blob: 006c27126110ab9237df157edce5a3658ceabe40 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mark_sweep.h"
#include <functional>
#include <numeric>
#include <climits>
#include <vector>
#include "base/bounded_fifo.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex-inl.h"
#include "base/timing_logger.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/accounting/mod_union_table.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/heap.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "indirect_reference_table.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "monitor.h"
#include "mark_sweep-inl.h"
#include "mirror/art_field.h"
#include "mirror/art_field-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "mirror/object-inl.h"
#include "mirror/object_array.h"
#include "mirror/object_array-inl.h"
#include "runtime.h"
#include "thread-inl.h"
#include "thread_list.h"
#include "verifier/method_verifier.h"
using ::art::mirror::ArtField;
using ::art::mirror::Class;
using ::art::mirror::Object;
using ::art::mirror::ObjectArray;
namespace art {
namespace gc {
namespace collector {
// Performance options.
constexpr bool kUseRecursiveMark = false;
constexpr bool kUseMarkStackPrefetch = true;
constexpr size_t kSweepArrayChunkFreeSize = 1024;
// Parallelism options.
constexpr bool kParallelCardScan = true;
constexpr bool kParallelRecursiveMark = true;
// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
// having this can add overhead in ProcessReferences since we may end up doing many calls of
// ProcessMarkStack with very small mark stacks.
constexpr size_t kMinimumParallelMarkStackSize = 128;
constexpr bool kParallelProcessMarkStack = true;
// Profiling and information flags.
constexpr bool kCountClassesMarked = false;
constexpr bool kProfileLargeObjects = false;
constexpr bool kMeasureOverhead = false;
constexpr bool kCountTasks = false;
constexpr bool kCountJavaLangRefs = false;
// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
constexpr bool kCheckLocks = kDebugLocking;
void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
// Bind live to mark bitmap if necessary.
if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
CHECK(space->IsContinuousMemMapAllocSpace());
space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
}
// Add the space to the immune region.
// TODO: Use space limits instead of current end_ since the end_ can be changed by dlmalloc
// callbacks.
if (immune_begin_ == NULL) {
DCHECK(immune_end_ == NULL);
SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
reinterpret_cast<Object*>(space->End()));
} else {
const space::ContinuousSpace* prev_space = nullptr;
// Find out if the previous space is immune.
for (const space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
if (cur_space == space) {
break;
}
prev_space = cur_space;
}
// If previous space was immune, then extend the immune region. Relies on continuous spaces
// being sorted by Heap::AddContinuousSpace.
if (prev_space != nullptr && IsImmuneSpace(prev_space)) {
immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
}
}
}
bool MarkSweep::IsImmuneSpace(const space::ContinuousSpace* space) const {
return
immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
immune_end_ >= reinterpret_cast<Object*>(space->End());
}
void MarkSweep::BindBitmaps() {
timings_.StartSplit("BindBitmaps");
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
// Mark all of the spaces we never collect as immune.
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
ImmuneSpace(space);
}
}
timings_.EndSplit();
}
MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
: GarbageCollector(heap,
name_prefix +
(is_concurrent ? "concurrent mark sweep": "mark sweep")),
current_mark_bitmap_(NULL),
mark_stack_(NULL),
immune_begin_(NULL),
immune_end_(NULL),
live_stack_freeze_size_(0),
gc_barrier_(new Barrier(0)),
large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
is_concurrent_(is_concurrent) {
}
void MarkSweep::InitializePhase() {
timings_.Reset();
TimingLogger::ScopedSplit split("InitializePhase", &timings_);
mark_stack_ = heap_->mark_stack_.get();
DCHECK(mark_stack_ != nullptr);
SetImmuneRange(nullptr, nullptr);
class_count_ = 0;
array_count_ = 0;
other_count_ = 0;
large_object_test_ = 0;
large_object_mark_ = 0;
classes_marked_ = 0;
overhead_time_ = 0;
work_chunks_created_ = 0;
work_chunks_deleted_ = 0;
reference_count_ = 0;
FindDefaultMarkBitmap();
// Do any pre GC verification.
timings_.NewSplit("PreGcVerification");
heap_->PreGcVerification(this);
}
void MarkSweep::ProcessReferences(Thread* self) {
TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
&RecursiveMarkObjectCallback, this);
}
bool MarkSweep::HandleDirtyObjectsPhase() {
TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
Thread* self = Thread::Current();
Locks::mutator_lock_->AssertExclusiveHeld(self);
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// Re-mark root set.
