blob: 1ed6f9d4cd4942751074b2dddc8692af2781c39d [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_util.h"
#include "compiler/compiler_ir.h"
#include "oat/runtime/oat_support_entrypoints.h"
#include "ralloc_util.h"
namespace art {
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
/*
* Generate an kPseudoBarrier marker to indicate the boundary of special
* blocks.
*/
void Codegen::GenBarrier(CompilationUnit* cu)
{
LIR* barrier = NewLIR0(cu, kPseudoBarrier);
/* Mark all resources as being clobbered */
barrier->def_mask = -1;
}
// FIXME: need to do some work to split out targets with
// condition codes and those without
LIR* Codegen::GenCheck(CompilationUnit* cu, ConditionCode c_code, ThrowKind kind)
{
DCHECK_NE(cu->instruction_set, kMips);
LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
cu->current_dalvik_offset);
LIR* branch = OpCondBranch(cu, c_code, tgt);
// Remember branch target - will process later
InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
return branch;
}
LIR* Codegen::GenImmedCheck(CompilationUnit* cu, ConditionCode c_code, int reg, int imm_val,
ThrowKind kind)
{
LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
cu->current_dalvik_offset, reg, imm_val);
LIR* branch;
if (c_code == kCondAl) {
branch = OpUnconditionalBranch(cu, tgt);
} else {
branch = OpCmpImmBranch(cu, c_code, reg, imm_val, tgt);
}
// Remember branch target - will process later
InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
return branch;
}
/* Perform null-check on a register. */
LIR* Codegen::GenNullCheck(CompilationUnit* cu, int s_reg, int m_reg, int opt_flags)
{
if (!(cu->disable_opt & (1 << kNullCheckElimination)) &&
opt_flags & MIR_IGNORE_NULL_CHECK) {
return NULL;
}
return GenImmedCheck(cu, kCondEq, m_reg, 0, kThrowNullPointer);
}
/* Perform check on two registers */
LIR* Codegen::GenRegRegCheck(CompilationUnit* cu, ConditionCode c_code, int reg1, int reg2,
ThrowKind kind)
{
LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kind,
cu->current_dalvik_offset, reg1, reg2);
LIR* branch = OpCmpBranch(cu, c_code, reg1, reg2, tgt);
// Remember branch target - will process later
InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
return branch;
}
void Codegen::GenCompareAndBranch(CompilationUnit* cu, Instruction::Code opcode,
RegLocation rl_src1, RegLocation rl_src2, LIR* taken,
LIR* fall_through)
{
ConditionCode cond;
switch (opcode) {
case Instruction::IF_EQ:
cond = kCondEq;
break;
case Instruction::IF_NE:
cond = kCondNe;
break;
case Instruction::IF_LT:
cond = kCondLt;
break;
case Instruction::IF_GE:
cond = kCondGe;
break;
case Instruction::IF_GT:
cond = kCondGt;
break;
case Instruction::IF_LE:
cond = kCondLe;
break;
default:
cond = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected opcode " << opcode;
}
// Normalize such that if either operand is constant, src2 will be constant
if (rl_src1.is_const) {
RegLocation rl_temp = rl_src1;
rl_src1 = rl_src2;
rl_src2 = rl_temp;
cond = FlipComparisonOrder(cond);
}
rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
// Is this really an immediate comparison?
if (rl_src2.is_const) {
// If it's already live in a register or not easily materialized, just keep going
RegLocation rl_temp = UpdateLoc(cu, rl_src2);
if ((rl_temp.location == kLocDalvikFrame) &&
InexpensiveConstantInt(ConstantValue(cu, rl_src2))) {
// OK - convert this to a compare immediate and branch
OpCmpImmBranch(cu, cond, rl_src1.low_reg, ConstantValue(cu, rl_src2), taken);
OpUnconditionalBranch(cu, fall_through);
return;
}
}
rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
OpCmpBranch(cu, cond, rl_src1.low_reg, rl_src2.low_reg, taken);
OpUnconditionalBranch(cu, fall_through);
}
void Codegen::GenCompareZeroAndBranch(CompilationUnit* cu, Instruction::Code opcode,
RegLocation rl_src, LIR* taken, LIR* fall_through)
{
ConditionCode cond;
rl_src = LoadValue(cu, rl_src, kCoreReg);
switch (opcode) {
case Instruction::IF_EQZ:
cond = kCondEq;
break;
case Instruction::IF_NEZ:
cond = kCondNe;
break;
case Instruction::IF_LTZ:
cond = kCondLt;
break;
case Instruction::IF_GEZ:
cond = kCondGe;
break;
case Instruction::IF_GTZ:
cond = kCondGt;
break;
case Instruction::IF_LEZ:
cond = kCondLe;
break;
default:
cond = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected opcode " << opcode;
}
OpCmpImmBranch(cu, cond, rl_src.low_reg, 0, taken);
OpUnconditionalBranch(cu, fall_through);
}
void Codegen::GenIntToLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src)
{
RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
if (rl_src.location == kLocPhysReg) {
OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
} else {
LoadValueDirect(cu, rl_src, rl_result.low_reg);
}
OpRegRegImm(cu, kOpAsr, rl_result.high_reg, rl_result.low_reg, 31);
StoreValueWide(cu, rl_dest, rl_result);
}
void Codegen::GenIntNarrowing(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src)
{
rl_src = LoadValue(cu, rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
OpKind op = kOpInvalid;
switch (opcode) {
case Instruction::INT_TO_BYTE:
op = kOp2Byte;
break;
case Instruction::INT_TO_SHORT:
op = kOp2Short;
break;
case Instruction::INT_TO_CHAR:
op = kOp2Char;
break;
default:
LOG(ERROR) << "Bad int conversion type";
}
OpRegReg(cu, op, rl_result.low_reg, rl_src.low_reg);
StoreValue(cu, rl_dest, rl_result);
}
/*
* Let helper function take care of everything. Will call
* Array::AllocFromCode(type_idx, method, count);
* Note: AllocFromCode will handle checks for errNegativeArraySize.
*/
void Codegen::GenNewArray(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src)
{
FlushAllRegs(cu); /* Everything to home location */
int func_offset;
if (cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
*cu->dex_file,
type_idx)) {
func_offset = ENTRYPOINT_OFFSET(pAllocArrayFromCode);
} else {
func_offset= ENTRYPOINT_OFFSET(pAllocArrayFromCodeWithAccessCheck);
}
CallRuntimeHelperImmMethodRegLocation(cu, func_offset, type_idx, rl_src, true);
RegLocation rl_result = GetReturn(cu, false);
StoreValue(cu, rl_dest, rl_result);
}
/*
* Similar to GenNewArray, but with post-allocation initialization.
* Verifier guarantees we're dealing with an array class. Current
* code throws runtime exception "bad Filled array req" for 'D' and 'J'.
* Current code also throws internal unimp if not 'L', '[' or 'I'.
