blob: d7fee020a2166a89d11fc1fb187f6897e4cf2cc2 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_
#define ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_
#include "android-base/macros.h"
#include "instrumentation.h"
#include "interpreter.h"
#include "interpreter_intrinsics.h"
#include "transaction.h"
#include <math.h>
#include <atomic>
#include <iostream>
#include <sstream>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "base/locks.h"
#include "base/logging.h"
#include "base/macros.h"
#include "class_linker-inl.h"
#include "class_root.h"
#include "common_dex_operations.h"
#include "common_throws.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_instruction-inl.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "handle_scope-inl.h"
#include "interpreter_mterp_impl.h"
#include "interpreter_switch_impl.h"
#include "jit/jit-inl.h"
#include "mirror/call_site.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache.h"
#include "mirror/method.h"
#include "mirror/method_handles_lookup.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "mterp/mterp.h"
#include "obj_ptr.h"
#include "stack.h"
#include "thread.h"
#include "unstarted_runtime.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"
namespace art {
namespace interpreter {
void ThrowNullPointerExceptionFromInterpreter()
REQUIRES_SHARED(Locks::mutator_lock_);
template <bool kMonitorCounting>
static inline void DoMonitorEnter(Thread* self, ShadowFrame* frame, ObjPtr<mirror::Object> ref)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
DCHECK(!ref.IsNull());
StackHandleScope<1> hs(self);
Handle<mirror::Object> h_ref(hs.NewHandle(ref));
h_ref->MonitorEnter(self);
DCHECK(self->HoldsLock(h_ref.Get()));
if (UNLIKELY(self->IsExceptionPending())) {
bool unlocked = h_ref->MonitorExit(self);
DCHECK(unlocked);
return;
}
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
frame->GetLockCountData().AddMonitor(self, h_ref.Get());
}
}
template <bool kMonitorCounting>
static inline void DoMonitorExit(Thread* self, ShadowFrame* frame, ObjPtr<mirror::Object> ref)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
StackHandleScope<1> hs(self);
Handle<mirror::Object> h_ref(hs.NewHandle(ref));
h_ref->MonitorExit(self);
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
frame->GetLockCountData().RemoveMonitorOrThrow(self, h_ref.Get());
}
}
template <bool kMonitorCounting>
static inline bool DoMonitorCheckOnExit(Thread* self, ShadowFrame* frame)
NO_THREAD_SAFETY_ANALYSIS
REQUIRES(!Roles::uninterruptible_) {
if (kMonitorCounting && frame->GetMethod()->MustCountLocks()) {
return frame->GetLockCountData().CheckAllMonitorsReleasedOrThrow(self);
}
return true;
}
void AbortTransactionF(Thread* self, const char* fmt, ...)
__attribute__((__format__(__printf__, 2, 3)))
REQUIRES_SHARED(Locks::mutator_lock_);
void AbortTransactionV(Thread* self, const char* fmt, va_list args)
REQUIRES_SHARED(Locks::mutator_lock_);
void RecordArrayElementsInTransaction(ObjPtr<mirror::Array> array, int32_t count)
REQUIRES_SHARED(Locks::mutator_lock_);
// Invokes the given method. This is part of the invocation support and is used by DoInvoke,
// DoFastInvoke and DoInvokeVirtualQuick functions.
// Returns true on success, otherwise throws an exception and returns false.
template<bool is_range, bool do_assignability_check>
bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data, JValue* result);
bool UseFastInterpreterToInterpreterInvoke(ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_);
// Throws exception if we are getting close to the end of the stack.
NO_INLINE bool CheckStackOverflow(Thread* self, size_t frame_size)
REQUIRES_SHARED(Locks::mutator_lock_);
// Sends the normal method exit event.
// Returns true if the events succeeded and false if there is a pending exception.
template <typename T> bool SendMethodExitEvents(
Thread* self,
const instrumentation::Instrumentation* instrumentation,
ShadowFrame& frame,
ObjPtr<mirror::Object> thiz,
ArtMethod* method,
uint32_t dex_pc,
T& result) REQUIRES_SHARED(Locks::mutator_lock_);
static inline ALWAYS_INLINE WARN_UNUSED bool
NeedsMethodExitEvent(const instrumentation::Instrumentation* ins)
REQUIRES_SHARED(Locks::mutator_lock_) {
return ins->HasMethodExitListeners() || ins->HasWatchedFramePopListeners();
}
// NO_INLINE so we won't bloat the interpreter with this very cold lock-release code.
