blob: e2ab39ab4cf7411e42649f613ddf22839f1fbacd [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
// Author: cshapiro@google.com (Carl Shapiro)
#include "src/class_linker.h"
#include <vector>
#include <utility>
#include "src/casts.h"
#include "src/dex_verifier.h"
#include "src/heap.h"
#include "src/logging.h"
#include "src/monitor.h"
#include "src/object.h"
#include "src/raw_dex_file.h"
#include "src/scoped_ptr.h"
#include "src/thread.h"
#include "src/utils.h"
namespace art {
ClassLinker* ClassLinker::Create() {
scoped_ptr<ClassLinker> class_linker(new ClassLinker);
class_linker->Init();
// TODO: check for failure during initialization
return class_linker.release();
}
void ClassLinker::Init() {
// Allocate and partially initialize the Object and Class classes.
// Initialization will be completed when the definitions are loaded.
java_lang_Object_ = Heap::AllocClass(NULL);
java_lang_Object_->descriptor_ = "Ljava/lang/Object;";
java_lang_Class_ = Heap::AllocClass(NULL);
java_lang_Class_->descriptor_ = "Ljava/lang/Class;";
// Allocate and initialize the primitive type classes.
primitive_byte_ = CreatePrimitiveClass(kTypeByte, "B");
primitive_char_ = CreatePrimitiveClass(kTypeChar, "C");
primitive_double_ = CreatePrimitiveClass(kTypeDouble, "D");
primitive_float_ = CreatePrimitiveClass(kTypeFloat, "F");
primitive_int_ = CreatePrimitiveClass(kTypeInt, "I");
primitive_long_ = CreatePrimitiveClass(kTypeLong, "J");
primitive_short_ = CreatePrimitiveClass(kTypeShort, "S");
primitive_boolean_ = CreatePrimitiveClass(kTypeBoolean, "Z");
primitive_void_ = CreatePrimitiveClass(kTypeVoid, "V");
}
Class* ClassLinker::FindClass(const char* descriptor,
Object* class_loader,
DexFile* dex_file) {
Thread* self = Thread::Current();
CHECK(!self->IsExceptionPending());
// Find the class in the loaded classes table.
Class* klass = LookupClass(descriptor, class_loader);
if (klass == NULL) {
// Class is not yet loaded.
if (dex_file == NULL) {
// No .dex file specified, search the class path.
dex_file = FindInClassPath(descriptor);
if (dex_file == NULL) {
LG << "Class " << descriptor << " really not found";
return NULL;
}
}
// Load the class from the dex file.
if (!strcmp(descriptor, "Ljava/lang/Object;")) {
klass = java_lang_Object_;
klass->dex_file_ = dex_file;
} else if (!strcmp(descriptor, "Ljava/lang/Class;")) {
klass = java_lang_Class_;
klass->dex_file_ = dex_file;
} else {
klass = Heap::AllocClass(dex_file);
}
bool is_loaded = LoadClass(descriptor, klass);
if (!is_loaded) {
// TODO: this occurs only when a dex file is provided.
LG << "Class not found"; // TODO: NoClassDefFoundError
return NULL;
}
// Check for a pending exception during load
if (self->IsExceptionPending()) {
// TODO: free native allocations in klass
return NULL;
}
{
ObjectLock lock(klass);
klass->clinit_thread_id_ = self->GetId();
// Add the newly loaded class to the loaded classes table.
bool success = InsertClass(klass);
if (!success) {
// We may fail to insert if we raced with another thread.
klass->clinit_thread_id_ = 0;
// TODO: free native allocations in klass
klass = LookupClass(descriptor, class_loader);
CHECK(klass != NULL);
} else {
// Link the class.
if (!LinkClass(klass)) {
// Linking failed.
// TODO: CHECK(self->IsExceptionPending());
lock.NotifyAll();
return NULL;
}
}
}
}
// Link the class if it has not already been linked.
if (!klass->IsLinked() && !klass->IsErroneous()) {
ObjectLock lock(klass);
// Check for circular dependencies between classes.
if (!klass->IsLinked() && klass->clinit_thread_id_ == self->GetId()) {
LG << "Recursive link"; // TODO: ClassCircularityError
return NULL;
}
// Wait for the pending initialization to complete.
while (!klass->IsLinked() && !klass->IsErroneous()) {
lock.Wait();
}
}
if (klass->IsErroneous()) {
LG << "EarlierClassFailure"; // TODO: EarlierClassFailure
return NULL;
}
// Return the loaded class. No exceptions should be pending.