*/
void Codegen::GenFilledNewArray(CompilationUnit* cu, CallInfo* info)
{
int elems = info->num_arg_words;
int type_idx = info->index;
FlushAllRegs(cu); /* Everything to home location */
int func_offset;
if (cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
*cu->dex_file,
type_idx)) {
func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCode);
} else {
func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCodeWithAccessCheck);
}
CallRuntimeHelperImmMethodImm(cu, func_offset, type_idx, elems, true);
FreeTemp(cu, TargetReg(kArg2));
FreeTemp(cu, TargetReg(kArg1));
/*
* NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
* return region. Because AllocFromCode placed the new array
* in kRet0, we'll just lock it into place. When debugger support is
* added, it may be necessary to additionally copy all return
* values to a home location in thread-local storage
*/
LockTemp(cu, TargetReg(kRet0));
// TODO: use the correct component size, currently all supported types
// share array alignment with ints (see comment at head of function)
size_t component_size = sizeof(int32_t);
// Having a range of 0 is legal
if (info->is_range && (elems > 0)) {
/*
* Bit of ugliness here. We're going generate a mem copy loop
* on the register range, but it is possible that some regs
* in the range have been promoted. This is unlikely, but
* before generating the copy, we'll just force a flush
* of any regs in the source range that have been promoted to
* home location.
*/
for (int i = 0; i < elems; i++) {
RegLocation loc = UpdateLoc(cu, info->args[i]);
if (loc.location == kLocPhysReg) {
StoreBaseDisp(cu, TargetReg(kSp), SRegOffset(cu, loc.s_reg_low),
loc.low_reg, kWord);
}
}
/*
* TUNING note: generated code here could be much improved, but
* this is an uncommon operation and isn't especially performance
* critical.
*/
int r_src = AllocTemp(cu);
int r_dst = AllocTemp(cu);
int r_idx = AllocTemp(cu);
int r_val = INVALID_REG;
switch(cu->instruction_set) {
case kThumb2:
r_val = TargetReg(kLr);
break;
case kX86:
FreeTemp(cu, TargetReg(kRet0));
r_val = AllocTemp(cu);
break;
case kMips:
r_val = AllocTemp(cu);
break;
default: LOG(FATAL) << "Unexpected instruction set: " << cu->instruction_set;
}
// Set up source pointer
RegLocation rl_first = info->args[0];
OpRegRegImm(cu, kOpAdd, r_src, TargetReg(kSp),
SRegOffset(cu, rl_first.s_reg_low));
// Set up the target pointer
OpRegRegImm(cu, kOpAdd, r_dst, TargetReg(kRet0),
mirror::Array::DataOffset(component_size).Int32Value());
// Set up the loop counter (known to be > 0)
LoadConstant(cu, r_idx, elems - 1);
// Generate the copy loop. Going backwards for convenience
LIR* target = NewLIR0(cu, kPseudoTargetLabel);
// Copy next element
LoadBaseIndexed(cu, r_src, r_idx, r_val, 2, kWord);
StoreBaseIndexed(cu, r_dst, r_idx, r_val, 2, kWord);
FreeTemp(cu, r_val);
OpDecAndBranch(cu, kCondGe, r_idx, target);
if (cu->instruction_set == kX86) {
// Restore the target pointer
OpRegRegImm(cu, kOpAdd, TargetReg(kRet0), r_dst,
-mirror::Array::DataOffset(component_size).Int32Value());
}
} else if (!info->is_range) {
// TUNING: interleave
for (int i = 0; i < elems; i++) {
RegLocation rl_arg = LoadValue(cu, info->args[i], kCoreReg);
StoreBaseDisp(cu, TargetReg(kRet0),
mirror::Array::DataOffset(component_size).Int32Value() +
i * 4, rl_arg.low_reg, kWord);
// If the LoadValue caused a temp to be allocated, free it
if (IsTemp(cu, rl_arg.low_reg)) {
FreeTemp(cu, rl_arg.low_reg);
}
}
}
if (info->result.location != kLocInvalid) {
StoreValue(cu, info->result, GetReturn(cu, false /* not fp */));
}
}
void Codegen::GenSput(CompilationUnit* cu, uint32_t field_idx, RegLocation rl_src,
bool is_long_or_double, bool is_object)
{
int field_offset;
int ssb_index;
bool is_volatile;
bool is_referrers_class;
OatCompilationUnit m_unit(cu->class_loader, cu->class_linker, *cu->dex_file, cu->code_item,
cu->class_def_idx, cu->method_idx, cu->access_flags);
bool fast_path =
cu->compiler->ComputeStaticFieldInfo(field_idx, &m_unit,
field_offset, ssb_index,
is_referrers_class, is_volatile,
true);
if (fast_path && !SLOW_FIELD_PATH) {
DCHECK_GE(field_offset, 0);
int rBase;
if (is_referrers_class) {
// Fast path, static storage base is this method's class
RegLocation rl_method = LoadCurrMethod(cu);
rBase = AllocTemp(cu);
LoadWordDisp(cu, rl_method.low_reg,
mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase);
if (IsTemp(cu, rl_method.low_reg)) {
FreeTemp(cu, rl_method.low_reg);
}
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized.
DCHECK_GE(ssb_index, 0);
// May do runtime call so everything to home locations.
FlushAllRegs(cu);
// Using fixed register to sync with possible call to runtime
// support.
int r_method = TargetReg(kArg1);
LockTemp(cu, r_method);
LoadCurrMethodDirect(cu, r_method);
rBase = TargetReg(kArg0);
LockTemp(cu, rBase);
LoadWordDisp(cu, r_method,
mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(),
rBase);
LoadWordDisp(cu, rBase,
mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
sizeof(int32_t*) * ssb_index, rBase);
// rBase now points at appropriate static storage base (Class*)
// or NULL if not initialized. Check for NULL and call helper if NULL.
// TUNING: fast path should fall through
LIR* branch_over = OpCmpImmBranch(cu, kCondNe, rBase, 0, NULL);
LoadConstant(cu, TargetReg(kArg0), ssb_index);
CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true);
if (cu->instruction_set == kMips) {
// For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy
OpRegCopy(cu, rBase, TargetReg(kRet0));
}
LIR* skip_target = NewLIR0(cu, kPseudoTargetLabel);
branch_over->target = skip_target;
FreeTemp(cu, r_method);
}
// rBase now holds static storage base
if (is_long_or_double) {
rl_src = LoadValueWide(cu, rl_src, kAnyReg);
} else {
rl_src = LoadValue(cu, rl_src, kAnyReg);
}
if (is_volatile) {
GenMemBarrier(cu, kStoreStore);
}
if (is_long_or_double) {
StoreBaseDispWide(cu, rBase, field_offset, rl_src.low_reg,
rl_src.high_reg);
} else {
StoreWordDisp(cu, rBase, field_offset, rl_src.low_reg);
}
if (is_volatile) {
GenMemBarrier(cu, kStoreLoad);
}
if (is_object) {
MarkGCCard(cu, rl_src.low_reg, rBase);
}
FreeTemp(cu, rBase);
} else {
FlushAllRegs(cu); // Everything to home locations
int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Static) :
(is_object ? ENTRYPOINT_OFFSET(pSetObjStatic)
: ENTRYPOINT_OFFSET(pSet32Static));
CallRuntimeHelperImmRegLocation(cu, setter_offset, field_idx, rl_src, true);
}
}
void Codegen::GenSget(CompilationUnit* cu, uint32_t field_idx, RegLocation rl_dest,
bool is_long_or_double, bool is_object)
{
int field_offset;
int ssb_index;
bool is_volatile;
bool is_referrers_class;
OatCompilationUnit m_unit(cu->class_loader, cu->class_linker,
*cu->dex_file, cu->code_item,
cu->class_def_idx, cu->method_idx,
cu->access_flags);
bool fast_path =
cu->compiler->ComputeStaticFieldInfo(field_idx, &m_unit,
field_offset, ssb_index,
is_referrers_class, is_volatile,
false);
if (fast_path && !SLOW_FIELD_PATH) {
DCHECK_GE(field_offset, 0);
int rBase;
if (is_referrers_class) {
// Fast path, static storage base is this method's class
RegLocation rl_method = LoadCurrMethod(cu);
rBase = AllocTemp(cu);
LoadWordDisp(cu, rl_method.low_reg,
mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized
DCHECK_GE(ssb_index, 0);
// May do runtime call so everything to home locations.