ReMarkRoots();
// Scan dirty objects, this is only required if we are not doing concurrent GC.
RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
}
ProcessReferences(self);
// Only need to do this if we have the card mark verification on, and only during concurrent GC.
if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
GetHeap()->verify_post_gc_heap_) {
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// This second sweep makes sure that we don't have any objects in the live stack which point to
// freed objects. These cause problems since their references may be previously freed objects.
SweepArray(GetHeap()->allocation_stack_.get(), false);
// Since SweepArray() above resets the (active) allocation
// stack. Need to revoke the thread-local allocation stacks that
// point into it.
GetHeap()->RevokeAllThreadLocalAllocationStacks(self);
}
timings_.StartSplit("PreSweepingGcVerification");
heap_->PreSweepingGcVerification(this);
timings_.EndSplit();
// Ensure that nobody inserted items in the live stack after we swapped the stacks.
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
// Disallow new system weaks to prevent a race which occurs when someone adds a new system
// weak before we sweep them. Since this new system weak may not be marked, the GC may
// incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
// reference to a string that is about to be swept.
Runtime::Current()->DisallowNewSystemWeaks();
return true;
}
bool MarkSweep::IsConcurrent() const {
return is_concurrent_;
}
void MarkSweep::MarkingPhase() {
TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
Thread* self = Thread::Current();
BindBitmaps();
FindDefaultMarkBitmap();
// Process dirty cards and add dirty cards to mod union tables.
heap_->ProcessCards(timings_);
// Need to do this before the checkpoint since we don't want any threads to add references to
// the live stack during the recursive mark.
timings_.NewSplit("SwapStacks");
heap_->SwapStacks(self);
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
// If we exclusively hold the mutator lock, all threads must be suspended.
MarkRoots();
if (kUseThreadLocalAllocationStack) {
heap_->RevokeAllThreadLocalAllocationStacks(self);
}
} else {
MarkThreadRoots(self);
// At this point the live stack should no longer have any mutators which push into it.
MarkNonThreadRoots();
}
live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
MarkConcurrentRoots();
UpdateAndMarkModUnion();
MarkReachableObjects();
}
void MarkSweep::UpdateAndMarkModUnion() {
for (const auto& space : heap_->GetContinuousSpaces()) {
if (IsImmuneSpace(space)) {
const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
"UpdateAndMarkImageModUnionTable";
TimingLogger::ScopedSplit split(name, &timings_);
accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
CHECK(mod_union_table != nullptr);
mod_union_table->UpdateAndMarkReferences(MarkObjectCallback, this);
}
}
}
void MarkSweep::MarkThreadRoots(Thread* self) {
MarkRootsCheckpoint(self);
}
void MarkSweep::MarkReachableObjects() {
// Mark everything allocated since the last as GC live so that we can sweep concurrently,
// knowing that new allocations won't be marked as live.
timings_.StartSplit("MarkStackAsLive");
accounting::ObjectStack* live_stack = heap_->GetLiveStack();
heap_->MarkAllocStackAsLive(live_stack);
live_stack->Reset();
timings_.EndSplit();
// Recursively mark all the non-image bits set in the mark bitmap.
RecursiveMark();
}
void MarkSweep::ReclaimPhase() {
TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
Thread* self = Thread::Current();
if (!IsConcurrent()) {
ProcessReferences(self);
}
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
SweepSystemWeaks();
}
if (IsConcurrent()) {
Runtime::Current()->AllowNewSystemWeaks();
TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
// The allocation stack contains things allocated since the start of the GC. These may have been
// marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
// Remove these objects from the mark bitmaps so that they will be eligible for sticky
// collection.