template <bool kMonitorCounting>
static NO_INLINE void UnlockHeldMonitors(Thread* self, ShadowFrame* shadow_frame)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(shadow_frame->GetForcePopFrame());
// Unlock all monitors.
if (kMonitorCounting && shadow_frame->GetMethod()->MustCountLocks()) {
// Get the monitors from the shadow-frame monitor-count data.
shadow_frame->GetLockCountData().VisitMonitors(
[&](mirror::Object** obj) REQUIRES_SHARED(Locks::mutator_lock_) {
// Since we don't use the 'obj' pointer after the DoMonitorExit everything should be fine
// WRT suspension.
DoMonitorExit<kMonitorCounting>(self, shadow_frame, *obj);
});
} else {
std::vector<verifier::MethodVerifier::DexLockInfo> locks;
verifier::MethodVerifier::FindLocksAtDexPc(shadow_frame->GetMethod(),
shadow_frame->GetDexPC(),
&locks,
Runtime::Current()->GetTargetSdkVersion());
for (const auto& reg : locks) {
if (UNLIKELY(reg.dex_registers.empty())) {
LOG(ERROR) << "Unable to determine reference locked by "
<< shadow_frame->GetMethod()->PrettyMethod() << " at pc "
<< shadow_frame->GetDexPC();
} else {
DoMonitorExit<kMonitorCounting>(
self, shadow_frame, shadow_frame->GetVRegReference(*reg.dex_registers.begin()));
}
}
}
}
enum class MonitorState {
kNoMonitorsLocked,
kCountingMonitors,
kNormalMonitors,
};
template<MonitorState kMonitorState>
static inline ALWAYS_INLINE WARN_UNUSED bool PerformNonStandardReturn(
Thread* self,
ShadowFrame& frame,
JValue& result,
const instrumentation::Instrumentation* instrumentation,
uint16_t num_dex_inst,
uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
static constexpr bool kMonitorCounting = (kMonitorState == MonitorState::kCountingMonitors);
if (UNLIKELY(frame.GetForcePopFrame())) {
ObjPtr<mirror::Object> thiz(frame.GetThisObject(num_dex_inst));
StackHandleScope<1> hs(self);
Handle<mirror::Object> h_thiz(hs.NewHandle(thiz));
DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
if (UNLIKELY(self->IsExceptionPending())) {
LOG(WARNING) << "Suppressing exception for non-standard method exit: "
<< self->GetException()->Dump();
self->ClearException();
}
if (kMonitorState != MonitorState::kNoMonitorsLocked) {
UnlockHeldMonitors<kMonitorCounting>(self, &frame);
}
DoMonitorCheckOnExit<kMonitorCounting>(self, &frame);
result = JValue();
if (UNLIKELY(NeedsMethodExitEvent(instrumentation))) {
SendMethodExitEvents(
self, instrumentation, frame, h_thiz.Get(), frame.GetMethod(), dex_pc, result);
}
return true;
}
return false;
}
// Handles all invoke-XXX/range instructions except for invoke-polymorphic[/range].
// Returns true on success, otherwise throws an exception and returns false.
template<InvokeType type, bool is_range, bool do_access_check, bool is_mterp, bool is_quick = false>
static ALWAYS_INLINE bool DoInvoke(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Make sure to check for async exceptions before anything else.
if (is_mterp && self->UseMterp()) {
DCHECK(!self->ObserveAsyncException());
} else if (UNLIKELY(self->ObserveAsyncException())) {
return false;
}
const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
ArtMethod* sf_method = shadow_frame.GetMethod();
// Try to find the method in small thread-local cache first (only used when
// nterp is not used as mterp and nterp use the cache in an incompatible way).
InterpreterCache* tls_cache = self->GetInterpreterCache();
size_t tls_value;
ArtMethod* resolved_method;
if (is_quick) {
resolved_method = nullptr; // We don't know/care what the original method was.
} else if (!IsNterpSupported() && LIKELY(tls_cache->Get(inst, &tls_value))) {
resolved_method = reinterpret_cast<ArtMethod*>(tls_value);
} else {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
constexpr ClassLinker::ResolveMode resolve_mode =
do_access_check ? ClassLinker::ResolveMode::kCheckICCEAndIAE
: ClassLinker::ResolveMode::kNoChecks;
resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, sf_method, type);
if (UNLIKELY(resolved_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
}
if (!IsNterpSupported()) {
tls_cache->Set(inst, reinterpret_cast<size_t>(resolved_method));
}
}
// Null pointer check and virtual method resolution.