CHECK(!self->IsExceptionPending());
return klass;
}
bool ClassLinker::LoadClass(const char* descriptor, Class* klass) {
const RawDexFile* raw = klass->GetDexFile()->GetRaw();
const RawDexFile::ClassDef* class_def = raw->FindClassDef(descriptor);
if (class_def == NULL) {
return false;
} else {
return LoadClass(*class_def, klass);
}
}
bool ClassLinker::LoadClass(const RawDexFile::ClassDef& class_def, Class* klass) {
CHECK(klass != NULL);
CHECK(klass->dex_file_ != NULL);
const RawDexFile* raw = klass->GetDexFile()->GetRaw();
const byte* class_data = raw->GetClassData(class_def);
RawDexFile::ClassDataHeader header = raw->ReadClassDataHeader(&class_data);
const char* descriptor = raw->GetClassDescriptor(class_def);
CHECK(descriptor != NULL);
klass->klass_ = java_lang_Class_;
klass->descriptor_.set(descriptor);
klass->descriptor_alloc_ = NULL;
klass->access_flags_ = class_def.access_flags_;
klass->class_loader_ = NULL; // TODO
klass->primitive_type_ = Class::kPrimNot;
klass->status_ = Class::kStatusIdx;
klass->super_class_ = NULL;
klass->super_class_idx_ = class_def.superclass_idx_;
klass->num_sfields_ = header.static_fields_size_;
klass->num_ifields_ = header.instance_fields_size_;
klass->num_direct_methods_ = header.direct_methods_size_;
klass->num_virtual_methods_ = header.virtual_methods_size_;
klass->source_file_ = raw->dexGetSourceFile(class_def);
// Load class interfaces.
LoadInterfaces(class_def, klass);
// Load static fields.
if (klass->num_sfields_ != 0) {
// TODO: allocate on the object heap.
klass->sfields_ = new StaticField[klass->NumStaticFields()]();
uint32_t last_idx = 0;
for (size_t i = 0; i < klass->num_sfields_; ++i) {
RawDexFile::Field raw_field;
raw->dexReadClassDataField(&class_data, &raw_field, &last_idx);
LoadField(klass, raw_field, &klass->sfields_[i]);
}
}
// Load instance fields.
if (klass->NumInstanceFields() != 0) {
// TODO: allocate on the object heap.
klass->ifields_ = new InstanceField[klass->NumInstanceFields()]();
uint32_t last_idx = 0;
for (size_t i = 0; i < klass->NumInstanceFields(); ++i) {
RawDexFile::Field raw_field;
raw->dexReadClassDataField(&class_data, &raw_field, &last_idx);
LoadField(klass, raw_field, klass->GetInstanceField(i));
}
}
// Load direct methods.
if (klass->NumDirectMethods() != 0) {
// TODO: append direct methods to class object
klass->direct_methods_ = new Method[klass->NumDirectMethods()]();
uint32_t last_idx = 0;
for (size_t i = 0; i < klass->NumDirectMethods(); ++i) {
RawDexFile::Method raw_method;
raw->dexReadClassDataMethod(&class_data, &raw_method, &last_idx);
LoadMethod(klass, raw_method, klass->GetDirectMethod(i));
// TODO: register maps
}
}
// Load virtual methods.
if (klass->NumVirtualMethods() != 0) {
// TODO: append virtual methods to class object
klass->virtual_methods_ = new Method[klass->NumVirtualMethods()]();
uint32_t last_idx = 0;
for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) {
RawDexFile::Method raw_method;
raw->dexReadClassDataMethod(&class_data, &raw_method, &last_idx);
LoadMethod(klass, raw_method, klass->GetVirtualMethod(i));
// TODO: register maps
}
}
return klass;
}
void ClassLinker::LoadInterfaces(const RawDexFile::ClassDef& class_def,
Class* klass) {
const RawDexFile* raw = klass->GetDexFile()->GetRaw();
const RawDexFile::TypeList* list = raw->GetInterfacesList(class_def);
if (list != NULL) {
klass->interface_count_ = list->Size();
// TODO: allocate the interfaces array on the object heap.