FlushAllRegs(cu);
// Using fixed register to sync with possible call to runtime
// support
int r_method = TargetReg(kArg1);
LockTemp(cu, r_method);
LoadCurrMethodDirect(cu, r_method);
rBase = TargetReg(kArg0);
LockTemp(cu, rBase);
LoadWordDisp(cu, r_method,
mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(),
rBase);
LoadWordDisp(cu, rBase,
mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
sizeof(int32_t*) * ssb_index, rBase);
// rBase now points at appropriate static storage base (Class*)
// or NULL if not initialized. Check for NULL and call helper if NULL.
// TUNING: fast path should fall through
LIR* branch_over = OpCmpImmBranch(cu, kCondNe, rBase, 0, NULL);
CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true);
if (cu->instruction_set == kMips) {
// For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy
OpRegCopy(cu, rBase, TargetReg(kRet0));
}
LIR* skip_target = NewLIR0(cu, kPseudoTargetLabel);
branch_over->target = skip_target;
FreeTemp(cu, r_method);
}
// rBase now holds static storage base
RegLocation rl_result = EvalLoc(cu, rl_dest, kAnyReg, true);
if (is_volatile) {
GenMemBarrier(cu, kLoadLoad);
}
if (is_long_or_double) {
LoadBaseDispWide(cu, rBase, field_offset, rl_result.low_reg,
rl_result.high_reg, INVALID_SREG);
} else {
LoadWordDisp(cu, rBase, field_offset, rl_result.low_reg);
}
FreeTemp(cu, rBase);
if (is_long_or_double) {
StoreValueWide(cu, rl_dest, rl_result);
} else {
StoreValue(cu, rl_dest, rl_result);
}
} else {
FlushAllRegs(cu); // Everything to home locations
int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Static) :
(is_object ? ENTRYPOINT_OFFSET(pGetObjStatic)
: ENTRYPOINT_OFFSET(pGet32Static));
CallRuntimeHelperImm(cu, getterOffset, field_idx, true);
if (is_long_or_double) {
RegLocation rl_result = GetReturnWide(cu, rl_dest.fp);
StoreValueWide(cu, rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(cu, rl_dest.fp);
StoreValue(cu, rl_dest, rl_result);
}
}
}
// Debugging routine - if null target, branch to DebugMe
void Codegen::GenShowTarget(CompilationUnit* cu)
{
DCHECK_NE(cu->instruction_set, kX86) << "unimplemented GenShowTarget";
LIR* branch_over = OpCmpImmBranch(cu, kCondNe, TargetReg(kInvokeTgt), 0, NULL);
LoadWordDisp(cu, TargetReg(kSelf), ENTRYPOINT_OFFSET(pDebugMe), TargetReg(kInvokeTgt));
LIR* target = NewLIR0(cu, kPseudoTargetLabel);
branch_over->target = target;
}
void Codegen::HandleSuspendLaunchPads(CompilationUnit *cu)
{
LIR** suspend_label = reinterpret_cast<LIR**>(cu->suspend_launchpads.elem_list);
int num_elems = cu->suspend_launchpads.num_used;
int helper_offset = ENTRYPOINT_OFFSET(pTestSuspendFromCode);
for (int i = 0; i < num_elems; i++) {
ResetRegPool(cu);
ResetDefTracking(cu);
LIR* lab = suspend_label[i];
LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]);
cu->current_dalvik_offset = lab->operands[1];
AppendLIR(cu, lab);
int r_tgt = CallHelperSetup(cu, helper_offset);
CallHelper(cu, r_tgt, helper_offset, true /* MarkSafepointPC */);
OpUnconditionalBranch(cu, resume_lab);
}
}
void Codegen::HandleIntrinsicLaunchPads(CompilationUnit *cu)
{
LIR** intrinsic_label = reinterpret_cast<LIR**>(cu->intrinsic_launchpads.elem_list);
int num_elems = cu->intrinsic_launchpads.num_used;
for (int i = 0; i < num_elems; i++) {
ResetRegPool(cu);
ResetDefTracking(cu);
LIR* lab = intrinsic_label[i];
CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]);
cu->current_dalvik_offset = info->offset;
AppendLIR(cu, lab);
// NOTE: GenInvoke handles MarkSafepointPC
GenInvoke(cu, info);
LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]);
if (resume_lab != NULL) {
OpUnconditionalBranch(cu, resume_lab);
}
}
}
void Codegen::HandleThrowLaunchPads(CompilationUnit *cu)
{
LIR** throw_label = reinterpret_cast<LIR**>(cu->throw_launchpads.elem_list);
int num_elems = cu->throw_launchpads.num_used;
for (int i = 0; i < num_elems; i++) {
ResetRegPool(cu);
ResetDefTracking(cu);
LIR* lab = throw_label[i];
cu->current_dalvik_offset = lab->operands[1];
AppendLIR(cu, lab);
int func_offset = 0;
int v1 = lab->operands[2];
int v2 = lab->operands[3];
bool target_x86 = (cu->instruction_set == kX86);
switch (lab->operands[0]) {
case kThrowNullPointer:
func_offset = ENTRYPOINT_OFFSET(pThrowNullPointerFromCode);
break;
case kThrowConstantArrayBounds: // v1 is length reg (for Arm/Mips), v2 constant index
// v1 holds the constant array index. Mips/Arm uses v2 for length, x86 reloads.
if (target_x86) {
OpRegMem(cu, kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value());
} else {
OpRegCopy(cu, TargetReg(kArg1), v1);
}
// Make sure the following LoadConstant doesn't mess with kArg1.