ObjPtr<mirror::Object> receiver =
(type == kStatic) ? nullptr : shadow_frame.GetVRegReference(vregC);
ArtMethod* called_method;
if (is_quick) {
if (UNLIKELY(receiver == nullptr)) {
// We lost the reference to the method index so we cannot get a more precise exception.
ThrowNullPointerExceptionFromDexPC();
return false;
}
DCHECK(receiver->GetClass()->ShouldHaveEmbeddedVTable());
called_method = receiver->GetClass()->GetEmbeddedVTableEntry(
/*vtable_idx=*/ method_idx, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
} else {
called_method = FindMethodToCall<type, do_access_check>(
method_idx, resolved_method, &receiver, sf_method, self);
}
if (UNLIKELY(called_method == nullptr)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
}
if (UNLIKELY(!called_method->IsInvokable())) {
called_method->ThrowInvocationTimeError();
result->SetJ(0);
return false;
}
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr && (type == kVirtual || type == kInterface)) {
jit->InvokeVirtualOrInterface(receiver, sf_method, shadow_frame.GetDexPC(), called_method);
}
if (is_mterp && !is_range && called_method->IsIntrinsic()) {
if (MterpHandleIntrinsic(&shadow_frame, called_method, inst, inst_data,
shadow_frame.GetResultRegister())) {
if (jit != nullptr && sf_method != nullptr) {
jit->NotifyInterpreterToCompiledCodeTransition(self, sf_method);
}
return !self->IsExceptionPending();
}
}
// Check whether we can use the fast path. The result is cached in the ArtMethod.
// If the bit is not set, we explicitly recheck all the conditions.
// If any of the conditions get falsified, it is important to clear the bit.
bool use_fast_path = false;
if (is_mterp && self->UseMterp()) {
use_fast_path = called_method->UseFastInterpreterToInterpreterInvoke();
if (!use_fast_path) {
use_fast_path = UseFastInterpreterToInterpreterInvoke(called_method);
if (use_fast_path) {
called_method->SetFastInterpreterToInterpreterInvokeFlag();
}
}
}
if (use_fast_path) {
DCHECK(Runtime::Current()->IsStarted());
DCHECK(!Runtime::Current()->IsActiveTransaction());
DCHECK(called_method->SkipAccessChecks());
DCHECK(!called_method->IsNative());
DCHECK(!called_method->IsProxyMethod());
DCHECK(!called_method->IsIntrinsic());
DCHECK(!(called_method->GetDeclaringClass()->IsStringClass() &&
called_method->IsConstructor()));
DCHECK(type != kStatic || called_method->GetDeclaringClass()->IsVisiblyInitialized());
const uint16_t number_of_inputs =
(is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data);
CodeItemDataAccessor accessor(called_method->DexInstructionData());
uint32_t num_regs = accessor.RegistersSize();
DCHECK_EQ(number_of_inputs, accessor.InsSize());
DCHECK_GE(num_regs, number_of_inputs);
size_t first_dest_reg = num_regs - number_of_inputs;
if (UNLIKELY(!CheckStackOverflow(self, ShadowFrame::ComputeSize(num_regs)))) {
return false;
}
if (jit != nullptr) {
jit->AddSamples(self, called_method, 1, /* with_backedges */false);
}
// Create shadow frame on the stack.
const char* old_cause = self->StartAssertNoThreadSuspension("DoFastInvoke");
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0);
ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
if (is_range) {
size_t src = vregC;
for (size_t i = 0, dst = first_dest_reg; i < number_of_inputs; ++i, ++dst, ++src) {
*new_shadow_frame->GetVRegAddr(dst) = *shadow_frame.GetVRegAddr(src);
*new_shadow_frame->GetShadowRefAddr(dst) = *shadow_frame.GetShadowRefAddr(src);
}
} else {
uint32_t arg[Instruction::kMaxVarArgRegs];
inst->GetVarArgs(arg, inst_data);
for (size_t i = 0, dst = first_dest_reg; i < number_of_inputs; ++i, ++dst) {
*new_shadow_frame->GetVRegAddr(dst) = *shadow_frame.GetVRegAddr(arg[i]);
*new_shadow_frame->GetShadowRefAddr(dst) = *shadow_frame.GetShadowRefAddr(arg[i]);
}
}
self->PushShadowFrame(new_shadow_frame);
self->EndAssertNoThreadSuspension(old_cause);
VLOG(interpreter) << "Interpreting " << called_method->PrettyMethod();
DCheckStaticState(self, called_method);
while (true) {
// Mterp does not support all instrumentation/debugging.