klass->interfaces_ = new Class*[list->Size()]();
for (size_t i = 0; i < list->Size(); ++i) {
const RawDexFile::TypeItem& type_item = list->GetTypeItem(i);
klass->interfaces_[i] = reinterpret_cast<Class*>(type_item.type_idx_);
}
}
}
void ClassLinker::LoadField(Class* klass, const RawDexFile::Field& src,
Field* dst) {
const RawDexFile* raw = klass->GetDexFile()->GetRaw();
const RawDexFile::FieldId& field_id = raw->GetFieldId(src.field_idx_);
dst->klass_ = klass;
dst->name_ = raw->dexStringById(field_id.name_idx_);
dst->signature_ = raw->dexStringByTypeIdx(field_id.type_idx_);
dst->access_flags_ = src.access_flags_;
}
void ClassLinker::LoadMethod(Class* klass, const RawDexFile::Method& src,
Method* dst) {
const RawDexFile* raw = klass->GetDexFile()->GetRaw();
const RawDexFile::MethodId& method_id = raw->GetMethodId(src.method_idx_);
dst->klass_ = klass;
dst->name_.set(raw->dexStringById(method_id.name_idx_));
dst->proto_idx_ = method_id.proto_idx_;
dst->shorty_.set(raw->GetShorty(method_id.proto_idx_));
dst->access_flags_ = src.access_flags_;
// TODO: check for finalize method
const RawDexFile::CodeItem* code_item = raw->GetCodeItem(src);
if (code_item != NULL) {
dst->num_registers_ = code_item->registers_size_;
dst->num_ins_ = code_item->ins_size_;
dst->num_outs_ = code_item->outs_size_;
dst->insns_ = code_item->insns_;
} else {
uint16_t num_args = dst->NumArgRegisters();
if (!dst->IsStatic()) {
++num_args;
}
dst->num_registers_ = dst->num_ins_ + num_args;
// TODO: native methods
}
}
DexFile* ClassLinker::FindInClassPath(const char* descriptor) {
for (size_t i = 0; i != class_path_.size(); ++i) {
DexFile* dex_file = class_path_[i];
if (dex_file->HasClass(descriptor)) {
return dex_file;
}
}
return NULL;
}
void ClassLinker::AppendToClassPath(DexFile* dex_file) {
class_path_.push_back(dex_file);
}
Class* ClassLinker::CreatePrimitiveClass(JType type, const char* descriptor) {
Class* klass = Heap::AllocClass(NULL);
CHECK(klass != NULL);
klass->super_class_ = java_lang_Class_;
klass->access_flags_ = kAccPublic | kAccFinal | kAccAbstract;
klass->descriptor_ = descriptor;
klass->status_ = Class::kStatusInitialized;
return klass;
}
Class* ClassLinker::FindPrimitiveClass(JType type) {
switch (type) {
case kTypeByte:
CHECK(primitive_byte_ != NULL);
return primitive_byte_;
case kTypeChar:
CHECK(primitive_char_ != NULL);
return primitive_char_;
case kTypeDouble:
CHECK(primitive_double_ != NULL);
return primitive_double_;
case kTypeFloat:
CHECK(primitive_float_ != NULL);
return primitive_float_;
case kTypeInt:
CHECK(primitive_int_ != NULL);
return primitive_int_;
case kTypeLong:
CHECK(primitive_long_ != NULL);
return primitive_long_;
case kTypeShort:
CHECK(primitive_short_ != NULL);
return primitive_short_;
case kTypeBoolean:
CHECK(primitive_boolean_ != NULL);
return primitive_boolean_;
case kTypeVoid:
CHECK(primitive_void_ != NULL);
return primitive_void_;
default:
LOG(FATAL) << "Unknown primitive type " << static_cast<int>(type);
};
return NULL; // Not reachable.
}
bool ClassLinker::InsertClass(Class* klass) {
// TODO: acquire classes_lock_
const char* key = klass->GetDescriptor().data();
bool success = classes_.insert(std::make_pair(key, klass)).second;
// TODO: release classes_lock_
return success;
}
Class* ClassLinker::LookupClass(const char* descriptor, Object* class_loader) {
// TODO: acquire classes_lock_
Table::iterator it = classes_.find(descriptor);
// TODO: release classes_lock_
if (it == classes_.end()) {
return NULL;
} else {
return (*it).second;
}
}
bool ClassLinker::InitializeClass(Class* klass) {
CHECK(klass->GetStatus() == Class::kStatusResolved ||
klass->GetStatus() == Class::kStatusError);
Thread* self = Thread::Current();
{
ObjectLock lock(klass);
if (klass->GetStatus() < Class::kStatusVerified) {
if (klass->IsErroneous()) {
LG << "re-initializing failed class"; // TODO: throw
return false;
}
CHECK(klass->GetStatus() == Class::kStatusResolved);
klass->status_ = Class::kStatusVerifying;
if (!DexVerify::VerifyClass(klass)) {
LG << "Verification failed"; // TODO: ThrowVerifyError
Object* exception = self->GetException();
klass->SetObjectAt(OFFSETOF_MEMBER(Class, verify_error_class_),
exception->GetClass());
klass->SetStatus(Class::kStatusError);
return false;
}
klass->SetStatus(Class::kStatusVerified);
}
if (klass->status_ == Class::kStatusInitialized) {
return true;
}
while (klass->status_ == Class::kStatusInitializing) {
// we caught somebody else in the act; was it us?
if (klass->clinit_thread_id_ == self->GetId()) {
LG << "recursive <clinit>";
return true;
}
CHECK(!self->IsExceptionPending());
lock.Wait(); // TODO: check for interruption
// When we wake up, repeat the test for init-in-progress. If
// there's an exception pending (only possible if
// "interruptShouldThrow" was set), bail out.
if (self->IsExceptionPending()) {
CHECK(false);
LG << "Exception in initialization."; // TODO: ExceptionInInitializerError
klass->SetStatus(Class::kStatusError);
return false;
}
if (klass->GetStatus() == Class::kStatusInitializing) {
continue;
}
assert(klass->GetStatus() == Class::kStatusInitialized ||
klass->GetStatus() == Class::kStatusError);
if (klass->IsErroneous()) {
/*
* The caller wants an exception, but it was thrown in a
* different thread. Synthesize one here.
