blob: d3cdf13ec6736e0309881a8d6387db1622055b3b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_file.h"
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <zlib.h>
#include <memory>
#include <ostream>
#include <sstream>
#include <type_traits>
#include "android-base/stringprintf.h"
#include "base/enums.h"
#include "base/leb128.h"
#include "base/stl_util.h"
#include "class_accessor-inl.h"
#include "descriptors_names.h"
#include "dex_file-inl.h"
#include "standard_dex_file.h"
#include "utf-inl.h"
namespace art {
using android::base::StringPrintf;
using dex::CallSiteIdItem;
using dex::ClassDef;
using dex::FieldId;
using dex::MapList;
using dex::MapItem;
using dex::MethodHandleItem;
using dex::MethodId;
using dex::ProtoId;
using dex::StringId;
using dex::TryItem;
using dex::TypeId;
using dex::TypeList;
static_assert(sizeof(dex::StringIndex) == sizeof(uint32_t), "StringIndex size is wrong");
static_assert(std::is_trivially_copyable<dex::StringIndex>::value, "StringIndex not trivial");
static_assert(sizeof(dex::TypeIndex) == sizeof(uint16_t), "TypeIndex size is wrong");
static_assert(std::is_trivially_copyable<dex::TypeIndex>::value, "TypeIndex not trivial");
uint32_t DexFile::CalculateChecksum() const {
return CalculateChecksum(Begin(), Size());
}
uint32_t DexFile::CalculateChecksum(const uint8_t* begin, size_t size) {
const uint32_t non_sum_bytes = OFFSETOF_MEMBER(DexFile::Header, signature_);
return ChecksumMemoryRange(begin + non_sum_bytes, size - non_sum_bytes);
}
uint32_t DexFile::ChecksumMemoryRange(const uint8_t* begin, size_t size) {
return adler32(adler32(0L, Z_NULL, 0), begin, size);
}
int DexFile::GetPermissions() const {
CHECK(container_.get() != nullptr);
return container_->GetPermissions();
}
bool DexFile::IsReadOnly() const {
CHECK(container_.get() != nullptr);
return container_->IsReadOnly();
}
bool DexFile::EnableWrite() const {
CHECK(container_.get() != nullptr);
return container_->EnableWrite();
}
bool DexFile::DisableWrite() const {
CHECK(container_.get() != nullptr);
return container_->DisableWrite();
}
DexFile::DexFile(const uint8_t* base,
size_t size,
const uint8_t* data_begin,
size_t data_size,
const std::string& location,
uint32_t location_checksum,
const OatDexFile* oat_dex_file,
std::unique_ptr<DexFileContainer> container,
bool is_compact_dex)
: begin_(base),
size_(size),
data_begin_(data_begin),
data_size_(data_size),
location_(location),
location_checksum_(location_checksum),
header_(reinterpret_cast<const Header*>(base)),
string_ids_(reinterpret_cast<const StringId*>(base + header_->string_ids_off_)),
type_ids_(reinterpret_cast<const TypeId*>(base + header_->type_ids_off_)),
field_ids_(reinterpret_cast<const FieldId*>(base + header_->field_ids_off_)),
method_ids_(reinterpret_cast<const MethodId*>(base + header_->method_ids_off_)),
proto_ids_(reinterpret_cast<const ProtoId*>(base + header_->proto_ids_off_)),
class_defs_(reinterpret_cast<const ClassDef*>(base + header_->class_defs_off_)),
method_handles_(nullptr),
num_method_handles_(0),
call_site_ids_(nullptr),
num_call_site_ids_(0),
hiddenapi_class_data_(nullptr),
oat_dex_file_(oat_dex_file),
container_(std::move(container)),
is_compact_dex_(is_compact_dex),
is_platform_dex_(false) {
CHECK(begin_ != nullptr) << GetLocation();
CHECK_GT(size_, 0U) << GetLocation();
// Check base (=header) alignment.
// Must be 4-byte aligned to avoid undefined behavior when accessing
// any of the sections via a pointer.
