_64PointerSize>(), true),
Immediate(0));
__ j(kNotEqual, X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
void X86_64JNIMacroAssembler::ExceptionPoll(JNIMacroLabel* label) {
__ gs()->cmpl(Address::Absolute(Thread::ExceptionOffset<kX86_64PointerSize>(), true),
Immediate(0));
__ j(kNotEqual, X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
void X86_64JNIMacroAssembler::DeliverPendingException() {
// Pass exception as argument in RDI
__ gs()->movq(CpuRegister(RDI),
Address::Absolute(Thread::ExceptionOffset<kX86_64PointerSize>(), true));
__ gs()->call(
Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64PointerSize, pDeliverException), true));
// this call should never return
__ int3();
}
std::unique_ptr<JNIMacroLabel> X86_64JNIMacroAssembler::CreateLabel() {
return std::unique_ptr<JNIMacroLabel>(new X86_64JNIMacroLabel());
}
void X86_64JNIMacroAssembler::Jump(JNIMacroLabel* label) {
CHECK(label != nullptr);
__ jmp(X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
static Condition UnaryConditionToX86_64Condition(JNIMacroUnaryCondition cond) {
switch (cond) {
case JNIMacroUnaryCondition::kZero:
return kZero;
case JNIMacroUnaryCondition::kNotZero:
return kNotZero;
default:
LOG(FATAL) << "Not implemented condition: " << static_cast<int>(cond);
UNREACHABLE();
}
}
void X86_64JNIMacroAssembler::TestGcMarking(JNIMacroLabel* label, JNIMacroUnaryCondition cond) {
CHECK(label != nullptr);
// CMP self->tls32_.is_gc_marking, 0
// Jcc <Offset>
DCHECK_EQ(Thread::IsGcMarkingSize(), 4u);
__ gs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86_64PointerSize>(), true),
Immediate(0));
__ j(UnaryConditionToX86_64Condition(cond), X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
void X86_64JNIMacroAssembler::TestMarkBit(ManagedRegister mref,
JNIMacroLabel* label,
JNIMacroUnaryCondition cond) {
DCHECK(kUseBakerReadBarrier);
CpuRegister ref = mref.AsX86_64().AsCpuRegister();
static_assert(LockWord::kMarkBitStateSize == 1u);
__ testl(Address(ref, mirror::Object::MonitorOffset().SizeValue()),
Immediate(LockWord::kMarkBitStateMaskShifted));
__ j(UnaryConditionToX86_64Condition(cond), X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
void X86_64JNIMacroAssembler::Bind(JNIMacroLabel* label) {
CHECK(label != nullptr);
__ Bind(X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
#undef __
} // namespace x86_64
} // namespace art