*/
LG << "<clinit> failed"; // TODO: throw UnsatisfiedLinkError
return false;
}
return true; // otherwise, initialized
}
// see if we failed previously
if (klass->IsErroneous()) {
// might be wise to unlock before throwing; depends on which class
// it is that we have locked
// TODO: throwEarlierClassFailure(klass);
return false;
}
if (!ValidateSuperClassDescriptors(klass)) {
klass->SetStatus(Class::kStatusError);
return false;
}
assert(klass->status < CLASS_INITIALIZING);
klass->clinit_thread_id_ = self->GetId();
klass->status_ = Class::kStatusInitializing;
}
if (!InitializeSuperClass(klass)) {
return false;
}
InitializeStaticFields(klass);
Method* clinit = klass->FindDirectMethodLocally("<clinit>", "()V");
if (clinit != NULL) {
} else {
// JValue unused;
// TODO: dvmCallMethod(self, method, NULL, &unused);
//CHECK(!"unimplemented");
}
{
ObjectLock lock(klass);
if (self->IsExceptionPending()) {
klass->SetStatus(Class::kStatusError);
} else {
klass->SetStatus(Class::kStatusInitialized);
}
lock.NotifyAll();
}
return true;
}
bool ClassLinker::ValidateSuperClassDescriptors(const Class* klass) {
if (klass->IsInterface()) {
return true;
}
// begin with the methods local to the superclass
if (klass->HasSuperClass() &&
klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
const Class* super = klass->GetSuperClass();
for (int i = super->NumVirtualMethods() - 1; i >= 0; --i) {
const Method* method = klass->GetVirtualMethod(i);
if (method != super->GetVirtualMethod(i) &&
!HasSameMethodDescriptorClasses(method, super, klass)) {
LG << "Classes resolve differently in superclass";
return false;
}
}
}
for (size_t i = 0; i < klass->iftable_count_; ++i) {
const InterfaceEntry* iftable = &klass->iftable_[i];
Class* interface = iftable->GetClass();
if (klass->GetClassLoader() != interface->GetClassLoader()) {
for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) {
uint32_t vtable_index = iftable->method_index_array_[j];
const Method* method = klass->GetVirtualMethod(vtable_index);
if (!HasSameMethodDescriptorClasses(method, interface,
method->GetClass())) {
LG << "Classes resolve differently in interface"; // TODO: LinkageError
return false;
}
}
}
}
return true;
}
bool ClassLinker::HasSameMethodDescriptorClasses(const Method* method,
const Class* klass1,
const Class* klass2) {
const RawDexFile* raw = method->GetClass()->GetDexFile()->GetRaw();
const RawDexFile::ProtoId& proto_id = raw->GetProtoId(method->proto_idx_);
RawDexFile::ParameterIterator *it;
for (it = raw->GetParameterIterator(proto_id); it->HasNext(); it->Next()) {
const char* descriptor = it->GetDescriptor();
if (descriptor == NULL) {
break;
}
if (descriptor[0] == 'L' || descriptor[0] == '[') {
// Found a non-primitive type.
if (!HasSameDescriptorClasses(descriptor, klass1, klass2)) {
return false;
}
}
}
// Check the return type
const char* descriptor = raw->GetReturnTypeDescriptor(proto_id);
if (descriptor[0] == 'L' || descriptor[0] == '[') {
if (HasSameDescriptorClasses(descriptor, klass1, klass2)) {
return false;
}
}
return true;
}
// Returns true if classes referenced by the descriptor are the
// same classes in klass1 as they are in klass2.
bool ClassLinker::HasSameDescriptorClasses(const char* descriptor,
const Class* klass1,
const Class* klass2) {
CHECK(descriptor != NULL);
CHECK(klass1 != NULL);
CHECK(klass2 != NULL);
#if 0
Class* found1 = FindClassNoInit(descriptor, klass1->GetClassLoader());
// TODO: found1 == NULL
Class* found2 = FindClassNoInit(descriptor, klass2->GetClassLoader());
// TODO: found2 == NULL
// TODO: lookup found1 in initiating loader list
if (found1 == NULL || found2 == NULL) {
Thread::Current()->ClearException();
if (found1 == found2) {
return true;
} else {
return false;
}
}
#endif
return true;
}
bool ClassLinker::InitializeSuperClass(Class* klass) {
CHECK(klass != NULL);
// TODO: assert klass lock is acquired
if (!klass->IsInterface() && klass->HasSuperClass()) {
Class* super_class = klass->GetSuperClass();
if (super_class->GetStatus() != Class::kStatusInitialized) {
CHECK(!super_class->IsInterface());
klass->MonitorExit();
bool super_initialized = InitializeClass(super_class);
klass->MonitorEnter();
// TODO: check for a pending exception
if (!super_initialized) {
klass->SetStatus(Class::kStatusError);
klass->NotifyAll();
return false;
}
}
}
return true;
}
void ClassLinker::InitializeStaticFields(Class* klass) {