CHECK_ALIGNED(begin_, alignof(Header));
InitializeSectionsFromMapList();
}
DexFile::~DexFile() {
// We don't call DeleteGlobalRef on dex_object_ because we're only called by DestroyJavaVM, and
// that's only called after DetachCurrentThread, which means there's no JNIEnv. We could
// re-attach, but cleaning up these global references is not obviously useful. It's not as if
// the global reference table is otherwise empty!
}
bool DexFile::Init(std::string* error_msg) {
if (!CheckMagicAndVersion(error_msg)) {
return false;
}
return true;
}
bool DexFile::CheckMagicAndVersion(std::string* error_msg) const {
if (!IsMagicValid()) {
std::ostringstream oss;
oss << "Unrecognized magic number in " << GetLocation() << ":"
<< " " << header_->magic_[0]
<< " " << header_->magic_[1]
<< " " << header_->magic_[2]
<< " " << header_->magic_[3];
*error_msg = oss.str();
return false;
}
if (!IsVersionValid()) {
std::ostringstream oss;
oss << "Unrecognized version number in " << GetLocation() << ":"
<< " " << header_->magic_[4]
<< " " << header_->magic_[5]
<< " " << header_->magic_[6]
<< " " << header_->magic_[7];
*error_msg = oss.str();
return false;
}
return true;
}
void DexFile::InitializeSectionsFromMapList() {
const MapList* map_list = reinterpret_cast<const MapList*>(DataBegin() + header_->map_off_);
if (header_->map_off_ == 0 || header_->map_off_ > DataSize()) {
// Bad offset. The dex file verifier runs after this method and will reject the file.
return;
}
const size_t count = map_list->size_;
size_t map_limit = header_->map_off_ + count * sizeof(MapItem);
if (header_->map_off_ >= map_limit || map_limit > DataSize()) {
// Overflow or out out of bounds. The dex file verifier runs after
// this method and will reject the file as it is malformed.
return;
}
for (size_t i = 0; i < count; ++i) {
const MapItem& map_item = map_list->list_[i];
if (map_item.type_ == kDexTypeMethodHandleItem) {
method_handles_ = reinterpret_cast<const MethodHandleItem*>(Begin() + map_item.offset_);
num_method_handles_ = map_item.size_;
} else if (map_item.type_ == kDexTypeCallSiteIdItem) {
call_site_ids_ = reinterpret_cast<const CallSiteIdItem*>(Begin() + map_item.offset_);
num_call_site_ids_ = map_item.size_;
} else if (map_item.type_ == kDexTypeHiddenapiClassData) {
hiddenapi_class_data_ = GetHiddenapiClassDataAtOffset(map_item.offset_);
} else {
// Pointers to other sections are not necessary to retain in the DexFile struct.
// Other items have pointers directly into their data.
}
}
}
uint32_t DexFile::Header::GetVersion() const {
const char* version = reinterpret_cast<const char*>(&magic_[kDexMagicSize]);
return atoi(version);
}
const ClassDef* DexFile::FindClassDef(dex::TypeIndex type_idx) const {
size_t num_class_defs = NumClassDefs();
// Fast path for rare no class defs case.
