blob: f4842f96966be614252cc3c71af0422d67f35485 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "induction_var_range.h"
#include <limits>
namespace art {
/** Returns true if 64-bit constant fits in 32-bit constant. */
static bool CanLongValueFitIntoInt(int64_t c) {
return std::numeric_limits<int32_t>::min() <= c && c <= std::numeric_limits<int32_t>::max();
}
/** Returns true if 32-bit addition can be done safely. */
static bool IsSafeAdd(int32_t c1, int32_t c2) {
return CanLongValueFitIntoInt(static_cast<int64_t>(c1) + static_cast<int64_t>(c2));
}
/** Returns true if 32-bit subtraction can be done safely. */
static bool IsSafeSub(int32_t c1, int32_t c2) {
return CanLongValueFitIntoInt(static_cast<int64_t>(c1) - static_cast<int64_t>(c2));
}
/** Returns true if 32-bit multiplication can be done safely. */
static bool IsSafeMul(int32_t c1, int32_t c2) {
return CanLongValueFitIntoInt(static_cast<int64_t>(c1) * static_cast<int64_t>(c2));
}
/** Returns true if 32-bit division can be done safely. */
static bool IsSafeDiv(int32_t c1, int32_t c2) {
return c2 != 0 && CanLongValueFitIntoInt(static_cast<int64_t>(c1) / static_cast<int64_t>(c2));
}
/** Returns true for 32/64-bit integral constant. */
static bool IsIntAndGet(HInstruction* instruction, int32_t* value) {
if (instruction->IsIntConstant()) {
*value = instruction->AsIntConstant()->GetValue();
return true;
} else if (instruction->IsLongConstant()) {
const int64_t c = instruction->AsLongConstant()->GetValue();
if (CanLongValueFitIntoInt(c)) {
*value = static_cast<int32_t>(c);
return true;
}
}
return false;
}
/**
* An upper bound a * (length / a) + b, where a > 0, can be conservatively rewritten as length + b
* because length >= 0 is true. This makes it more likely the bound is useful to clients.
*/
static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v) {
int32_t value;
if (v.a_constant > 1 &&
v.instruction->IsDiv() &&
v.instruction->InputAt(0)->IsArrayLength() &&
IsIntAndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) {
return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant);
}
return v;
}
static HInstruction* Insert(HBasicBlock* preheader, HInstruction* instruction) {
DCHECK(preheader != nullptr);
DCHECK(instruction != nullptr);
preheader->InsertInstructionBefore(instruction, preheader->GetLastInstruction());
return instruction;
}
//
// Public class methods.
//
InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis)
: induction_analysis_(induction_analysis) {
DCHECK(induction_analysis != nullptr);
}
InductionVarRange::Value InductionVarRange::GetMinInduction(HInstruction* context,
HInstruction* instruction) {
return GetInduction(context, instruction, /* is_min */ true);
}
InductionVarRange::Value InductionVarRange::GetMaxInduction(HInstruction* context,
HInstruction* instruction) {
return SimplifyMax(GetInduction(context, instruction, /* is_min */ false));
}
bool InductionVarRange::CanGenerateCode(HInstruction* context,
HInstruction* instruction,
/*out*/bool* top_test) {
return GenerateCode(context, instruction, nullptr, nullptr, nullptr, nullptr, top_test);
}
bool InductionVarRange::GenerateCode(HInstruction* context,
HInstruction* instruction,
HGraph* graph,
HBasicBlock* block,
/*out*/HInstruction** lower,
/*out*/HInstruction** upper) {
return GenerateCode(context, instruction, graph, block, lower, upper, nullptr);
}
//
// Private class methods.