if (!self->UseMterp()) {
*result =
ExecuteSwitchImpl<false, false>(self, accessor, *new_shadow_frame, *result, false);
break;
}
if (ExecuteMterpImpl(self, accessor.Insns(), new_shadow_frame, result)) {
break;
} else {
// Mterp didn't like that instruction. Single-step it with the reference interpreter.
*result = ExecuteSwitchImpl<false, false>(self, accessor, *new_shadow_frame, *result, true);
if (new_shadow_frame->GetDexPC() == dex::kDexNoIndex) {
break; // Single-stepped a return or an exception not handled locally.
}
}
}
self->PopShadowFrame();
return !self->IsExceptionPending();
}
return DoCall<is_range, do_access_check>(called_method, self, shadow_frame, inst, inst_data,
result);
}
static inline ObjPtr<mirror::MethodHandle> ResolveMethodHandle(Thread* self,
uint32_t method_handle_index,
ArtMethod* referrer)
REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
return class_linker->ResolveMethodHandle(self, method_handle_index, referrer);
}
static inline ObjPtr<mirror::MethodType> ResolveMethodType(Thread* self,
dex::ProtoIndex method_type_index,
ArtMethod* referrer)
REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
return class_linker->ResolveMethodType(self, method_type_index, referrer);
}
#define DECLARE_SIGNATURE_POLYMORPHIC_HANDLER(Name, ...) \
bool Do ## Name(Thread* self, \
ShadowFrame& shadow_frame, \
const Instruction* inst, \
uint16_t inst_data, \
JValue* result) REQUIRES_SHARED(Locks::mutator_lock_);
#include "intrinsics_list.h"
INTRINSICS_LIST(DECLARE_SIGNATURE_POLYMORPHIC_HANDLER)
#undef INTRINSICS_LIST
#undef DECLARE_SIGNATURE_POLYMORPHIC_HANDLER
// Performs a invoke-polymorphic or invoke-polymorphic-range.
template<bool is_range>
bool DoInvokePolymorphic(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_);
bool DoInvokeCustom(Thread* self,
ShadowFrame& shadow_frame,
uint32_t call_site_idx,
const InstructionOperands* operands,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_);
// Performs a custom invoke (invoke-custom/invoke-custom-range).
template<bool is_range>
bool DoInvokeCustom(Thread* self,
ShadowFrame& shadow_frame,
const Instruction* inst,
uint16_t inst_data,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
if (is_range) {
RangeInstructionOperands operands(inst->VRegC_3rc(), inst->VRegA_3rc());
return DoInvokeCustom(self, shadow_frame, call_site_idx, &operands, result);
} else {
uint32_t args[Instruction::kMaxVarArgRegs];
inst->GetVarArgs(args, inst_data);
VarArgsInstructionOperands operands(args, inst->VRegA_35c());
return DoInvokeCustom(self, shadow_frame, call_site_idx, &operands, result);
}
}
template<Primitive::Type field_type>
ALWAYS_INLINE static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg)
REQUIRES_SHARED(Locks::mutator_lock_) {
JValue field_value;
switch (field_type) {
case Primitive::kPrimBoolean:
field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimByte:
field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimChar:
field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimShort:
field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimInt:
field_value.SetI(shadow_frame.GetVReg(vreg));
break;
case Primitive::kPrimLong:
field_value.SetJ(shadow_frame.GetVRegLong(vreg));
break;
case Primitive::kPrimNot:
field_value.SetL(shadow_frame.GetVRegReference(vreg));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return field_value;
}
// Handles iget-XXX and sget-XXX instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active = false>
ALWAYS_INLINE bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) {
const bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead);
const uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f =
FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
ObjPtr<mirror::Object> obj;
if (is_static) {
obj = f->GetDeclaringClass();
if (transaction_active) {
if (Runtime::Current()->GetTransaction()->ReadConstraint(self, obj, f)) {
Runtime::Current()->AbortTransactionAndThrowAbortError(self, "Can't read static fields of "
+ obj->PrettyTypeOf() + " since it does not belong to clinit's class.");
return false;
}
}
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(f, true);
return false;
}
}
JValue result;
if (UNLIKELY(!DoFieldGetCommon<field_type>(self, shadow_frame, obj, f, &result))) {
// Instrumentation threw an error!