LockTemp(cu, TargetReg(kArg1));
LoadConstant(cu, TargetReg(kArg0), v2);
func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode);
break;
case kThrowArrayBounds:
// Move v1 (array index) to kArg0 and v2 (array length) to kArg1
if (v2 != TargetReg(kArg0)) {
OpRegCopy(cu, TargetReg(kArg0), v1);
if (target_x86) {
// x86 leaves the array pointer in v2, so load the array length that the handler expects
OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
} else {
OpRegCopy(cu, TargetReg(kArg1), v2);
}
} else {
if (v1 == TargetReg(kArg1)) {
// Swap v1 and v2, using kArg2 as a temp
OpRegCopy(cu, TargetReg(kArg2), v1);
if (target_x86) {
// x86 leaves the array pointer in v2; load the array length that the handler expects
OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
} else {
OpRegCopy(cu, TargetReg(kArg1), v2);
}
OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));
} else {
if (target_x86) {
// x86 leaves the array pointer in v2; load the array length that the handler expects
OpRegMem(cu, kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
} else {
OpRegCopy(cu, TargetReg(kArg1), v2);
}
OpRegCopy(cu, TargetReg(kArg0), v1);
}
}
func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode);
break;
case kThrowDivZero:
func_offset = ENTRYPOINT_OFFSET(pThrowDivZeroFromCode);
break;
case kThrowNoSuchMethod:
OpRegCopy(cu, TargetReg(kArg0), v1);
func_offset =
ENTRYPOINT_OFFSET(pThrowNoSuchMethodFromCode);
break;
case kThrowStackOverflow:
func_offset = ENTRYPOINT_OFFSET(pThrowStackOverflowFromCode);
// Restore stack alignment
if (target_x86) {
OpRegImm(cu, kOpAdd, TargetReg(kSp), cu->frame_size);
} else {
OpRegImm(cu, kOpAdd, TargetReg(kSp), (cu->num_core_spills + cu->num_fp_spills) * 4);
}
break;
default:
LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0];
}
ClobberCalleeSave(cu);
int r_tgt = CallHelperSetup(cu, func_offset);
CallHelper(cu, r_tgt, func_offset, true /* MarkSafepointPC */);
}
}
void Codegen::GenIGet(CompilationUnit* cu, uint32_t field_idx, int opt_flags, OpSize size,
RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
bool is_object)
{
int field_offset;
bool is_volatile;
bool fast_path = FastInstance(cu, field_idx, field_offset, is_volatile, false);
if (fast_path && !SLOW_FIELD_PATH) {
RegLocation rl_result;
RegisterClass reg_class = oat_reg_class_by_size(size);
DCHECK_GE(field_offset, 0);
rl_obj = LoadValue(cu, rl_obj, kCoreReg);
if (is_long_or_double) {
DCHECK(rl_dest.wide);
GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
if (cu->instruction_set == kX86) {
rl_result = EvalLoc(cu, rl_dest, reg_class, true);
GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
LoadBaseDispWide(cu, rl_obj.low_reg, field_offset, rl_result.low_reg,
rl_result.high_reg, rl_obj.s_reg_low);
if (is_volatile) {
GenMemBarrier(cu, kLoadLoad);
}
} else {
int reg_ptr = AllocTemp(cu);
OpRegRegImm(cu, kOpAdd, reg_ptr, rl_obj.low_reg, field_offset);
rl_result = EvalLoc(cu, rl_dest, reg_class, true);
LoadBaseDispWide(cu, reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
if (is_volatile) {
GenMemBarrier(cu, kLoadLoad);
}
FreeTemp(cu, reg_ptr);
}
StoreValueWide(cu, rl_dest, rl_result);
} else {
rl_result = EvalLoc(cu, rl_dest, reg_class, true);
GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
LoadBaseDisp(cu, rl_obj.low_reg, field_offset, rl_result.low_reg,
kWord, rl_obj.s_reg_low);
if (is_volatile) {
GenMemBarrier(cu, kLoadLoad);
}
StoreValue(cu, rl_dest, rl_result);
}
} else {
int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Instance) :
(is_object ? ENTRYPOINT_OFFSET(pGetObjInstance)
: ENTRYPOINT_OFFSET(pGet32Instance));
CallRuntimeHelperImmRegLocation(cu, getterOffset, field_idx, rl_obj, true);
if (is_long_or_double) {
RegLocation rl_result = GetReturnWide(cu, rl_dest.fp);
StoreValueWide(cu, rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(cu, rl_dest.fp);
StoreValue(cu, rl_dest, rl_result);
}
}
}
void Codegen::GenIPut(CompilationUnit* cu, uint32_t field_idx, int opt_flags, OpSize size,
RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
bool is_object)
{
int field_offset;
bool is_volatile;
bool fast_path = FastInstance(cu, field_idx, field_offset, is_volatile,
true);
if (fast_path && !SLOW_FIELD_PATH) {
RegisterClass reg_class = oat_reg_class_by_size(size);
DCHECK_GE(field_offset, 0);
rl_obj = LoadValue(cu, rl_obj, kCoreReg);
if (is_long_or_double) {
int reg_ptr;
rl_src = LoadValueWide(cu, rl_src, kAnyReg);
GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
reg_ptr = AllocTemp(cu);
OpRegRegImm(cu, kOpAdd, reg_ptr, rl_obj.low_reg, field_offset);
if (is_volatile) {
GenMemBarrier(cu, kStoreStore);
}
StoreBaseDispWide(cu, reg_ptr, 0, rl_src.low_reg, rl_src.high_reg);
if (is_volatile) {
GenMemBarrier(cu, kLoadLoad);
}
FreeTemp(cu, reg_ptr);
} else {
rl_src = LoadValue(cu, rl_src, reg_class);
GenNullCheck(cu, rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
if (is_volatile) {
GenMemBarrier(cu, kStoreStore);
}
StoreBaseDisp(cu, rl_obj.low_reg, field_offset, rl_src.low_reg, kWord);
if (is_volatile) {
GenMemBarrier(cu, kLoadLoad);
}
if (is_object) {
MarkGCCard(cu, rl_src.low_reg, rl_obj.low_reg);
}
}
} else {
int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Instance) :
(is_object ? ENTRYPOINT_OFFSET(pSetObjInstance)
: ENTRYPOINT_OFFSET(pSet32Instance));
CallRuntimeHelperImmRegLocationRegLocation(cu, setter_offset, field_idx, rl_obj, rl_src, true);
}
}
void Codegen::GenConstClass(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest)
{
RegLocation rl_method = LoadCurrMethod(cu);
int res_reg = AllocTemp(cu);
RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
*cu->dex_file,
type_idx)) {
// Call out to helper which resolves type and verifies access.
// Resolved type returned in kRet0.
CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
type_idx, rl_method.low_reg, true);
RegLocation rl_result = GetReturn(cu, false);
StoreValue(cu, rl_dest, rl_result);
} else {
// We're don't need access checks, load type from dex cache
int32_t dex_cache_offset =
mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value();
LoadWordDisp(cu, rl_method.low_reg, dex_cache_offset, res_reg);
int32_t offset_of_type =
mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
* type_idx);
LoadWordDisp(cu, res_reg, offset_of_type, rl_result.low_reg);
if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(*cu->dex_file,
type_idx) || SLOW_TYPE_PATH) {
// Slow path, at runtime test if type is null and if so initialize
FlushAllRegs(cu);
LIR* branch1 = OpCmpImmBranch(cu, kCondEq, rl_result.low_reg, 0, NULL);
// Resolved, store and hop over following code
StoreValue(cu, rl_dest, rl_result);
/*
* Because we have stores of the target value on two paths,
* clobber temp tracking for the destination using the ssa name
*/
ClobberSReg(cu, rl_dest.s_reg_low);
LIR* branch2 = OpUnconditionalBranch(cu,0);
// TUNING: move slow path to end & remove unconditional branch
LIR* target1 = NewLIR0(cu, kPseudoTargetLabel);
// Call out to helper, which will return resolved type in kArg0
CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx,
rl_method.low_reg, true);
RegLocation rl_result = GetReturn(cu, false);
StoreValue(cu, rl_dest, rl_result);
/*
* Because we have stores of the target value on two paths,
* clobber temp tracking for the destination using the ssa name
*/
ClobberSReg(cu, rl_dest.s_reg_low);
// Rejoin code paths
LIR* target2 = NewLIR0(cu, kPseudoTargetLabel);
branch1->target = target1;
branch2->target = target2;
} else {
// Fast path, we're done - just store result
StoreValue(cu, rl_dest, rl_result);
}
}
}
void Codegen::GenConstString(CompilationUnit* cu, uint32_t string_idx, RegLocation rl_dest)
{
/* NOTE: Most strings should be available at compile time */
int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() +
(sizeof(mirror::String*) * string_idx);
if (!cu->compiler->CanAssumeStringIsPresentInDexCache(
*cu->dex_file, string_idx) || SLOW_STRING_PATH) {
// slow path, resolve string if not in dex cache
FlushAllRegs(cu);
LockCallTemps(cu); // Using explicit registers
LoadCurrMethodDirect(cu, TargetReg(kArg2));
LoadWordDisp(cu, TargetReg(kArg2),
mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0));
// Might call out to helper, which will return resolved string in kRet0
int r_tgt = CallHelperSetup(cu, ENTRYPOINT_OFFSET(pResolveStringFromCode));
LoadWordDisp(cu, TargetReg(kArg0), offset_of_string, TargetReg(kRet0));
LoadConstant(cu, TargetReg(kArg1), string_idx);
if (cu->instruction_set == kThumb2) {
OpRegImm(cu, kOpCmp, TargetReg(kRet0), 0); // Is resolved?