// There is a race here which is safely handled. Another thread such as the hprof could
// have flushed the alloc stack after we resumed the threads. This is safe however, since
// reseting the allocation stack zeros it out with madvise. This means that we will either
// read NULLs or attempt to unmark a newly allocated object which will not be marked in the
// first place.
mirror::Object** end = allocation_stack->End();
for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
const Object* obj = *it;
if (obj != NULL) {
UnMarkObjectNonNull(obj);
}
}
}
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// Reclaim unmarked objects.
Sweep(false);
// Swap the live and mark bitmaps for each space which we modified space. This is an
// optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
// bitmaps.
timings_.StartSplit("SwapBitmaps");
SwapBitmaps();
timings_.EndSplit();
// Unbind the live and mark bitmaps.
TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
GetHeap()->UnBindBitmaps();
}
}
void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
immune_begin_ = begin;
immune_end_ = end;
}
void MarkSweep::FindDefaultMarkBitmap() {
TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
if (bitmap != nullptr &&
space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
current_mark_bitmap_ = bitmap;
CHECK(current_mark_bitmap_ != NULL);
return;
}
}
GetHeap()->DumpSpaces();
LOG(FATAL) << "Could not find a default mark bitmap";
}
void MarkSweep::ExpandMarkStack() {
ResizeMarkStack(mark_stack_->Capacity() * 2);
}
void MarkSweep::ResizeMarkStack(size_t new_size) {
// Rare case, no need to have Thread::Current be a parameter.
if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
// Someone else acquired the lock and expanded the mark stack before us.
return;
}
std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
CHECK_LE(mark_stack_->Size(), new_size);
mark_stack_->Resize(new_size);
for (const auto& obj : temp) {
mark_stack_->PushBack(obj);
}
}
inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
DCHECK(obj != NULL);
if (MarkObjectParallel(obj)) {
MutexLock mu(Thread::Current(), mark_stack_lock_);
if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
ExpandMarkStack();
}
// The object must be pushed on to the mark stack.
mark_stack_->PushBack(const_cast<Object*>(obj));
}
}
mirror::Object* MarkSweep::RecursiveMarkObjectCallback(mirror::Object* obj, void* arg) {
MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
mark_sweep->MarkObject(obj);
mark_sweep->ProcessMarkStack(true);
return obj;
}
inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
DCHECK(!IsImmune(obj));
// Try to take advantage of locality of references within a space, failing this find the space
// the hard way.
accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
if (LIKELY(new_bitmap != NULL)) {
object_bitmap = new_bitmap;
} else {
MarkLargeObject(obj, false);
return;
}
}
DCHECK(object_bitmap->HasAddress(obj));
object_bitmap->Clear(obj);
}
inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
DCHECK(obj != NULL);
if (IsImmune(obj)) {
DCHECK(IsMarked(obj));
return;
}
// Try to take advantage of locality of references within a space, failing this find the space
// the hard way.
accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
if (LIKELY(new_bitmap != NULL)) {
object_bitmap = new_bitmap;
} else {
MarkLargeObject(obj, true);
return;
}
}
// This object was not previously marked.
if (!object_bitmap->Test(obj)) {
object_bitmap->Set(obj);
if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
// Lock is not needed but is here anyways to please annotalysis.
MutexLock mu(Thread::Current(), mark_stack_lock_);
ExpandMarkStack();
}
// The object must be pushed on to the mark stack.
mark_stack_->PushBack(const_cast<Object*>(obj));
}
}
// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
// TODO: support >1 discontinuous space.
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
if (kProfileLargeObjects) {
++large_object_test_;
}
if (UNLIKELY(!large_objects->Test(obj))) {
if (!large_object_space->Contains(obj)) {
LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
LOG(ERROR) << "Attempting see if it's a bad root";
VerifyRoots();
LOG(FATAL) << "Can't mark bad root";
}
if (kProfileLargeObjects) {
++large_object_mark_;
}
if (set) {
large_objects->Set(obj);
} else {
large_objects->Clear(obj);
}
return true;
}
return false;
}
inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
DCHECK(obj != NULL);
if (IsImmune(obj)) {
DCHECK(IsMarked(obj));
return false;
}
// Try to take advantage of locality of references within a space, failing this find the space
// the hard way.
accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
if (new_bitmap != NULL) {
object_bitmap = new_bitmap;
} else {
// TODO: Remove the Thread::Current here?