size_t num_static_fields = klass->NumStaticFields();
if (num_static_fields == 0) {
return;
}
DexFile* dex_file = klass->GetDexFile();
if (dex_file == NULL) {
return;
}
const char* descriptor = klass->GetDescriptor().data();
const RawDexFile* raw = dex_file->GetRaw();
const RawDexFile::ClassDef* class_def = raw->FindClassDef(descriptor);
CHECK(class_def != NULL);
const byte* addr = raw->GetEncodedArray(*class_def);
size_t array_size = DecodeUnsignedLeb128(&addr);
for (size_t i = 0; i < array_size; ++i) {
StaticField* field = klass->GetStaticField(i);
JValue value;
RawDexFile::ValueType type = raw->ReadEncodedValue(&addr, &value);
switch (type) {
case RawDexFile::kByte:
field->SetByte(value.b);
break;
case RawDexFile::kShort:
field->SetShort(value.s);
break;
case RawDexFile::kChar:
field->SetChar(value.c);
break;
case RawDexFile::kInt:
field->SetInt(value.i);
break;
case RawDexFile::kLong:
field->SetLong(value.j);
break;
case RawDexFile::kFloat:
field->SetFloat(value.f);
break;
case RawDexFile::kDouble:
field->SetDouble(value.d);
break;
case RawDexFile::kString: {
uint32_t string_idx = value.i;
String* resolved = ResolveString(klass, string_idx);
field->SetObject(resolved);
break;
}
case RawDexFile::kBoolean:
field->SetBoolean(value.z);
break;
case RawDexFile::kNull:
field->SetObject(value.l);
break;
default:
LOG(FATAL) << "Unknown type " << static_cast<int>(type);
}
}
}
bool ClassLinker::LinkClass(Class* klass) {
CHECK(klass->status_ == Class::kStatusIdx ||
klass->status_ == Class::kStatusLoaded);
if (klass->status_ == Class::kStatusIdx) {
if (!LinkInterfaces(klass)) {
return false;
}
}
if (!LinkSuperClass(klass)) {
return false;
}
if (!LinkMethods(klass)) {
return false;
}
if (!LinkInstanceFields(klass)) {
return false;
}
CreateReferenceOffsets(klass);
CHECK_EQ(klass->status_, Class::kStatusLoaded);
klass->status_ = Class::kStatusResolved;
return true;
}
bool ClassLinker::LinkInterfaces(Class* klass) {
scoped_array<uint32_t> interfaces_idx;
// TODO: store interfaces_idx in the Class object
// TODO: move this outside of link interfaces
if (klass->interface_count_ > 0) {
size_t length = klass->interface_count_ * sizeof(klass->interfaces_[0]);
interfaces_idx.reset(new uint32_t[klass->interface_count_]);
memcpy(interfaces_idx.get(), klass->interfaces_, length);
memset(klass->interfaces_, 0xFF, length);
}
// Mark the class as loaded.
klass->status_ = Class::kStatusLoaded;
if (klass->super_class_idx_ != RawDexFile::kDexNoIndex) {
Class* super_class = ResolveClass(klass, klass->super_class_idx_);
if (super_class == NULL) {
LG << "Failed to resolve superclass";
return false;
}
klass->super_class_ = super_class; // TODO: write barrier
}
if (klass->interface_count_ > 0) {
for (size_t i = 0; i < klass->interface_count_; ++i) {
uint32_t idx = interfaces_idx[i];
klass->interfaces_[i] = ResolveClass(klass, idx);
if (klass->interfaces_[i] == NULL) {
LG << "Failed to resolve interface";
return false;
}
// Verify
if (!klass->CanAccess(klass->interfaces_[i])) {
LG << "Inaccessible interface";
return false;
}
}
}
return true;
}
bool ClassLinker::LinkSuperClass(Class* klass) {
CHECK(!klass->IsPrimitive());
const Class* super = klass->GetSuperClass();
if (klass->GetDescriptor() == "Ljava/lang/Object;") {
if (super != NULL) {
LG << "Superclass must not be defined"; // TODO: ClassFormatError
return false;
}
// TODO: clear finalize attribute
return true;
}
if (super == NULL) {
LG << "No superclass defined"; // TODO: LinkageError
return false;
}
// Verify
if (super->IsFinal()) {
LG << "Superclass is declared final"; // TODO: IncompatibleClassChangeError
return false;
}
if (super->IsInterface()) {
LG << "Superclass is an interface"; // TODO: IncompatibleClassChangeError
return false;
}
if (!klass->CanAccess(super)) {
LG << "Superclass is inaccessible"; // TODO: IllegalAccessError
return false;
}
return true;
}
// Populate the class vtable and itable.
bool ClassLinker::LinkMethods(Class* klass) {
if (klass->IsInterface()) {
// No vtable.
size_t count = klass->NumVirtualMethods();
if (!IsUint(16, count)) {
LG << "Too many methods on interface"; // TODO: VirtualMachineError
return false;
}
for (size_t i = 0; i < count; ++i) {
klass->GetVirtualMethod(i)->method_index_ = i;
}
} else {
// Link virtual method tables
LinkVirtualMethods(klass);
// Link interface method tables
LinkInterfaceMethods(klass);
// Insert stubs.