CHECK(self->IsExceptionPending());
return false;
}
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, result.GetZ());
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, result.GetB());
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, result.GetC());
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, result.GetS());
break;
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, result.GetI());
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, result.GetJ());
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, result.GetL());
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Handles iget-quick, iget-wide-quick and iget-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type>
ALWAYS_INLINE bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC();
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
// Report this field access to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldReadListeners())) {
ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
field_offset.Uint32Value());
DCHECK(f != nullptr);
DCHECK(!f->IsStatic());
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
// Save obj in case the instrumentation event has thread suspension.
HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&obj);
instrumentation->FieldReadEvent(self,
obj,
shadow_frame.GetMethod(),
shadow_frame.GetDexPC(),
f);
if (UNLIKELY(self->IsExceptionPending())) {
return false;
}
}
// Note: iget-x-quick instructions are only for non-volatile fields.
const uint32_t vregA = inst->VRegA_22c(inst_data);
switch (field_type) {
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset)));
break;
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldBoolean(field_offset)));
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldByte(field_offset)));
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldChar(field_offset)));
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldShort(field_offset)));
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset)));
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object>(field_offset));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
static inline bool CheckWriteValueConstraint(Thread* self, ObjPtr<mirror::Object> value)
REQUIRES_SHARED(Locks::mutator_lock_) {
Runtime* runtime = Runtime::Current();
if (runtime->GetTransaction()->WriteValueConstraint(self, value)) {
DCHECK(value != nullptr);
std::string msg = value->IsClass()
? "Can't store reference to class " + value->AsClass()->PrettyDescriptor()
: "Can't store reference to instance of " + value->GetClass()->PrettyDescriptor();
runtime->AbortTransactionAndThrowAbortError(self, msg);
return false;
}
return true;
}
// Handles iput-XXX and sput-XXX instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
bool transaction_active>
ALWAYS_INLINE bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame,
const Instruction* inst, uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_) {
const bool do_assignability_check = do_access_check;
bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite);
uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f =
FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
Primitive::ComponentSize(field_type));
if (UNLIKELY(f == nullptr)) {
CHECK(self->IsExceptionPending());
return false;
}
ObjPtr<mirror::Object> obj;
if (is_static) {
obj = f->GetDeclaringClass();
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionForFieldAccess(f, false);
return false;
}
}
if (transaction_active) {
Runtime* runtime = Runtime::Current();
if (runtime->GetTransaction()->WriteConstraint(self, obj, f)) {
if (is_static) {
runtime->AbortTransactionAndThrowAbortError(
self, "Can't set fields of " + obj->PrettyTypeOf());
} else {
// This can happen only when compiling a boot image extension.
DCHECK(!runtime->GetTransaction()->IsStrict());
DCHECK(runtime->GetHeap()->ObjectIsInBootImageSpace(obj));
runtime->AbortTransactionAndThrowAbortError(
self, "Can't set fields of boot image objects");
}
return false;
}
}
uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
JValue value = GetFieldValue<field_type>(shadow_frame, vregA);
if (transaction_active &&
field_type == Primitive::kPrimNot &&
!CheckWriteValueConstraint(self, value.GetL())) {
return false;
}
return DoFieldPutCommon<field_type, do_assignability_check, transaction_active>(self,
shadow_frame,
obj,
f,
value);
}
// Handles iput-quick, iput-wide-quick and iput-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type, bool transaction_active>
ALWAYS_INLINE bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst,
uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
if (UNLIKELY(obj == nullptr)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC();
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
const uint32_t vregA = inst->VRegA_22c(inst_data);
// Report this field modification to instrumentation if needed. Since we only have the offset of
// the field from the base of the object, we need to look for it first.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (UNLIKELY(instrumentation->HasFieldWriteListeners())) {
ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
field_offset.Uint32Value());
DCHECK(f != nullptr);
DCHECK(!f->IsStatic());
JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA);
Thread* self = Thread::Current();
StackHandleScope<2> hs(self);
// Save obj in case the instrumentation event has thread suspension.
HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&obj);
mirror::Object* fake_root = nullptr;
HandleWrapper<mirror::Object> ret(hs.NewHandleWrapper<mirror::Object>(
field_type == Primitive::kPrimNot ? field_value.GetGCRoot() : &fake_root));
instrumentation->FieldWriteEvent(self,
obj,
shadow_frame.GetMethod(),
shadow_frame.GetDexPC(),
f,
field_value);
if (UNLIKELY(self->IsExceptionPending())) {
return false;
}
if (UNLIKELY(shadow_frame.GetForcePopFrame())) {
// Don't actually set the field. The next instruction will force us to pop.
DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
return true;
}
}
// Note: iput-x-quick instructions are only for non-volatile fields.
switch (field_type) {
case Primitive::kPrimBoolean:
obj->SetFieldBoolean<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimByte:
obj->SetFieldByte<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimChar:
obj->SetFieldChar<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimShort:
obj->SetFieldShort<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimInt:
obj->SetField32<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimLong:
obj->SetField64<transaction_active>(field_offset, shadow_frame.GetVRegLong(vregA));
break;
case Primitive::kPrimNot:
obj->SetFieldObject<transaction_active>(field_offset, shadow_frame.GetVRegReference(vregA));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return true;
}
// Handles string resolution for const-string and const-string-jumbo instructions. Also ensures the
// java.lang.String class is initialized.
static inline ObjPtr<mirror::String> ResolveString(Thread* self,
ShadowFrame& shadow_frame,
dex::StringIndex string_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> java_lang_string_class = GetClassRoot<mirror::String>();
if (UNLIKELY(!java_lang_string_class->IsVisiblyInitialized())) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(java_lang_string_class));
if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(
self, h_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true))) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
DCHECK(h_class->IsInitializing());
}
ArtMethod* method = shadow_frame.GetMethod();
ObjPtr<mirror::String> string_ptr =
Runtime::Current()->GetClassLinker()->ResolveString(string_idx, method);
return string_ptr;
}
// Handles div-int, div-int/2addr, div-int/li16 and div-int/lit8 instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, kMinInt);
} else {
shadow_frame.SetVReg(result_reg, dividend / divisor);
}
return true;
}
// Handles rem-int, rem-int/2addr, rem-int/li16 and rem-int/lit8 instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, 0);
} else {
shadow_frame.SetVReg(result_reg, dividend % divisor);
}
return true;
}
// Handles div-long and div-long-2addr instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoLongDivide(ShadowFrame& shadow_frame,
size_t result_reg,
int64_t dividend,
int64_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
const int64_t kMinLong = std::numeric_limits<int64_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, kMinLong);
} else {
shadow_frame.SetVRegLong(result_reg, dividend / divisor);
}
return true;
}
// Handles rem-long and rem-long-2addr instructions.
// Returns true on success, otherwise throws a java.lang.ArithmeticException and return false.
static inline bool DoLongRemainder(ShadowFrame& shadow_frame,
size_t result_reg,
int64_t dividend,
int64_t divisor)
REQUIRES_SHARED(Locks::mutator_lock_) {
const int64_t kMinLong = std::numeric_limits<int64_t>::min();
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, 0);
} else {
shadow_frame.SetVRegLong(result_reg, dividend % divisor);
}
return true;
}
// Handles filled-new-array and filled-new-array-range instructions.
// Returns true on success, otherwise throws an exception and returns false.
template <bool is_range, bool do_access_check, bool transaction_active>
bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame,
Thread* self, JValue* result);
// Handles packed-switch instruction.
// Returns the branch offset to the next instruction to execute.
static inline int32_t DoPackedSwitch(const Instruction* inst, const ShadowFrame& shadow_frame,
uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::PACKED_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data));
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
uint16_t size = switch_data[1];
if (size == 0) {
// Empty packed switch, move forward by 3 (size of PACKED_SWITCH).
return 3;
}
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK_ALIGNED(keys, 4);
int32_t first_key = keys[0];
const int32_t* targets = reinterpret_cast<const int32_t*>(&switch_data[4]);
DCHECK_ALIGNED(targets, 4);
int32_t index = test_val - first_key;
if (index >= 0 && index < size) {
return targets[index];
} else {
// No corresponding value: move forward by 3 (size of PACKED_SWITCH).
return 3;
}
}
// Handles sparse-switch instruction.