if (num_class_defs == 0) {
return nullptr;
}
for (size_t i = 0; i < num_class_defs; ++i) {
const ClassDef& class_def = GetClassDef(i);
if (class_def.class_idx_ == type_idx) {
return &class_def;
}
}
return nullptr;
}
uint32_t DexFile::FindCodeItemOffset(const ClassDef& class_def, uint32_t method_idx) const {
ClassAccessor accessor(*this, class_def);
CHECK(accessor.HasClassData());
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
if (method.GetIndex() == method_idx) {
return method.GetCodeItemOffset();
}
}
LOG(FATAL) << "Unable to find method " << method_idx;
UNREACHABLE();
}
const FieldId* DexFile::FindFieldId(const TypeId& declaring_klass,
const StringId& name,
const TypeId& type) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const dex::TypeIndex class_idx = GetIndexForTypeId(declaring_klass);
const dex::StringIndex name_idx = GetIndexForStringId(name);
const dex::TypeIndex type_idx = GetIndexForTypeId(type);
int32_t lo = 0;
int32_t hi = NumFieldIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const FieldId& field = GetFieldId(mid);
if (class_idx > field.class_idx_) {
lo = mid + 1;
} else if (class_idx < field.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > field.name_idx_) {
lo = mid + 1;
} else if (name_idx < field.name_idx_) {
hi = mid - 1;
} else {
if (type_idx > field.type_idx_) {
lo = mid + 1;
} else if (type_idx < field.type_idx_) {
hi = mid - 1;
} else {
return &field;
}
}
}
}
return nullptr;
}
const MethodId* DexFile::FindMethodId(const TypeId& declaring_klass,
const StringId& name,
const ProtoId& signature) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const dex::TypeIndex class_idx = GetIndexForTypeId(declaring_klass);
const dex::StringIndex name_idx = GetIndexForStringId(name);
const dex::ProtoIndex proto_idx = GetIndexForProtoId(signature);
int32_t lo = 0;
int32_t hi = NumMethodIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const MethodId& method = GetMethodId(mid);
if (class_idx > method.class_idx_) {
lo = mid + 1;
} else if (class_idx < method.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > method.name_idx_) {
lo = mid + 1;
} else if (name_idx < method.name_idx_) {
hi = mid - 1;
} else {
if (proto_idx > method.proto_idx_) {
lo = mid + 1;
} else if (proto_idx < method.proto_idx_) {
hi = mid - 1;
} else {
return &method;
}
}
}
}
return nullptr;
}
const StringId* DexFile::FindStringId(const char* string) const {
int32_t lo = 0;
int32_t hi = NumStringIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const StringId& str_id = GetStringId(dex::StringIndex(mid));
const char* str = GetStringData(str_id);
int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &str_id;
}
}
return nullptr;
}
const TypeId* DexFile::FindTypeId(const char* string) const {
int32_t lo = 0;
int32_t hi = NumTypeIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const TypeId& type_id = GetTypeId(dex::TypeIndex(mid));
const StringId& str_id = GetStringId(type_id.descriptor_idx_);
const char* str = GetStringData(str_id);
int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &type_id;
}
}
return nullptr;
}
const TypeId* DexFile::FindTypeId(dex::StringIndex string_idx) const {
int32_t lo = 0;
int32_t hi = NumTypeIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const TypeId& type_id = GetTypeId(dex::TypeIndex(mid));
if (string_idx > type_id.descriptor_idx_) {
lo = mid + 1;
} else if (string_idx < type_id.descriptor_idx_) {
hi = mid - 1;
} else {
return &type_id;
}
}
return nullptr;
}
const ProtoId* DexFile::FindProtoId(dex::TypeIndex return_type_idx,
const dex::TypeIndex* signature_type_idxs,
uint32_t signature_length) const {
int32_t lo = 0;
int32_t hi = NumProtoIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const dex::ProtoIndex proto_idx = static_cast<dex::ProtoIndex>(mid);
const ProtoId& proto = GetProtoId(proto_idx);
int compare = return_type_idx.index_ - proto.return_type_idx_.index_;
if (compare == 0) {
DexFileParameterIterator it(*this, proto);
size_t i = 0;
while (it.HasNext() && i < signature_length && compare == 0) {
compare = signature_type_idxs[i].index_ - it.GetTypeIdx().index_;
it.Next();
i++;
}
if (compare == 0) {
if (it.HasNext()) {
compare = -1;
} else if (i < signature_length) {
compare = 1;
}
}
}
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &proto;
}
}
return nullptr;
}
// Given a signature place the type ids into the given vector
bool DexFile::CreateTypeList(const StringPiece& signature,
dex::TypeIndex* return_type_idx,
std::vector<dex::TypeIndex>* param_type_idxs) const {
if (signature[0] != '(') {
return false;
}
size_t offset = 1;
size_t end = signature.size();
bool process_return = false;
while (offset < end) {
size_t start_offset = offset;
char c = signature[offset];
offset++;
if (c == ')') {
process_return = true;
continue;
}
while (c == '[') { // process array prefix
if (offset >= end) { // expect some descriptor following [
return false;
}
c = signature[offset];
offset++;
}
if (c == 'L') { // process type descriptors