LinkAbstractMethods(klass);
}
return true;
}
bool ClassLinker::LinkVirtualMethods(Class* klass) {
uint32_t max_count = klass->NumVirtualMethods();
if (klass->GetSuperClass() != NULL) {
max_count += klass->GetSuperClass()->NumVirtualMethods();
} else {
CHECK(klass->GetDescriptor() == "Ljava/lang/Object;");
}
// TODO: do not assign to the vtable field until it is fully constructed.
// TODO: make this a vector<Method*> instead?
klass->vtable_ = new Method*[max_count];
if (klass->HasSuperClass()) {
memcpy(klass->vtable_,
klass->GetSuperClass()->vtable_,
klass->GetSuperClass()->vtable_count_ * sizeof(Method*));
size_t actual_count = klass->GetSuperClass()->vtable_count_;
// See if any of our virtual methods override the superclass.
for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) {
Method* local_method = klass->GetVirtualMethod(i);
size_t j = 0;
for (; j < klass->GetSuperClass()->vtable_count_; ++j) {
const Method* super_method = klass->vtable_[j];
if (local_method->HasSameNameAndPrototype(super_method)) {
// Verify
if (super_method->IsFinal()) {
LG << "Method overrides final method"; // TODO: VirtualMachineError
return false;
}
klass->vtable_[j] = local_method;
local_method->method_index_ = j;
break;
}
}
if (j == klass->GetSuperClass()->vtable_count_) {
// Not overriding, append.
klass->vtable_[actual_count] = local_method;
local_method->method_index_ = actual_count;
actual_count += 1;
}
}
if (!IsUint(16, actual_count)) {
LG << "Too many methods defined on class"; // TODO: VirtualMachineError
return false;
}
CHECK_LE(actual_count, max_count);
if (actual_count < max_count) {
Method** new_vtable = new Method*[actual_count];
memcpy(new_vtable, klass->vtable_, actual_count * sizeof(Method*));
delete[] klass->vtable_;
klass->vtable_ = new_vtable;
LG << "shrunk vtable: "
<< "was " << max_count << ", "
<< "now " << actual_count;
}
klass->vtable_count_ = actual_count;
} else {
CHECK(klass->GetDescriptor() == "Ljava/lang/Object;");
if (!IsUint(16, klass->NumVirtualMethods())) {
LG << "Too many methods"; // TODO: VirtualMachineError
return false;
}
for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) {
klass->vtable_[i] = klass->GetVirtualMethod(i);
klass->GetVirtualMethod(i)->method_index_ = i & 0xFFFF;
}
klass->vtable_count_ = klass->NumVirtualMethods();
}
return true;
}
bool ClassLinker::LinkInterfaceMethods(Class* klass) {
int pool_offset = 0;
int pool_size = 0;
int miranda_count = 0;
int miranda_alloc = 0;
size_t super_ifcount;
if (klass->HasSuperClass()) {
super_ifcount = klass->GetSuperClass()->iftable_count_;
} else {
super_ifcount = 0;
}
size_t ifCount = super_ifcount;
ifCount += klass->interface_count_;
for (size_t i = 0; i < klass->interface_count_; i++) {
ifCount += klass->interfaces_[i]->iftable_count_;
}
if (ifCount == 0) {
assert(klass->iftable_count_ == 0);
assert(klass->iftable == NULL);
return true;
}
klass->iftable_ = new InterfaceEntry[ifCount * sizeof(InterfaceEntry)];
memset(klass->iftable_, 0x00, sizeof(InterfaceEntry) * ifCount);
if (super_ifcount != 0) {
memcpy(klass->iftable_, klass->GetSuperClass()->iftable_,
sizeof(InterfaceEntry) * super_ifcount);
}
// Flatten the interface inheritance hierarchy.