GenBarrier(cu);
// For testing, always force through helper
if (!EXERCISE_SLOWEST_STRING_PATH) {
OpIT(cu, kCondEq, "T");
}
OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2)); // .eq
LIR* call_inst = OpReg(cu, kOpBlx, r_tgt); // .eq, helper(Method*, string_idx)
MarkSafepointPC(cu, call_inst);
FreeTemp(cu, r_tgt);
} else if (cu->instruction_set == kMips) {
LIR* branch = OpCmpImmBranch(cu, kCondNe, TargetReg(kRet0), 0, NULL);
OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2)); // .eq
LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);
MarkSafepointPC(cu, call_inst);
FreeTemp(cu, r_tgt);
LIR* target = NewLIR0(cu, kPseudoTargetLabel);
branch->target = target;
} else {
DCHECK_EQ(cu->instruction_set, kX86);
CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pResolveStringFromCode), TargetReg(kArg2), TargetReg(kArg1), true);
}
GenBarrier(cu);
StoreValue(cu, rl_dest, GetReturn(cu, false));
} else {
RegLocation rl_method = LoadCurrMethod(cu);
int res_reg = AllocTemp(cu);
RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
LoadWordDisp(cu, rl_method.low_reg,
mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), res_reg);
LoadWordDisp(cu, res_reg, offset_of_string, rl_result.low_reg);
StoreValue(cu, rl_dest, rl_result);
}
}
/*
* Let helper function take care of everything. Will
* call Class::NewInstanceFromCode(type_idx, method);
*/
void Codegen::GenNewInstance(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest)
{
FlushAllRegs(cu); /* Everything to home location */
// alloc will always check for resolution, do we also need to verify
// access because the verifier was unable to?
int func_offset;
if (cu->compiler->CanAccessInstantiableTypeWithoutChecks(
cu->method_idx, *cu->dex_file, type_idx)) {
func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCode);
} else {
func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCodeWithAccessCheck);
}
CallRuntimeHelperImmMethod(cu, func_offset, type_idx, true);
RegLocation rl_result = GetReturn(cu, false);
StoreValue(cu, rl_dest, rl_result);
}
void Codegen::GenThrow(CompilationUnit* cu, RegLocation rl_src)
{
FlushAllRegs(cu);
CallRuntimeHelperRegLocation(cu, ENTRYPOINT_OFFSET(pDeliverException), rl_src, true);
}
void Codegen::GenInstanceof(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src)
{
FlushAllRegs(cu);
// May generate a call - use explicit registers
LockCallTemps(cu);
LoadCurrMethodDirect(cu, TargetReg(kArg1)); // kArg1 <= current Method*
int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*
if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
*cu->dex_file,
type_idx)) {
// Check we have access to type_idx and if not throw IllegalAccessError,
// returns Class* in kArg0
CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
type_idx, true);
OpRegCopy(cu, class_reg, TargetReg(kRet0)); // Align usage with fast path
LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0)); // kArg0 <= ref
} else {
// Load dex cache entry into class_reg (kArg2)
LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0)); // kArg0 <= ref
LoadWordDisp(cu, TargetReg(kArg1),
mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
int32_t offset_of_type =
mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
* type_idx);
LoadWordDisp(cu, class_reg, offset_of_type, class_reg);
if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(
*cu->dex_file, type_idx)) {
// Need to test presence of type in dex cache at runtime
LIR* hop_branch = OpCmpImmBranch(cu, kCondNe, class_reg, 0, NULL);
// Not resolved
// Call out to helper, which will return resolved type in kRet0
CallRuntimeHelperImm(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, true);
OpRegCopy(cu, TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path
LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0)); /* reload Ref */
// Rejoin code paths
LIR* hop_target = NewLIR0(cu, kPseudoTargetLabel);
hop_branch->target = hop_target;
}
}
/* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
RegLocation rl_result = GetReturn(cu, false);
if (cu->instruction_set == kMips) {
LoadConstant(cu, rl_result.low_reg, 0); // store false result for if branch is taken
}
LIR* branch1 = OpCmpImmBranch(cu, kCondEq, TargetReg(kArg0), 0, NULL);
/* load object->klass_ */
DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
LoadWordDisp(cu, TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
/* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
LIR* call_inst;
LIR* branchover = NULL;
if (cu->instruction_set == kThumb2) {
/* Uses conditional nullification */
int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
OpRegReg(cu, kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same?