do {
if (offset >= end) { // unexpected early termination of descriptor
return false;
}
c = signature[offset];
offset++;
} while (c != ';');
}
// TODO: avoid creating a std::string just to get a 0-terminated char array
std::string descriptor(signature.data() + start_offset, offset - start_offset);
const TypeId* type_id = FindTypeId(descriptor.c_str());
if (type_id == nullptr) {
return false;
}
dex::TypeIndex type_idx = GetIndexForTypeId(*type_id);
if (!process_return) {
param_type_idxs->push_back(type_idx);
} else {
*return_type_idx = type_idx;
return offset == end; // return true if the signature had reached a sensible end
}
}
return false; // failed to correctly parse return type
}
const Signature DexFile::CreateSignature(const StringPiece& signature) const {
dex::TypeIndex return_type_idx;
std::vector<dex::TypeIndex> param_type_indices;
bool success = CreateTypeList(signature, &return_type_idx, &param_type_indices);
if (!success) {
return Signature::NoSignature();
}
const ProtoId* proto_id = FindProtoId(return_type_idx, param_type_indices);
if (proto_id == nullptr) {
return Signature::NoSignature();
}
return Signature(this, *proto_id);
}
int32_t DexFile::FindTryItem(const TryItem* try_items, uint32_t tries_size, uint32_t address) {
uint32_t min = 0;
uint32_t max = tries_size;
while (min < max) {
const uint32_t mid = (min + max) / 2;
const TryItem& ti = try_items[mid];
const uint32_t start = ti.start_addr_;
const uint32_t end = start + ti.insn_count_;
if (address < start) {
max = mid;
} else if (address >= end) {
min = mid + 1;
} else { // We have a winner!
return mid;
}
}
// No match.
return -1;
}
// Read a signed integer. "zwidth" is the zero-based byte count.
int32_t DexFile::ReadSignedInt(const uint8_t* ptr, int zwidth) {
int32_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint32_t)val >> 8) | (((int32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
return val;
}
// Read an unsigned integer. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
uint32_t DexFile::ReadUnsignedInt(const uint8_t* ptr, int zwidth, bool fill_on_right) {
uint32_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
if (!fill_on_right) {
val >>= (3 - zwidth) * 8;
}
return val;
}
// Read a signed long. "zwidth" is the zero-based byte count.
int64_t DexFile::ReadSignedLong(const uint8_t* ptr, int zwidth) {
int64_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint64_t)val >> 8) | (((int64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
return val;
}
// Read an unsigned long. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
uint64_t DexFile::ReadUnsignedLong(const uint8_t* ptr, int zwidth, bool fill_on_right) {
uint64_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
if (!fill_on_right) {
val >>= (7 - zwidth) * 8;
}
return val;
}
std::string DexFile::PrettyMethod(uint32_t method_idx, bool with_signature) const {
if (method_idx >= NumMethodIds()) {
return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
}
const MethodId& method_id = GetMethodId(method_idx);
std::string result;
const ProtoId* proto_id = with_signature ? &GetProtoId(method_id.proto_idx_) : nullptr;
if (with_signature) {
AppendPrettyDescriptor(StringByTypeIdx(proto_id->return_type_idx_), &result);
result += ' ';
}
AppendPrettyDescriptor(GetMethodDeclaringClassDescriptor(method_id), &result);
result += '.';
result += GetMethodName(method_id);
if (with_signature) {
result += '(';
const TypeList* params = GetProtoParameters(*proto_id);
if (params != nullptr) {
const char* separator = "";
for (uint32_t i = 0u, size = params->Size(); i != size; ++i) {
result += separator;
separator = ", ";
AppendPrettyDescriptor(StringByTypeIdx(params->GetTypeItem(i).type_idx_), &result);
}
}
result += ')';
}
return result;
}
std::string DexFile::PrettyField(uint32_t field_idx, bool with_type) const {
if (field_idx >= NumFieldIds()) {
return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
}
const FieldId& field_id = GetFieldId(field_idx);
std::string result;
if (with_type) {
result += GetFieldTypeDescriptor(field_id);
result += ' ';
}
AppendPrettyDescriptor(GetFieldDeclaringClassDescriptor(field_id), &result);
result += '.';
result += GetFieldName(field_id);
return result;
}
std::string DexFile::PrettyType(dex::TypeIndex type_idx) const {
if (type_idx.index_ >= NumTypeIds()) {
return StringPrintf("<<invalid-type-idx-%d>>", type_idx.index_);
}
const TypeId& type_id = GetTypeId(type_idx);
return PrettyDescriptor(GetTypeDescriptor(type_id));
}
dex::ProtoIndex DexFile::GetProtoIndexForCallSite(uint32_t call_site_idx) const {
const CallSiteIdItem& csi = GetCallSiteId(call_site_idx);
CallSiteArrayValueIterator it(*this, csi);
it.Next();
it.Next();
DCHECK_EQ(EncodedArrayValueIterator::ValueType::kMethodType, it.GetValueType());
return dex::ProtoIndex(it.GetJavaValue().i);
}
// Checks that visibility is as expected. Includes special behavior for M and
// before to allow runtime and build visibility when expecting runtime.