size_t idx = super_ifcount;
for (size_t i = 0; i < klass->interface_count_; i++) {
Class* interf = klass->interfaces_[i];
assert(interf != NULL);
if (!interf->IsInterface()) {
LG << "Class implements non-interface class"; // TODO: IncompatibleClassChangeError
return false;
}
klass->iftable_[idx++].SetClass(interf);
for (size_t j = 0; j < interf->iftable_count_; j++) {
klass->iftable_[idx++].SetClass(interf->iftable_[j].GetClass());
}
}
CHECK_EQ(idx, ifCount);
klass->iftable_count_ = ifCount;
if (klass->IsInterface() || super_ifcount == ifCount) {
return true;
}
for (size_t i = super_ifcount; i < ifCount; i++) {
pool_size += klass->iftable_[i].GetClass()->NumVirtualMethods();
}
if (pool_size == 0) {
return true;
}
klass->ifvi_pool_count_ = pool_size;
klass->ifvi_pool_ = new uint32_t[pool_size];
std::vector<Method*> miranda_list;
for (size_t i = super_ifcount; i < ifCount; ++i) {
klass->iftable_[i].method_index_array_ = klass->ifvi_pool_ + pool_offset;
Class* interface = klass->iftable_[i].GetClass();
pool_offset += interface->NumVirtualMethods(); // end here
for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) {
Method* interface_method = interface->GetVirtualMethod(j);
int k; // must be signed
for (k = klass->vtable_count_ - 1; k >= 0; --k) {
if (interface_method->HasSameNameAndPrototype(klass->vtable_[k])) {
if (!klass->vtable_[k]->IsPublic()) {
LG << "Implementation not public";
return false;
}
klass->iftable_[i].method_index_array_[j] = k;
break;
}
}
if (k < 0) {
if (miranda_count == miranda_alloc) {
miranda_alloc += 8;
if (miranda_list.empty()) {
miranda_list.resize(miranda_alloc);
} else {
miranda_list.resize(miranda_alloc);
}
}
int mir;
for (mir = 0; mir < miranda_count; mir++) {
if (miranda_list[mir]->HasSameNameAndPrototype(interface_method)) {
break;
}
}
// point the interface table at a phantom slot index
klass->iftable_[i].method_index_array_[j] = klass->vtable_count_ + mir;
if (mir == miranda_count) {
miranda_list[miranda_count++] = interface_method;
}
}
}
}
if (miranda_count != 0) {
Method* newVirtualMethods;
Method* meth;
int oldMethodCount, oldVtableCount;
if (klass->virtual_methods_ == NULL) {
newVirtualMethods = new Method[klass->NumVirtualMethods() + miranda_count];
} else {
newVirtualMethods = new Method[klass->NumVirtualMethods() + miranda_count];
memcpy(newVirtualMethods,
klass->virtual_methods_,
klass->NumVirtualMethods() * sizeof(Method));
}
if (newVirtualMethods != klass->virtual_methods_) {
Method* meth = newVirtualMethods;
for (size_t i = 0; i < klass->NumVirtualMethods(); i++, meth++) {
klass->vtable_[meth->method_index_] = meth;
}
}
oldMethodCount = klass->NumVirtualMethods();
klass->virtual_methods_ = newVirtualMethods;
klass->num_virtual_methods_ += miranda_count;
CHECK(klass->vtable_ != NULL);
oldVtableCount = klass->vtable_count_;
klass->vtable_count_ += miranda_count;
meth = klass->virtual_methods_ + oldMethodCount;
for (int i = 0; i < miranda_count; i++, meth++) {
memcpy(meth, miranda_list[i], sizeof(Method));
meth->klass_ = klass;
meth->access_flags_ |= kAccMiranda;
meth->method_index_ = 0xFFFF & (oldVtableCount + i);
klass->vtable_[oldVtableCount + i] = meth;
}
}
return true;
}
void ClassLinker::LinkAbstractMethods(Class* klass) {
for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) {
Method* method = klass->GetVirtualMethod(i);
if (method->IsAbstract()) {
method->insns_ = reinterpret_cast<uint16_t*>(0xFFFFFFFF); // TODO: AbstractMethodError
}
}
}
bool ClassLinker::LinkInstanceFields(Class* klass) {
int fieldOffset;
if (klass->GetSuperClass() != NULL) {
fieldOffset = klass->GetSuperClass()->object_size_;
} else {
fieldOffset = OFFSETOF_MEMBER(DataObject, fields_);
}
// Move references to the front.
klass->num_reference_ifields_ = 0;
size_t i = 0;
size_t j = klass->NumInstanceFields() - 1;
for (size_t i = 0; i < klass->NumInstanceFields(); i++) {
InstanceField* pField = klass->GetInstanceField(i);
char c = pField->GetType();
if (c != '[' && c != 'L') {
while (j > i) {
InstanceField* refField = klass->GetInstanceField(j--);
char rc = refField->GetType();
if (rc == '[' || rc == 'L') {
pField->Swap(refField);
c = rc;
klass->num_reference_ifields_++;
break;
}
}
} else {
klass->num_reference_ifields_++;
}
if (c != '[' && c != 'L') {
break;
}
pField->SetOffset(fieldOffset);
fieldOffset += sizeof(uint32_t);
}
// Now we want to pack all of the double-wide fields together. If
// we're not aligned, though, we want to shuffle one 32-bit field
// into place. If we can't find one, we'll have to pad it.
if (i != klass->NumInstanceFields() && (fieldOffset & 0x04) != 0) {
InstanceField* pField = klass->GetInstanceField(i);
char c = pField->GetType();
if (c != 'J' && c != 'D') {
// The field that comes next is 32-bit, so just advance past it.
assert(c != '[' && c != 'L');
pField->SetOffset(fieldOffset);
fieldOffset += sizeof(uint32_t);
i++;
} else {
// Next field is 64-bit, so search for a 32-bit field we can
// swap into it.
bool found = false;
j = klass->NumInstanceFields() - 1;
while (j > i) {
InstanceField* singleField = klass->GetInstanceField(j--);
char rc = singleField->GetType();
if (rc != 'J' && rc != 'D') {
pField->Swap(singleField);
pField->SetOffset(fieldOffset);
fieldOffset += sizeof(uint32_t);
found = true;
i++;
break;
}
}
if (!found) {
fieldOffset += sizeof(uint32_t);
}
}
}
// Alignment is good, shuffle any double-wide fields forward, and
// finish assigning field offsets to all fields.
