blob: c39b44e93da9aea4e1baa1e827bf54612fe0b194 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include "timing_logger.h"
#include <android-base/logging.h>
#include "base/mutex.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "gc/heap.h"
#include "runtime.h"
#include "thread-current-inl.h"
#include <cmath>
#include <iomanip>
namespace art {
CumulativeLogger::CumulativeLogger(const std::string& name)
: name_(name),
lock_name_("CumulativeLoggerLock" + name),
lock_(new Mutex(lock_name_.c_str(), kDefaultMutexLevel, true)) {
Reset();
}
CumulativeLogger::~CumulativeLogger() {
cumulative_timers_.clear();
}
void CumulativeLogger::SetName(const std::string& name) {
MutexLock mu(Thread::Current(), *GetLock());
name_.assign(name);
}
void CumulativeLogger::Start() {
}
void CumulativeLogger::End() {
MutexLock mu(Thread::Current(), *GetLock());
++iterations_;
}
void CumulativeLogger::Reset() {
MutexLock mu(Thread::Current(), *GetLock());
iterations_ = 0;
total_time_ = 0;
cumulative_timers_.clear();
}
void CumulativeLogger::AddLogger(const TimingLogger &logger) {
MutexLock mu(Thread::Current(), *GetLock());
TimingLogger::TimingData timing_data(logger.CalculateTimingData());
const std::vector<TimingLogger::Timing>& timings = logger.GetTimings();
for (size_t i = 0; i < timings.size(); ++i) {
if (timings[i].IsStartTiming()) {
AddPair(timings[i].GetName(), timing_data.GetExclusiveTime(i));
}
}
++iterations_;
}
size_t CumulativeLogger::GetIterations() const {
MutexLock mu(Thread::Current(), *GetLock());
return iterations_;
}
void CumulativeLogger::Dump(std::ostream &os) const {
MutexLock mu(Thread::Current(), *GetLock());
DumpAverages(os);
}
void CumulativeLogger::AddPair(const char* label, uint64_t delta_time) {
// Convert delta time to microseconds so that we don't overflow our counters.
delta_time /= kAdjust;
total_time_ += delta_time;
CumulativeTime candidate(label, delta_time);
auto it = std::lower_bound(cumulative_timers_.begin(), cumulative_timers_.end(), candidate);
// Maintain the vector sorted so that lookup above, which is more frequent can
// happen in log(n).
if (it == cumulative_timers_.end() || it->Name() != label) {
cumulative_timers_.insert(it, candidate);
} else {
it->Add(delta_time);
}
}
void CumulativeLogger::DumpAverages(std::ostream &os) const {
os << "Start Dumping Averages for " << iterations_ << " iterations"
<< " for " << name_ << "\n";
const size_t timers_sz = cumulative_timers_.size();
// Create an array of pointers to cumulative timers on stack and sort it in
// decreasing order of accumulated timer so that the most time consuming
// timer is printed first.