// Returns the branch offset to the next instruction to execute.
static inline int32_t DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame,
uint16_t inst_data)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data));
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
uint16_t size = switch_data[1];
// Return length of SPARSE_SWITCH if size is 0.
if (size == 0) {
return 3;
}
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK_ALIGNED(keys, 4);
const int32_t* entries = keys + size;
DCHECK_ALIGNED(entries, 4);
int lo = 0;
int hi = size - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
int32_t foundVal = keys[mid];
if (test_val < foundVal) {
hi = mid - 1;
} else if (test_val > foundVal) {
lo = mid + 1;
} else {
return entries[mid];
}
}
// No corresponding value: move forward by 3 (size of SPARSE_SWITCH).
return 3;
}
// We execute any instrumentation events triggered by throwing and/or handing the pending exception
// and change the shadow_frames dex_pc to the appropriate exception handler if the current method
// has one. If the exception has been handled and the shadow_frame is now pointing to a catch clause
// we return true. If the current method is unable to handle the exception we return false.
// This function accepts a null Instrumentation* as a way to cause instrumentation events not to be
// reported.
// TODO We might wish to reconsider how we cause some events to be ignored.
bool MoveToExceptionHandler(Thread* self,
ShadowFrame& shadow_frame,
const instrumentation::Instrumentation* instrumentation)
REQUIRES_SHARED(Locks::mutator_lock_);
NO_RETURN void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame)
__attribute__((cold))
REQUIRES_SHARED(Locks::mutator_lock_);
// Set true if you want TraceExecution invocation before each bytecode execution.
constexpr bool kTraceExecutionEnabled = false;
static inline void TraceExecution(const ShadowFrame& shadow_frame, const Instruction* inst,
const uint32_t dex_pc)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (kTraceExecutionEnabled) {
#define TRACE_LOG std::cerr
std::ostringstream oss;
oss << shadow_frame.GetMethod()->PrettyMethod()
<< android::base::StringPrintf("\n0x%x: ", dex_pc)
<< inst->DumpString(shadow_frame.GetMethod()->GetDexFile()) << "\n";
for (uint32_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) {
uint32_t raw_value = shadow_frame.GetVReg(i);
ObjPtr<mirror::Object> ref_value = shadow_frame.GetVRegReference(i);
oss << android::base::StringPrintf(" vreg%u=0x%08X", i, raw_value);
if (ref_value != nullptr) {
if (ref_value->GetClass()->IsStringClass() &&
!ref_value->AsString()->IsValueNull()) {
oss << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\"";
} else {
oss << "/" << ref_value->PrettyTypeOf();
}
}
}
TRACE_LOG << oss.str() << "\n";
#undef TRACE_LOG
}
}
static inline bool IsBackwardBranch(int32_t branch_offset) {
return branch_offset <= 0;
}
// The arg_offset is the offset to the first input register in the frame.
void ArtInterpreterToCompiledCodeBridge(Thread* self,
ArtMethod* caller,
ShadowFrame* shadow_frame,
uint16_t arg_offset,
JValue* result);
static inline bool IsStringInit(const DexFile* dex_file, uint32_t method_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
const dex::MethodId& method_id = dex_file->GetMethodId(method_idx);
const char* class_name = dex_file->StringByTypeIdx(method_id.class_idx_);
const char* method_name = dex_file->GetMethodName(method_id);
// Instead of calling ResolveMethod() which has suspend point and can trigger
// GC, look up the method symbolically.
// Compare method's class name and method name against string init.
// It's ok since it's not allowed to create your own java/lang/String.
// TODO: verify that assumption.
if ((strcmp(class_name, "Ljava/lang/String;") == 0) &&
(strcmp(method_name, "<init>") == 0)) {
return true;
}
return false;
}
static inline bool IsStringInit(const Instruction* instr, ArtMethod* caller)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (instr->Opcode() == Instruction::INVOKE_DIRECT ||
instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) {
uint16_t callee_method_idx = (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ?
instr->VRegB_3rc() : instr->VRegB_35c();
return IsStringInit(caller->GetDexFile(), callee_method_idx);
}
return false;
}
// Set string value created from StringFactory.newStringFromXXX() into all aliases of
// StringFactory.newEmptyString().
void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame,
uint16_t this_obj_vreg,
JValue result);
} // namespace interpreter
} // namespace art
#endif // ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_