assert(i == klass->NumInstanceFields() || (fieldOffset & 0x04) == 0);
j = klass->NumInstanceFields() - 1;
for ( ; i < klass->NumInstanceFields(); i++) {
InstanceField* pField = klass->GetInstanceField(i);
char c = pField->GetType();
if (c != 'D' && c != 'J') {
while (j > i) {
InstanceField* doubleField = klass->GetInstanceField(j--);
char rc = doubleField->GetType();
if (rc == 'D' || rc == 'J') {
pField->Swap(doubleField);
c = rc;
break;
}
}
} else {
// This is a double-wide field, leave it be.
}
pField->SetOffset(fieldOffset);
fieldOffset += sizeof(uint32_t);
if (c == 'J' || c == 'D')
fieldOffset += sizeof(uint32_t);
}
#ifndef NDEBUG
/* Make sure that all reference fields appear before
* non-reference fields, and all double-wide fields are aligned.
*/
j = 0; // seen non-ref
for (i = 0; i < klass->NumInstanceFields(); i++) {
InstanceField *pField = &klass->ifields[i];
char c = pField->GetType();
if (c == 'D' || c == 'J') {
assert((pField->offset_ & 0x07) == 0);
}
if (c != '[' && c != 'L') {
if (!j) {
assert(i == klass->num_reference_ifields_);
j = 1;
}
} else if (j) {
assert(false);
}
}
if (!j) {
assert(klass->num_reference_ifields_ == klass->NumInstanceFields());
}
#endif
klass->object_size_ = fieldOffset;
return true;
}
// Set the bitmap of reference offsets, refOffsets, from the ifields
// list.
void ClassLinker::CreateReferenceOffsets(Class* klass) {
uint32_t reference_offsets = 0;
if (klass->HasSuperClass()) {
reference_offsets = klass->GetSuperClass()->GetReferenceOffsets();
}
// If our superclass overflowed, we don't stand a chance.
if (reference_offsets != CLASS_WALK_SUPER) {
// All of the fields that contain object references are guaranteed
// to be at the beginning of the ifields list.
for (size_t i = 0; i < klass->NumReferenceInstanceFields(); ++i) {
// Note that, per the comment on struct InstField, f->byteOffset
// is the offset from the beginning of obj, not the offset into
// obj->instanceData.
const InstanceField* field = klass->GetInstanceField(i);
size_t byte_offset = field->GetOffset();
CHECK_GE(byte_offset, CLASS_SMALLEST_OFFSET);
CHECK_EQ(byte_offset & (CLASS_OFFSET_ALIGNMENT - 1), 0);
if (CLASS_CAN_ENCODE_OFFSET(byte_offset)) {
uint32_t new_bit = CLASS_BIT_FROM_OFFSET(byte_offset);
CHECK_NE(new_bit, 0);
reference_offsets |= new_bit;
} else {
reference_offsets = CLASS_WALK_SUPER;
break;
}
}
klass->SetReferenceOffsets(reference_offsets);
}
}
Class* ClassLinker::ResolveClass(const Class* referrer, uint32_t class_idx) {
DexFile* dex_file = referrer->GetDexFile();
Class* resolved = dex_file->GetResolvedClass(class_idx);
if (resolved != NULL) {
return resolved;
}
const char* descriptor = dex_file->GetRaw()->dexStringByTypeIdx(class_idx);
if (descriptor[0] != '\0' && descriptor[1] == '\0') {
JType type = static_cast<JType>(descriptor[0]);
resolved = FindPrimitiveClass(type);
} else {
resolved = FindClass(descriptor, referrer->GetClassLoader(), NULL);
}
if (resolved != NULL) {
Class* check = resolved->IsArray() ? resolved->component_type_ : resolved;
if (referrer->GetDexFile() != check->GetDexFile()) {
if (check->GetClassLoader() != NULL) {
LG << "Class resolved by unexpected DEX"; // TODO: IllegalAccessError
return NULL;
}
}
dex_file->SetResolvedClass(resolved, class_idx);
} else {
CHECK(Thread::Current()->IsExceptionPending());
}
return resolved;
}
Method* ResolveMethod(const Class* referrer, uint32_t method_idx,
/*MethodType*/ int method_type) {
CHECK(false);
return NULL;
}
String* ClassLinker::ResolveString(const Class* referring, uint32_t string_idx) {
const RawDexFile* raw = referring->GetDexFile()->GetRaw();
const RawDexFile::StringId& string_id = raw->GetStringId(string_idx);
const char* string_data = raw->GetStringData(string_id);
String* new_string = Heap::AllocStringFromModifiedUtf8(string_data);
// TODO: intern the new string
referring->GetDexFile()->SetResolvedString(new_string, string_idx);
return new_string;
}
} // namespace art