OpIT(cu, kCondEq, "EE"); // if-convert the test
LoadConstant(cu, TargetReg(kArg0), 1); // .eq case - load true
OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class
call_inst = OpReg(cu, kOpBlx, r_tgt); // .ne case: helper(class, ref->class)
FreeTemp(cu, r_tgt);
} else {
/* Uses branchovers */
LoadConstant(cu, rl_result.low_reg, 1); // assume true
branchover = OpCmpBranch(cu, kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
if (cu->instruction_set != kX86) {
int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class
call_inst = OpReg(cu, kOpBlx, r_tgt); // .ne case: helper(class, ref->class)
FreeTemp(cu, r_tgt);
} else {
OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg2));
call_inst = OpThreadMem(cu, kOpBlx, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
}
}
MarkSafepointPC(cu, call_inst);
ClobberCalleeSave(cu);
/* branch targets here */
LIR* target = NewLIR0(cu, kPseudoTargetLabel);
StoreValue(cu, rl_dest, rl_result);
branch1->target = target;
if (cu->instruction_set != kThumb2) {
branchover->target = target;
}
}
void Codegen::GenCheckCast(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_src)
{
FlushAllRegs(cu);
// May generate a call - use explicit registers
LockCallTemps(cu);
LoadCurrMethodDirect(cu, TargetReg(kArg1)); // kArg1 <= current Method*
int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*
if (!cu->compiler->CanAccessTypeWithoutChecks(cu->method_idx,
*cu->dex_file,
type_idx)) {
// Check we have access to type_idx and if not throw IllegalAccessError,
// returns Class* in kRet0
// InitializeTypeAndVerifyAccess(idx, method)
CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
type_idx, TargetReg(kArg1), true);
OpRegCopy(cu, class_reg, TargetReg(kRet0)); // Align usage with fast path
} else {
// Load dex cache entry into class_reg (kArg2)
LoadWordDisp(cu, TargetReg(kArg1),
mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
int32_t offset_of_type =
mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
(sizeof(mirror::Class*) * type_idx);
LoadWordDisp(cu, class_reg, offset_of_type, class_reg);
if (!cu->compiler->CanAssumeTypeIsPresentInDexCache(
*cu->dex_file, type_idx)) {
// Need to test presence of type in dex cache at runtime
LIR* hop_branch = OpCmpImmBranch(cu, kCondNe, class_reg, 0, NULL);
// Not resolved
// Call out to helper, which will return resolved type in kArg0
// InitializeTypeFromCode(idx, method)
CallRuntimeHelperImmReg(cu, ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, TargetReg(kArg1),
true);
OpRegCopy(cu, class_reg, TargetReg(kRet0)); // Align usage with fast path
// Rejoin code paths
LIR* hop_target = NewLIR0(cu, kPseudoTargetLabel);
hop_branch->target = hop_target;
}
}
// At this point, class_reg (kArg2) has class
LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0)); // kArg0 <= ref
/* Null is OK - continue */
LIR* branch1 = OpCmpImmBranch(cu, kCondEq, TargetReg(kArg0), 0, NULL);
/* load object->klass_ */
DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
LoadWordDisp(cu, TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
/* kArg1 now contains object->klass_ */
LIR* branch2;
if (cu->instruction_set == kThumb2) {
int r_tgt = LoadHelper(cu, ENTRYPOINT_OFFSET(pCheckCastFromCode));
OpRegReg(cu, kOpCmp, TargetReg(kArg1), class_reg);
branch2 = OpCondBranch(cu, kCondEq, NULL); /* If eq, trivial yes */
OpRegCopy(cu, TargetReg(kArg0), TargetReg(kArg1));
OpRegCopy(cu, TargetReg(kArg1), TargetReg(kArg2));
ClobberCalleeSave(cu);
LIR* call_inst = OpReg(cu, kOpBlx, r_tgt);
MarkSafepointPC(cu, call_inst);
FreeTemp(cu, r_tgt);
} else {
branch2 = OpCmpBranch(cu, kCondEq, TargetReg(kArg1), class_reg, NULL);
CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pCheckCastFromCode), TargetReg(kArg1), TargetReg(kArg2), true);
}
/* branch target here */
LIR* target = NewLIR0(cu, kPseudoTargetLabel);
branch1->target = target;
branch2->target = target;
}
void Codegen::GenLong3Addr(CompilationUnit* cu, OpKind first_op, OpKind second_op,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2)
{
RegLocation rl_result;
if (cu->instruction_set == kThumb2) {
/*
* NOTE: This is the one place in the code in which we might have
* as many as six live temporary registers. There are 5 in the normal
* set for Arm. Until we have spill capabilities, temporarily add
* lr to the temp set. It is safe to do this locally, but note that
* lr is used explicitly elsewhere in the code generator and cannot
* normally be used as a general temp register.
*/
MarkTemp(cu, TargetReg(kLr)); // Add lr to the temp pool
FreeTemp(cu, TargetReg(kLr)); // and make it available
}
rl_src1 = LoadValueWide(cu, rl_src1, kCoreReg);
rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
// The longs may overlap - use intermediate temp if so
if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)){
int t_reg = AllocTemp(cu);
OpRegRegReg(cu, first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg);
OpRegRegReg(cu, second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg);
OpRegCopy(cu, rl_result.low_reg, t_reg);
FreeTemp(cu, t_reg);
} else {
OpRegRegReg(cu, first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
OpRegRegReg(cu, second_op, rl_result.high_reg, rl_src1.high_reg,
rl_src2.high_reg);
}
/*
* NOTE: If rl_dest refers to a frame variable in a large frame, the
* following StoreValueWide might need to allocate a temp register.
* To further work around the lack of a spill capability, explicitly
* free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
* Remove when spill is functional.
*/
FreeRegLocTemps(cu, rl_result, rl_src1);
FreeRegLocTemps(cu, rl_result, rl_src2);
StoreValueWide(cu, rl_dest, rl_result);
if (cu->instruction_set == kThumb2) {
Clobber(cu, TargetReg(kLr));
UnmarkTemp(cu, TargetReg(kLr)); // Remove lr from the temp pool
}
}
void Codegen::GenShiftOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift)
{
int func_offset = -1; // Make gcc happy
switch (opcode) {
case Instruction::SHL_LONG:
case Instruction::SHL_LONG_2ADDR:
func_offset = ENTRYPOINT_OFFSET(pShlLong);
break;
case Instruction::SHR_LONG:
case Instruction::SHR_LONG_2ADDR:
func_offset = ENTRYPOINT_OFFSET(pShrLong);
break;
case Instruction::USHR_LONG:
case Instruction::USHR_LONG_2ADDR:
func_offset = ENTRYPOINT_OFFSET(pUshrLong);
break;
default:
LOG(FATAL) << "Unexpected case";
}
FlushAllRegs(cu); /* Send everything to home location */
CallRuntimeHelperRegLocationRegLocation(cu, func_offset, rl_src1, rl_shift, false);
RegLocation rl_result = GetReturnWide(cu, false);
StoreValueWide(cu, rl_dest, rl_result);
}
void Codegen::GenArithOpInt(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2)
{
OpKind op = kOpBkpt;
bool is_div_rem = false;
bool check_zero = false;
bool unary = false;
RegLocation rl_result;
bool shift_op = false;
switch (opcode) {
case Instruction::NEG_INT:
op = kOpNeg;
unary = true;
break;
case Instruction::NOT_INT:
op = kOpMvn;
unary = true;
break;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
op = kOpAdd;
break;
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
op = kOpSub;
break;
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
op = kOpMul;
break;
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
check_zero = true;
op = kOpDiv;
is_div_rem = true;
break;
/* NOTE: returns in kArg1 */
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
check_zero = true;
op = kOpRem;
is_div_rem = true;
break;
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
op = kOpAnd;
break;
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
op = kOpOr;
break;
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
op = kOpXor;
break;
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
shift_op = true;
op = kOpLsr;
break;
default:
LOG(FATAL) << "Invalid word arith op: " << opcode;
}
if (!is_div_rem) {
if (unary) {
rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
OpRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg);
} else {
if (shift_op) {
int t_reg = INVALID_REG;
if (cu->instruction_set == kX86) {
// X86 doesn't require masking and must use ECX
t_reg = TargetReg(kCount); // rCX
LoadValueDirectFixed(cu, rl_src2, t_reg);
} else {
rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
t_reg = AllocTemp(cu);
OpRegRegImm(cu, kOpAnd, t_reg, rl_src2.low_reg, 31);
}
rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
OpRegRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg, t_reg);
FreeTemp(cu, t_reg);
} else {
rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
OpRegRegReg(cu, op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
}
}
StoreValue(cu, rl_dest, rl_result);
} else {
if (cu->instruction_set == kMips) {
rl_src1 = LoadValue(cu, rl_src1, kCoreReg);
rl_src2 = LoadValue(cu, rl_src2, kCoreReg);
if (check_zero) {
GenImmedCheck(cu, kCondEq, rl_src2.low_reg, 0, kThrowDivZero);
}
rl_result = GenDivRem(cu, rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv);
} else {
int func_offset = ENTRYPOINT_OFFSET(pIdivmod);
FlushAllRegs(cu); /* Send everything to home location */
LoadValueDirectFixed(cu, rl_src2, TargetReg(kArg1));
int r_tgt = CallHelperSetup(cu, func_offset);
LoadValueDirectFixed(cu, rl_src1, TargetReg(kArg0));
if (check_zero) {
GenImmedCheck(cu, kCondEq, TargetReg(kArg1), 0, kThrowDivZero);
}
// NOTE: callout here is not a safepoint
CallHelper(cu, r_tgt, func_offset, false /* not a safepoint */ );
if (op == kOpDiv)
rl_result = GetReturn(cu, false);
else
rl_result = GetReturnAlt(cu);
}
StoreValue(cu, rl_dest, rl_result);
}
}
/*
* The following are the first-level codegen routines that analyze the format
* of each bytecode then either dispatch special purpose codegen routines
* or produce corresponding Thumb instructions directly.