//
InductionVarRange::Value InductionVarRange::GetInduction(HInstruction* context,
HInstruction* instruction,
bool is_min) {
HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); // closest enveloping loop
if (loop != nullptr) {
HBasicBlock* header = loop->GetHeader();
bool in_body = context->GetBlock() != header;
return GetVal(induction_analysis_->LookupInfo(loop, instruction),
induction_analysis_->LookupInfo(loop, header->GetLastInstruction()),
in_body,
is_min);
}
return Value();
}
InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction,
HInductionVarAnalysis::InductionInfo* trip,
bool in_body,
bool is_min) {
// Detect constants and chase the fetch a bit deeper into the HIR tree, so that it becomes
// more likely range analysis will compare the same instructions as terminal nodes.
int32_t value;
if (IsIntAndGet(instruction, &value)) {
return Value(value);
} else if (instruction->IsAdd()) {
if (IsIntAndGet(instruction->InputAt(0), &value)) {
return AddValue(Value(value), GetFetch(instruction->InputAt(1), trip, in_body, is_min));
} else if (IsIntAndGet(instruction->InputAt(1), &value)) {
return AddValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min), Value(value));
}
} else if (is_min) {
// Special case for finding minimum: minimum of trip-count in loop-body is 1.
if (trip != nullptr && in_body && instruction == trip->op_b->fetch) {
return Value(1);
}
}
return Value(instruction, 1, 0);
}
InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip,
bool in_body,
bool is_min) {
if (info != nullptr) {
switch (info->induction_class) {
case HInductionVarAnalysis::kInvariant:
// Invariants.
switch (info->operation) {
case HInductionVarAnalysis::kAdd:
return AddValue(GetVal(info->op_a, trip, in_body, is_min),
GetVal(info->op_b, trip, in_body, is_min));
case HInductionVarAnalysis::kSub: // second reversed!
return SubValue(GetVal(info->op_a, trip, in_body, is_min),
GetVal(info->op_b, trip, in_body, !is_min));
case HInductionVarAnalysis::kNeg: // second reversed!
return SubValue(Value(0),
GetVal(info->op_b, trip, in_body, !is_min));
case HInductionVarAnalysis::kMul:
return GetMul(info->op_a, info->op_b, trip, in_body, is_min);
case HInductionVarAnalysis::kDiv:
return GetDiv(info->op_a, info->op_b, trip, in_body, is_min);
case HInductionVarAnalysis::kFetch:
return GetFetch(info->fetch, trip, in_body, is_min);
case HInductionVarAnalysis::kTripCountInLoop:
if (!in_body && !is_min) { // one extra!
return GetVal(info->op_b, trip, in_body, is_min);
}
FALLTHROUGH_INTENDED;
case HInductionVarAnalysis::kTripCountInBody:
if (is_min) {
return Value(0);
} else if (in_body) {
return SubValue(GetVal(info->op_b, trip, in_body, is_min), Value(1));
}
break;
default:
break;
}
break;
case HInductionVarAnalysis::kLinear:
// Linear induction a * i + b, for normalized 0 <= i < TC.
return AddValue(GetMul(info->op_a, trip, trip, in_body, is_min),
GetVal(info->op_b, trip, in_body, is_min));
case HInductionVarAnalysis::kWrapAround:
case HInductionVarAnalysis::kPeriodic:
// Merge values in the wrap-around/periodic.
return MergeVal(GetVal(info->op_a, trip, in_body, is_min),
GetVal(info->op_b, trip, in_body, is_min), is_min);
}
}
return Value();
}
InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2,
HInductionVarAnalysis::InductionInfo* trip,
bool in_body,
bool is_min) {
Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true);
Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false);
Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true);
Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false);
if (v1_min.is_known && v1_min.a_constant == 0 && v1_min.b_constant >= 0) {
// Positive range vs. positive or negative range.