std::ostream& operator<<(std::ostream& os, const DexFile& dex_file) {
os << StringPrintf("[DexFile: %s dex-checksum=%08x location-checksum=%08x %p-%p]",
dex_file.GetLocation().c_str(),
dex_file.GetHeader().checksum_, dex_file.GetLocationChecksum(),
dex_file.Begin(), dex_file.Begin() + dex_file.Size());
return os;
}
EncodedArrayValueIterator::EncodedArrayValueIterator(const DexFile& dex_file,
const uint8_t* array_data)
: dex_file_(dex_file),
array_size_(),
pos_(-1),
ptr_(array_data),
type_(kByte) {
array_size_ = (ptr_ != nullptr) ? DecodeUnsignedLeb128(&ptr_) : 0;
if (array_size_ > 0) {
Next();
}
}
void EncodedArrayValueIterator::Next() {
pos_++;
if (pos_ >= array_size_) {
return;
}
uint8_t value_type = *ptr_++;
uint8_t value_arg = value_type >> kEncodedValueArgShift;
size_t width = value_arg + 1; // assume and correct later
type_ = static_cast<ValueType>(value_type & kEncodedValueTypeMask);
switch (type_) {
case kBoolean:
jval_.i = (value_arg != 0) ? 1 : 0;
width = 0;
break;
case kByte:
jval_.i = DexFile::ReadSignedInt(ptr_, value_arg);
CHECK(IsInt<8>(jval_.i));
break;
case kShort:
jval_.i = DexFile::ReadSignedInt(ptr_, value_arg);
CHECK(IsInt<16>(jval_.i));
break;
case kChar:
jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, false);
CHECK(IsUint<16>(jval_.i));
break;
case kInt:
jval_.i = DexFile::ReadSignedInt(ptr_, value_arg);
break;
case kLong:
jval_.j = DexFile::ReadSignedLong(ptr_, value_arg);
break;
case kFloat:
jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, true);
break;
case kDouble:
jval_.j = DexFile::ReadUnsignedLong(ptr_, value_arg, true);
break;
case kString:
case kType:
case kMethodType:
case kMethodHandle:
jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, false);
break;
case kField:
case kMethod:
case kEnum:
case kArray:
case kAnnotation:
UNIMPLEMENTED(FATAL) << ": type " << type_;
UNREACHABLE();
case kNull:
jval_.l = nullptr;
width = 0;
break;
default:
LOG(FATAL) << "Unreached";
UNREACHABLE();
}
ptr_ += width;
}
namespace dex {
std::ostream& operator<<(std::ostream& os, const ProtoIndex& index) {
os << "ProtoIndex[" << index.index_ << "]";
return os;
}
std::ostream& operator<<(std::ostream& os, const StringIndex& index) {
os << "StringIndex[" << index.index_ << "]";
return os;
}
std::ostream& operator<<(std::ostream& os, const TypeIndex& index) {
os << "TypeIndex[" << index.index_ << "]";
return os;
}
} // namespace dex
} // namespace art