*/
static bool IsPowerOfTwo(int x)
{
return (x & (x - 1)) == 0;
}
// Returns true if no more than two bits are set in 'x'.
static bool IsPopCountLE2(unsigned int x)
{
x &= x - 1;
return (x & (x - 1)) == 0;
}
// Returns the index of the lowest set bit in 'x'.
static int LowestSetBit(unsigned int x) {
int bit_posn = 0;
while ((x & 0xf) == 0) {
bit_posn += 4;
x >>= 4;
}
while ((x & 1) == 0) {
bit_posn++;
x >>= 1;
}
return bit_posn;
}
// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
// and store the result in 'rl_dest'.
static bool HandleEasyDivide(CompilationUnit* cu, Instruction::Code dalvik_opcode,
RegLocation rl_src, RegLocation rl_dest, int lit)
{
if ((lit < 2) || ((cu->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
return false;
}
Codegen* cg = cu->cg.get();
// No divide instruction for Arm, so check for more special cases
if ((cu->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
return cg->SmallLiteralDivide(cu, dalvik_opcode, rl_src, rl_dest, lit);
}
int k = LowestSetBit(lit);
if (k >= 30) {
// Avoid special cases.
return false;
}
bool div = (dalvik_opcode == Instruction::DIV_INT_LIT8 ||
dalvik_opcode == Instruction::DIV_INT_LIT16);
rl_src = cg->LoadValue(cu, rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
if (div) {
int t_reg = AllocTemp(cu);
if (lit == 2) {
// Division by 2 is by far the most common division by constant.
cg->OpRegRegImm(cu, kOpLsr, t_reg, rl_src.low_reg, 32 - k);
cg->OpRegRegReg(cu, kOpAdd, t_reg, t_reg, rl_src.low_reg);
cg->OpRegRegImm(cu, kOpAsr, rl_result.low_reg, t_reg, k);
} else {
cg->OpRegRegImm(cu, kOpAsr, t_reg, rl_src.low_reg, 31);
cg->OpRegRegImm(cu, kOpLsr, t_reg, t_reg, 32 - k);
cg->OpRegRegReg(cu, kOpAdd, t_reg, t_reg, rl_src.low_reg);
cg->OpRegRegImm(cu, kOpAsr, rl_result.low_reg, t_reg, k);
}
} else {
int t_reg1 = AllocTemp(cu);
int t_reg2 = AllocTemp(cu);
if (lit == 2) {
cg->OpRegRegImm(cu, kOpLsr, t_reg1, rl_src.low_reg, 32 - k);
cg->OpRegRegReg(cu, kOpAdd, t_reg2, t_reg1, rl_src.low_reg);
cg->OpRegRegImm(cu, kOpAnd, t_reg2, t_reg2, lit -1);
cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg2, t_reg1);
} else {
cg->OpRegRegImm(cu, kOpAsr, t_reg1, rl_src.low_reg, 31);
cg->OpRegRegImm(cu, kOpLsr, t_reg1, t_reg1, 32 - k);
cg->OpRegRegReg(cu, kOpAdd, t_reg2, t_reg1, rl_src.low_reg);
cg->OpRegRegImm(cu, kOpAnd, t_reg2, t_reg2, lit - 1);
cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg2, t_reg1);
}
}
cg->StoreValue(cu, rl_dest, rl_result);
return true;
}
// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
// and store the result in 'rl_dest'.
static bool HandleEasyMultiply(CompilationUnit* cu, RegLocation rl_src,
RegLocation rl_dest, int lit)
{
// Can we simplify this multiplication?
bool power_of_two = false;
bool pop_count_le2 = false;
bool power_of_two_minus_one = false;
if (lit < 2) {
// Avoid special cases.
return false;
} else if (IsPowerOfTwo(lit)) {
power_of_two = true;
} else if (IsPopCountLE2(lit)) {
pop_count_le2 = true;
} else if (IsPowerOfTwo(lit + 1)) {
power_of_two_minus_one = true;
} else {
return false;
}
Codegen* cg = cu->cg.get();
rl_src = cg->LoadValue(cu, rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
if (power_of_two) {
// Shift.
cg->OpRegRegImm(cu, kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit));
} else if (pop_count_le2) {
// Shift and add and shift.
int first_bit = LowestSetBit(lit);
int second_bit = LowestSetBit(lit ^ (1 << first_bit));
cg->GenMultiplyByTwoBitMultiplier(cu, rl_src, rl_result, lit, first_bit, second_bit);
} else {
// Reverse subtract: (src << (shift + 1)) - src.
DCHECK(power_of_two_minus_one);
// TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
int t_reg = AllocTemp(cu);
cg->OpRegRegImm(cu, kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1));
cg->OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg);
}
cg->StoreValue(cu, rl_dest, rl_result);
return true;
}
void Codegen::GenArithOpIntLit(CompilationUnit* cu, Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src, int lit)
{
RegLocation rl_result;
OpKind op = static_cast<OpKind>(0); /* Make gcc happy */
int shift_op = false;
bool is_div = false;
switch (opcode) {
case Instruction::RSUB_INT_LIT8:
case Instruction::RSUB_INT: {
int t_reg;
//TUNING: add support for use of Arm rsub op
rl_src = LoadValue(cu, rl_src, kCoreReg);
t_reg = AllocTemp(cu);
LoadConstant(cu, t_reg, lit);
rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
OpRegRegReg(cu, kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg);
StoreValue(cu, rl_dest, rl_result);
return;
}
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
lit = -lit;
// Intended fallthrough
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::ADD_INT_LIT8:
case Instruction::ADD_INT_LIT16:
op = kOpAdd;
break;
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::MUL_INT_LIT8:
case Instruction::MUL_INT_LIT16: {
if (HandleEasyMultiply(cu, rl_src, rl_dest, lit)) {
return;
}
op = kOpMul;
break;
}
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::AND_INT_LIT8:
case Instruction::AND_INT_LIT16:
op = kOpAnd;
break;
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::OR_INT_LIT8:
case Instruction::OR_INT_LIT16:
op = kOpOr;
break;
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
case Instruction::XOR_INT_LIT8:
case Instruction::XOR_INT_LIT16:
op = kOpXor;
break;
case Instruction::SHL_INT_LIT8:
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT_LIT8:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT_LIT8:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpLsr;
break;
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::DIV_INT_LIT8:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::REM_INT_LIT8:
case Instruction::REM_INT_LIT16: {
if (lit == 0) {
GenImmedCheck(cu, kCondAl, 0, 0, kThrowDivZero);
return;
}
if (HandleEasyDivide(cu, opcode, rl_src, rl_dest, lit)) {
return;
}
if ((opcode == Instruction::DIV_INT_LIT8) ||
(opcode == Instruction::DIV_INT) ||
(opcode == Instruction::DIV_INT_2ADDR) ||
(opcode == Instruction::DIV_INT_LIT16)) {
is_div = true;
} else {
is_div = false;
}
if (cu->instruction_set == kMips) {
rl_src = LoadValue(cu, rl_src, kCoreReg);
rl_result = GenDivRemLit(cu, rl_dest, rl_src.low_reg, lit, is_div);
} else {