// TODO: Convert this to some kind of atomic marking?
MutexLock mu(Thread::Current(), large_object_lock_);
return MarkLargeObject(obj, true);
}
}
// Return true if the object was not previously marked.
return !object_bitmap->AtomicTestAndSet(obj);
}
// Used to mark objects when recursing. Recursion is done by moving
// the finger across the bitmaps in address order and marking child
// objects. Any newly-marked objects whose addresses are lower than
// the finger won't be visited by the bitmap scan, so those objects
// need to be added to the mark stack.
inline void MarkSweep::MarkObject(const Object* obj) {
if (obj != NULL) {
MarkObjectNonNull(obj);
}
}
void MarkSweep::MarkRoot(const Object* obj) {
if (obj != NULL) {
MarkObjectNonNull(obj);
}
}
void MarkSweep::MarkRootParallelCallback(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
RootType /*root_type*/) {
DCHECK(root != NULL);
DCHECK(arg != NULL);
reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
}
void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
RootType /*root_type*/) {
DCHECK(root != nullptr);
DCHECK(arg != nullptr);
reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
}
mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* object, void* arg) {
DCHECK(object != nullptr);
DCHECK(arg != nullptr);
reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(object);
return object;
}
void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
const StackVisitor* visitor) {
reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
}
void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
// See if the root is on any space bitmap.
if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
if (!large_object_space->Contains(root)) {
LOG(ERROR) << "Found invalid root: " << root;
if (visitor != NULL) {
LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
}
}
}
}
void MarkSweep::VerifyRoots() {
Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
}
// Marks all objects in the root set.
void MarkSweep::MarkRoots() {
timings_.StartSplit("MarkRoots");
Runtime::Current()->VisitNonConcurrentRoots(MarkRootCallback, this);
timings_.EndSplit();
}
void MarkSweep::MarkNonThreadRoots() {
timings_.StartSplit("MarkNonThreadRoots");
Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
timings_.EndSplit();
}
void MarkSweep::MarkConcurrentRoots() {
timings_.StartSplit("MarkConcurrentRoots");
// Visit all runtime roots and clear dirty flags.
Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, false, true);
timings_.EndSplit();
}
class ScanObjectVisitor {
public:
explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
: mark_sweep_(mark_sweep) {}
// TODO: Fixme when anotatalysis works with visitors.
void operator()(Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
if (kCheckLocks) {
Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
}
mark_sweep_->ScanObject(obj);
}
private:
MarkSweep* const mark_sweep_;
};
template <bool kUseFinger = false>
class MarkStackTask : public Task {
public:
MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
const Object** mark_stack)
: mark_sweep_(mark_sweep),
thread_pool_(thread_pool),
mark_stack_pos_(mark_stack_size) {
// We may have to copy part of an existing mark stack when another mark stack overflows.
if (mark_stack_size != 0) {
DCHECK(mark_stack != NULL);
// TODO: Check performance?
std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
}
if (kCountTasks) {
++mark_sweep_->work_chunks_created_;
}
}
static const size_t kMaxSize = 1 * KB;
protected:
class ScanObjectParallelVisitor {
public:
explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
: chunk_task_(chunk_task) {}
void operator()(Object* obj) const {
MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
mark_sweep->ScanObjectVisit(obj,
[mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
bool /* is_static */) ALWAYS_INLINE_LAMBDA {
if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
if (kUseFinger) {
android_memory_barrier();
if (reinterpret_cast<uintptr_t>(ref) >=
static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
return;
}
}
chunk_task_->MarkStackPush(ref);
}
});
}
private:
MarkStackTask<kUseFinger>* const chunk_task_;
};
virtual ~MarkStackTask() {
// Make sure that we have cleared our mark stack.