if (v2_min.is_known && v2_min.a_constant == 0 && v2_min.b_constant >= 0) {
return is_min ? MulValue(v1_min, v2_min)
: MulValue(v1_max, v2_max);
} else if (v2_max.is_known && v2_max.a_constant == 0 && v2_max.b_constant <= 0) {
return is_min ? MulValue(v1_max, v2_min)
: MulValue(v1_min, v2_max);
}
} else if (v1_min.is_known && v1_min.a_constant == 0 && v1_min.b_constant <= 0) {
// Negative range vs. positive or negative range.
if (v2_min.is_known && v2_min.a_constant == 0 && v2_min.b_constant >= 0) {
return is_min ? MulValue(v1_min, v2_max)
: MulValue(v1_max, v2_min);
} else if (v2_max.is_known && v2_max.a_constant == 0 && v2_max.b_constant <= 0) {
return is_min ? MulValue(v1_max, v2_max)
: MulValue(v1_min, v2_min);
}
}
return Value();
}
InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2,
HInductionVarAnalysis::InductionInfo* trip,
bool in_body,
bool is_min) {
Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true);
Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false);
Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true);
Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false);
if (v1_min.is_known && v1_min.a_constant == 0 && v1_min.b_constant >= 0) {
// Positive range vs. positive or negative range.
if (v2_min.is_known && v2_min.a_constant == 0 && v2_min.b_constant >= 0) {
return is_min ? DivValue(v1_min, v2_max)
: DivValue(v1_max, v2_min);
} else if (v2_max.is_known && v2_max.a_constant == 0 && v2_max.b_constant <= 0) {
return is_min ? DivValue(v1_max, v2_max)
: DivValue(v1_min, v2_min);
}
} else if (v1_min.is_known && v1_min.a_constant == 0 && v1_min.b_constant <= 0) {
// Negative range vs. positive or negative range.
if (v2_min.is_known && v2_min.a_constant == 0 && v2_min.b_constant >= 0) {
return is_min ? DivValue(v1_min, v2_min)
: DivValue(v1_max, v2_max);
} else if (v2_max.is_known && v2_max.a_constant == 0 && v2_max.b_constant <= 0) {
return is_min ? DivValue(v1_max, v2_min)
: DivValue(v1_min, v2_max);
}
}
return Value();
}
bool InductionVarRange::GetConstant(HInductionVarAnalysis::InductionInfo* info, int32_t *value) {
Value v_min = GetVal(info, nullptr, false, /* is_min */ true);
Value v_max = GetVal(info, nullptr, false, /* is_min */ false);
if (v_min.is_known && v_max.is_known) {
if (v_min.a_constant == 0 && v_max.a_constant == 0 && v_min.b_constant == v_max.b_constant) {
*value = v_min.b_constant;
return true;
}
}
return false;
}
InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) {
if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) {
const int32_t b = v1.b_constant + v2.b_constant;
if (v1.a_constant == 0) {
return Value(v2.instruction, v2.a_constant, b);
} else if (v2.a_constant == 0) {
return Value(v1.instruction, v1.a_constant, b);
} else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) {
return Value(v1.instruction, v1.a_constant + v2.a_constant, b);
}
}
return Value();
}
InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) {
if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) {
const int32_t b = v1.b_constant - v2.b_constant;
if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) {
return Value(v2.instruction, -v2.a_constant, b);
} else if (v2.a_constant == 0) {
return Value(v1.instruction, v1.a_constant, b);
} else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) {
return Value(v1.instruction, v1.a_constant - v2.a_constant, b);
}
}
return Value();
}
InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) {
if (v1.is_known && v2.is_known) {
if (v1.a_constant == 0) {
if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant);
}
} else if (v2.a_constant == 0) {
if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant);
}
}
}
return Value();
}
InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) {
if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) {
if (IsSafeDiv(v1.b_constant, v2.b_constant)) {
return Value(v1.b_constant / v2.b_constant);
}
}
return Value();
}
InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) {
if (v1.is_known && v2.is_known) {
if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) {
return Value(v1.instruction, v1.a_constant,
is_min ? std::min(v1.b_constant, v2.b_constant)
: std::max(v1.b_constant, v2.b_constant));
}
}
return Value();
}
bool InductionVarRange::GenerateCode(HInstruction* context,
HInstruction* instruction,
HGraph* graph,
HBasicBlock* block,
/*out*/HInstruction** lower,
/*out*/HInstruction** upper,
/*out*/bool* top_test) {
HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); // closest enveloping loop
if (loop != nullptr) {
HBasicBlock* header = loop->GetHeader();
bool in_body = context->GetBlock() != header;
HInductionVarAnalysis::InductionInfo* info = induction_analysis_->LookupInfo(loop, instruction);
HInductionVarAnalysis::InductionInfo* trip =
induction_analysis_->LookupInfo(loop, header->GetLastInstruction());
if (info != nullptr && trip != nullptr) {
if (top_test != nullptr) {
*top_test = trip->operation != HInductionVarAnalysis::kTripCountInLoop;
}
return
// Success on lower if invariant (not set), or code can be generated.