FlushAllRegs(cu); /* Everything to home location */
LoadValueDirectFixed(cu, rl_src, TargetReg(kArg0));
Clobber(cu, TargetReg(kArg0));
int func_offset = ENTRYPOINT_OFFSET(pIdivmod);
CallRuntimeHelperRegImm(cu, func_offset, TargetReg(kArg0), lit, false);
if (is_div)
rl_result = GetReturn(cu, false);
else
rl_result = GetReturnAlt(cu);
}
StoreValue(cu, rl_dest, rl_result);
return;
}
default:
LOG(FATAL) << "Unexpected opcode " << opcode;
}
rl_src = LoadValue(cu, rl_src, kCoreReg);
rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
// Avoid shifts by literal 0 - no support in Thumb. Change to copy
if (shift_op && (lit == 0)) {
OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg);
} else {
OpRegRegImm(cu, op, rl_result.low_reg, rl_src.low_reg, lit);
}
StoreValue(cu, rl_dest, rl_result);
}
void Codegen::GenArithOpLong(CompilationUnit* cu, Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2)
{
RegLocation rl_result;
OpKind first_op = kOpBkpt;
OpKind second_op = kOpBkpt;
bool call_out = false;
bool check_zero = false;
int func_offset;
int ret_reg = TargetReg(kRet0);
switch (opcode) {
case Instruction::NOT_LONG:
rl_src2 = LoadValueWide(cu, rl_src2, kCoreReg);
rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
// Check for destructive overlap
if (rl_result.low_reg == rl_src2.high_reg) {
int t_reg = AllocTemp(cu);
OpRegCopy(cu, t_reg, rl_src2.high_reg);
OpRegReg(cu, kOpMvn, rl_result.low_reg, rl_src2.low_reg);
OpRegReg(cu, kOpMvn, rl_result.high_reg, t_reg);
FreeTemp(cu, t_reg);
} else {
OpRegReg(cu, kOpMvn, rl_result.low_reg, rl_src2.low_reg);
OpRegReg(cu, kOpMvn, rl_result.high_reg, rl_src2.high_reg);
}
StoreValueWide(cu, rl_dest, rl_result);
return;
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
if (cu->instruction_set != kThumb2) {
GenAddLong(cu, rl_dest, rl_src1, rl_src2);
return;
}
first_op = kOpAdd;
second_op = kOpAdc;
break;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (cu->instruction_set != kThumb2) {
GenSubLong(cu, rl_dest, rl_src1, rl_src2);
return;
}
first_op = kOpSub;
second_op = kOpSbc;
break;
case Instruction::MUL_LONG:
case Instruction::MUL_LONG_2ADDR:
if (cu->instruction_set == kThumb2) {
GenMulLong(cu, rl_dest, rl_src1, rl_src2);
return;
} else {
call_out = true;
ret_reg = TargetReg(kRet0);
func_offset = ENTRYPOINT_OFFSET(pLmul);
}
break;
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
call_out = true;
check_zero = true;
ret_reg = TargetReg(kRet0);
func_offset = ENTRYPOINT_OFFSET(pLdiv);
break;
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
call_out = true;
check_zero = true;
func_offset = ENTRYPOINT_OFFSET(pLdivmod);
/* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
ret_reg = (cu->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0);
break;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
if (cu->instruction_set == kX86) {
return GenAndLong(cu, rl_dest, rl_src1, rl_src2);
}
first_op = kOpAnd;
second_op = kOpAnd;
break;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
if (cu->instruction_set == kX86) {
GenOrLong(cu, rl_dest, rl_src1, rl_src2);
return;
}
first_op = kOpOr;
second_op = kOpOr;
break;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
if (cu->instruction_set == kX86) {
GenXorLong(cu, rl_dest, rl_src1, rl_src2);
return;
}
first_op = kOpXor;
second_op = kOpXor;
break;
case Instruction::NEG_LONG: {
GenNegLong(cu, rl_dest, rl_src2);
return;
}
default:
LOG(FATAL) << "Invalid long arith op";
}
if (!call_out) {
GenLong3Addr(cu, first_op, second_op, rl_dest, rl_src1, rl_src2);
} else {
FlushAllRegs(cu); /* Send everything to home location */
if (check_zero) {
LoadValueDirectWideFixed(cu, rl_src2, TargetReg(kArg2), TargetReg(kArg3));
int r_tgt = CallHelperSetup(cu, func_offset);
GenDivZeroCheck(cu, TargetReg(kArg2), TargetReg(kArg3));
LoadValueDirectWideFixed(cu, rl_src1, TargetReg(kArg0), TargetReg(kArg1));
// NOTE: callout here is not a safepoint
CallHelper(cu, r_tgt, func_offset, false /* not safepoint */);
} else {
CallRuntimeHelperRegLocationRegLocation(cu, func_offset,
rl_src1, rl_src2, false);
}
// Adjust return regs in to handle case of rem returning kArg2/kArg3
if (ret_reg == TargetReg(kRet0))
rl_result = GetReturnWide(cu, false);
else
rl_result = GetReturnWideAlt(cu);
StoreValueWide(cu, rl_dest, rl_result);
}
}
void Codegen::GenConversionCall(CompilationUnit* cu, int func_offset,
RegLocation rl_dest, RegLocation rl_src)
{
/*
* Don't optimize the register usage since it calls out to support
* functions
*/
FlushAllRegs(cu); /* Send everything to home location */
if (rl_src.wide) {
LoadValueDirectWideFixed(cu, rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0),
rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
} else {
LoadValueDirectFixed(cu, rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
}
CallRuntimeHelperRegLocation(cu, func_offset, rl_src, false);
if (rl_dest.wide) {
RegLocation rl_result;
rl_result = GetReturnWide(cu, rl_dest.fp);
StoreValueWide(cu, rl_dest, rl_result);
} else {
RegLocation rl_result;
rl_result = GetReturn(cu, rl_dest.fp);
StoreValue(cu, rl_dest, rl_result);
}
}
/* Check if we need to check for pending suspend request */
void Codegen::GenSuspendTest(CompilationUnit* cu, int opt_flags)
{
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
return;
}
FlushAllRegs(cu);
LIR* branch = OpTestSuspend(cu, NULL);
LIR* ret_lab = NewLIR0(cu, kPseudoTargetLabel);
LIR* target = RawLIR(cu, cu->current_dalvik_offset, kPseudoSuspendTarget,
reinterpret_cast<uintptr_t>(ret_lab), cu->current_dalvik_offset);
branch->target = target;
InsertGrowableList(cu, &cu->suspend_launchpads, reinterpret_cast<uintptr_t>(target));
}
/* Check if we need to check for pending suspend request */
void Codegen::GenSuspendTestAndBranch(CompilationUnit* cu, int opt_flags, LIR* target)
{
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
OpUnconditionalBranch(cu, target);
return;
}
OpTestSuspend(cu, target);
LIR* launch_pad =
RawLIR(cu, cu->current_dalvik_offset, kPseudoSuspendTarget,
reinterpret_cast<uintptr_t>(target), cu->current_dalvik_offset);
FlushAllRegs(cu);
OpUnconditionalBranch(cu, launch_pad);
InsertGrowableList(cu, &cu->suspend_launchpads, reinterpret_cast<uintptr_t>(launch_pad));
}
} // namespace art