DCHECK_EQ(mark_stack_pos_, 0U);
if (kCountTasks) {
++mark_sweep_->work_chunks_deleted_;
}
}
MarkSweep* const mark_sweep_;
ThreadPool* const thread_pool_;
// Thread local mark stack for this task.
const Object* mark_stack_[kMaxSize];
// Mark stack position.
size_t mark_stack_pos_;
void MarkStackPush(const Object* obj) ALWAYS_INLINE {
if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
// Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
mark_stack_pos_ /= 2;
auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
mark_stack_ + mark_stack_pos_);
thread_pool_->AddTask(Thread::Current(), task);
}
DCHECK(obj != nullptr);
DCHECK(mark_stack_pos_ < kMaxSize);
mark_stack_[mark_stack_pos_++] = obj;
}
virtual void Finalize() {
delete this;
}
// Scans all of the objects
virtual void Run(Thread* self) {
ScanObjectParallelVisitor visitor(this);
// TODO: Tune this.
static const size_t kFifoSize = 4;
BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
for (;;) {
const Object* obj = nullptr;
if (kUseMarkStackPrefetch) {
while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
const Object* obj = mark_stack_[--mark_stack_pos_];
DCHECK(obj != nullptr);
__builtin_prefetch(obj);
prefetch_fifo.push_back(obj);
}
if (UNLIKELY(prefetch_fifo.empty())) {
break;
}
obj = prefetch_fifo.front();
prefetch_fifo.pop_front();
} else {
if (UNLIKELY(mark_stack_pos_ == 0)) {
break;
}
obj = mark_stack_[--mark_stack_pos_];
}
DCHECK(obj != nullptr);
visitor(const_cast<mirror::Object*>(obj));
}
}
};
class CardScanTask : public MarkStackTask<false> {
public:
CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
const Object** mark_stack_obj)
: MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
bitmap_(bitmap),
begin_(begin),
end_(end),
minimum_age_(minimum_age) {
}
protected:
accounting::SpaceBitmap* const bitmap_;
byte* const begin_;
byte* const end_;
const byte minimum_age_;
virtual void Finalize() {
delete this;
}
virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
ScanObjectParallelVisitor visitor(this);
accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
<< reinterpret_cast<void*>(end_) << " = " << cards_scanned;
// Finish by emptying our local mark stack.
MarkStackTask::Run(self);
}
};
size_t MarkSweep::GetThreadCount(bool paused) const {
if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
return 0;
}
if (paused) {
return heap_->GetParallelGCThreadCount() + 1;
} else {
return heap_->GetConcGCThreadCount() + 1;
}
}
void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
accounting::CardTable* card_table = GetHeap()->GetCardTable();
ThreadPool* thread_pool = GetHeap()->GetThreadPool();
size_t thread_count = GetThreadCount(paused);
// The parallel version with only one thread is faster for card scanning, TODO: fix.
if (kParallelCardScan && thread_count > 0) {
Thread* self = Thread::Current();
// Can't have a different split for each space since multiple spaces can have their cards being
// scanned at the same time.
timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
// Try to take some of the mark stack since we can pass this off to the worker tasks.
const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
// Estimated number of work tasks we will create.
const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
DCHECK_NE(mark_stack_tasks, 0U);
const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
mark_stack_size / mark_stack_tasks + 1);
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->GetMarkBitmap() == nullptr) {
continue;
}
byte* card_begin = space->Begin();
byte* card_end = space->End();
// Align up the end address. For example, the image space's end
// may not be card-size-aligned.
card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
// Calculate how many bytes of heap we will scan,
const size_t address_range = card_end - card_begin;
// Calculate how much address range each task gets.
const size_t card_delta = RoundUp(address_range / thread_count + 1,
accounting::CardTable::kCardSize);
// Create the worker tasks for this space.
while (card_begin != card_end) {
// Add a range of cards.
size_t addr_remaining = card_end - card_begin;
size_t card_increment = std::min(card_delta, addr_remaining);
// Take from the back of the mark stack.