((info->induction_class == HInductionVarAnalysis::kInvariant) ||
GenerateCode(info, trip, graph, block, lower, in_body, /* is_min */ true)) &&
// And success on upper.
GenerateCode(info, trip, graph, block, upper, in_body, /* is_min */ false);
}
}
return false;
}
bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip,
HGraph* graph, // when set, code is generated
HBasicBlock* block,
/*out*/HInstruction** result,
bool in_body,
bool is_min) {
if (info != nullptr) {
Primitive::Type type = Primitive::kPrimInt;
HInstruction* opa = nullptr;
HInstruction* opb = nullptr;
int32_t value = 0;
switch (info->induction_class) {
case HInductionVarAnalysis::kInvariant:
// Invariants.
switch (info->operation) {
case HInductionVarAnalysis::kAdd:
if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) &&
GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
if (graph != nullptr) {
*result = Insert(block, new (graph->GetArena()) HAdd(type, opa, opb));
}
return true;
}
break;
case HInductionVarAnalysis::kSub: // second reversed!
if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) &&
GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) {
if (graph != nullptr) {
*result = Insert(block, new (graph->GetArena()) HSub(type, opa, opb));
}
return true;
}
break;
case HInductionVarAnalysis::kNeg: // reversed!
if (GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) {
if (graph != nullptr) {
*result = Insert(block, new (graph->GetArena()) HNeg(type, opb));
}
return true;
}
break;
case HInductionVarAnalysis::kFetch:
if (graph != nullptr) {
*result = info->fetch; // already in HIR
}
return true;
case HInductionVarAnalysis::kTripCountInLoop:
if (!in_body && !is_min) { // one extra!
return GenerateCode(info->op_b, trip, graph, block, result, in_body, is_min);
}
FALLTHROUGH_INTENDED;
case HInductionVarAnalysis::kTripCountInBody:
if (is_min) {
if (graph != nullptr) {
*result = graph->GetIntConstant(0);
}
return true;
} else if (in_body) {
if (GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
if (graph != nullptr) {
*result = Insert(block,
new (graph->GetArena())
HSub(type, opb, graph->GetIntConstant(1)));
}
return true;
}
}
break;
default:
break;
}
break;
case HInductionVarAnalysis::kLinear:
// Linear induction a * i + b, for normalized 0 <= i < TC. Restrict to unit stride only
// to avoid arithmetic wrap-around situations that are hard to guard against.
if (GetConstant(info->op_a, &value)) {
if (value == 1 || value == -1) {
const bool is_min_a = value == 1 ? is_min : !is_min;
if (GenerateCode(trip, trip, graph, block, &opa, in_body, is_min_a) &&
GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
if (graph != nullptr) {
*result = Insert(block, new (graph->GetArena()) HAdd(type, opa, opb));
}
return true;
}
}
}
break;
default: // TODO(ajcbik): add more cases
break;
}
}
return false;
}
} // namespace art