const CumulativeTime* sorted_timers[timers_sz];
for (size_t i = 0; i < timers_sz; i++) {
sorted_timers[i] = cumulative_timers_.data() + i;
}
std::sort(sorted_timers,
sorted_timers + timers_sz,
[](const CumulativeTime* a, const CumulativeTime* b) { return a->Sum() > b->Sum(); });
for (size_t i = 0; i < timers_sz; i++) {
const CumulativeTime *timer = sorted_timers[i];
uint64_t total_time_ns = timer->Sum() * kAdjust;
os << timer->Name()
<< ":\tSum: " << PrettyDuration(total_time_ns)
<< " Avg: " << PrettyDuration(total_time_ns / iterations_) << "\n";
}
os << "Done Dumping Averages\n";
}
TimingLogger::TimingLogger(const char* name,
bool precise,
bool verbose,
TimingLogger::TimingKind kind)
: name_(name), precise_(precise), verbose_(verbose), kind_(kind) {
}
void TimingLogger::Reset() {
timings_.clear();
}
void TimingLogger::StartTiming(const char* label) {
DCHECK(label != nullptr);
timings_.push_back(Timing(kind_, label));
ATraceBegin(label);
}
void TimingLogger::EndTiming() {
timings_.push_back(Timing(kind_, nullptr));
ATraceEnd();
}
uint64_t TimingLogger::GetTotalNs() const {
if (timings_.size() < 2) {
return 0;
}
return timings_.back().GetTime() - timings_.front().GetTime();
}
size_t TimingLogger::FindTimingIndex(const char* name, size_t start_idx) const {
DCHECK_LT(start_idx, timings_.size());
for (size_t i = start_idx; i < timings_.size(); ++i) {
if (timings_[i].IsStartTiming() && strcmp(timings_[i].GetName(), name) == 0) {
return i;
}
}
return kIndexNotFound;
}
TimingLogger::TimingData TimingLogger::CalculateTimingData() const {
TimingLogger::TimingData ret;
ret.data_.resize(timings_.size());
std::vector<size_t> open_stack;
for (size_t i = 0; i < timings_.size(); ++i) {
if (timings_[i].IsEndTiming()) {
CHECK(!open_stack.empty()) << "No starting split for ending split at index " << i;
size_t open_idx = open_stack.back();
uint64_t time = timings_[i].GetTime() - timings_[open_idx].GetTime();
ret.data_[open_idx].exclusive_time += time;
DCHECK_EQ(ret.data_[open_idx].total_time, 0U);
ret.data_[open_idx].total_time += time;
// Each open split has exactly one end.
open_stack.pop_back();
// If there is a parent node, subtract from the exclusive time.
if (!open_stack.empty()) {
// Note this may go negative, but will work due to 2s complement when we add the value
// total time value later.
ret.data_[open_stack.back()].exclusive_time -= time;
}
} else {
open_stack.push_back(i);
}
}
CHECK(open_stack.empty()) << "Missing ending for timing "
<< timings_[open_stack.back()].GetName() << " at index " << open_stack.back();
return ret; // No need to fear, C++11 move semantics are here.
}
void TimingLogger::Dump(std::ostream &os, const char* indent_string) const {
static constexpr size_t kFractionalDigits = 3;
TimingLogger::TimingData timing_data(CalculateTimingData());
uint64_t longest_split = 0;
for (size_t i = 0; i < timings_.size(); ++i) {
longest_split = std::max(longest_split, timing_data.GetTotalTime(i));
}
// Compute which type of unit we will use for printing the timings.
TimeUnit tu = GetAppropriateTimeUnit(longest_split);
uint64_t divisor = GetNsToTimeUnitDivisor(tu);
uint64_t mod_fraction = divisor >= 1000 ? divisor / 1000 : 1;
// Print formatted splits.
size_t tab_count = 1;
os << name_ << " [Exclusive time] [Total time]\n";
for (size_t i = 0; i < timings_.size(); ++i) {
if (timings_[i].IsStartTiming()) {
uint64_t exclusive_time = timing_data.GetExclusiveTime(i);
uint64_t total_time = timing_data.GetTotalTime(i);
if (!precise_) {
// Make the fractional part 0.
exclusive_time -= exclusive_time % mod_fraction;
total_time -= total_time % mod_fraction;
}
for (size_t j = 0; j < tab_count; ++j) {
os << indent_string;
}
os << FormatDuration(exclusive_time, tu, kFractionalDigits);
// If they are the same, just print one value to prevent spam.
if (exclusive_time != total_time) {
os << "/" << FormatDuration(total_time, tu, kFractionalDigits);
}
os << " " << timings_[i].GetName() << "\n";
++tab_count;
} else {
--tab_count;
}
}
os << name_ << ": end, " << PrettyDuration(GetTotalNs()) << "\n";
}
void TimingLogger::Verify() {
size_t counts[2] = { 0 };
for (size_t i = 0; i < timings_.size(); ++i) {
if (i > 0) {
CHECK_LE(timings_[i - 1].GetTime(), timings_[i].GetTime());
}
++counts[timings_[i].IsStartTiming() ? 0 : 1];
}
CHECK_EQ(counts[0], counts[1]) << "Number of StartTiming and EndTiming doesn't match";
}
TimingLogger::~TimingLogger() {
if (kIsDebugBuild) {
Verify();
}
}
} // namespace art