size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
mark_stack_end -= mark_stack_increment;
mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
DCHECK_EQ(mark_stack_end, mark_stack_->End());
// Add the new task to the thread pool.
auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
card_begin + card_increment, minimum_age,
mark_stack_increment, mark_stack_end);
thread_pool->AddTask(self, task);
card_begin += card_increment;
}
}
// Note: the card scan below may dirty new cards (and scan them)
// as a side effect when a Reference object is encountered and
// queued during the marking. See b/11465268.
thread_pool->SetMaxActiveWorkers(thread_count - 1);
thread_pool->StartWorkers(self);
thread_pool->Wait(self, true, true);
thread_pool->StopWorkers(self);
timings_.EndSplit();
} else {
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->GetMarkBitmap() != nullptr) {
// Image spaces are handled properly since live == marked for them.
switch (space->GetGcRetentionPolicy()) {
case space::kGcRetentionPolicyNeverCollect:
timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
"ScanGrayImageSpaceObjects");
break;
case space::kGcRetentionPolicyFullCollect:
timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
"ScanGrayZygoteSpaceObjects");
break;
case space::kGcRetentionPolicyAlwaysCollect:
timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
"ScanGrayAllocSpaceObjects");
break;
}
ScanObjectVisitor visitor(this);
card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
timings_.EndSplit();
}
}
}
}
class RecursiveMarkTask : public MarkStackTask<false> {
public:
RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
: MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
bitmap_(bitmap),
begin_(begin),
end_(end) {
}
protected:
accounting::SpaceBitmap* const bitmap_;
const uintptr_t begin_;
const uintptr_t end_;
virtual void Finalize() {
delete this;
}
// Scans all of the objects
virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
ScanObjectParallelVisitor visitor(this);
bitmap_->VisitMarkedRange(begin_, end_, visitor);
// Finish by emptying our local mark stack.
MarkStackTask::Run(self);
}
};
// Populates the mark stack based on the set of marked objects and
// recursively marks until the mark stack is emptied.
void MarkSweep::RecursiveMark() {
TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
// RecursiveMark will build the lists of known instances of the Reference classes. See
// DelayReferenceReferent for details.
if (kUseRecursiveMark) {
const bool partial = GetGcType() == kGcTypePartial;
ScanObjectVisitor scan_visitor(this);
auto* self = Thread::Current();
ThreadPool* thread_pool = heap_->GetThreadPool();
size_t thread_count = GetThreadCount(false);
const bool parallel = kParallelRecursiveMark && thread_count > 1;
mark_stack_->Reset();
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
(!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
current_mark_bitmap_ = space->GetMarkBitmap();
if (current_mark_bitmap_ == nullptr) {
continue;
}
if (parallel) {
// We will use the mark stack the future.
// CHECK(mark_stack_->IsEmpty());
// This function does not handle heap end increasing, so we must use the space end.
uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
// Create a few worker tasks.
const size_t n = thread_count * 2;
while (begin != end) {
uintptr_t start = begin;
uintptr_t delta = (end - begin) / n;
delta = RoundUp(delta, KB);
if (delta < 16 * KB) delta = end - begin;
begin += delta;
auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
begin);
thread_pool->AddTask(self, task);
}
thread_pool->SetMaxActiveWorkers(thread_count - 1);
thread_pool->StartWorkers(self);
thread_pool->Wait(self, true, true);
thread_pool->StopWorkers(self);
} else {
// This function does not handle heap end increasing, so we must use the space end.
uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
}
}
}
}
ProcessMarkStack(false);
}
mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
return object;
}
return nullptr;
}
void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
ScanGrayObjects(paused, minimum_age);
ProcessMarkStack(paused);
}
void MarkSweep::ReMarkRoots() {
timings_.StartSplit("ReMarkRoots");
Runtime::Current()->VisitRoots(MarkRootCallback, this, true, true);
timings_.EndSplit();
}
void MarkSweep::SweepSystemWeaks() {
Runtime* runtime = Runtime::Current();
timings_.StartSplit("SweepSystemWeaks");
runtime->SweepSystemWeaks(IsMarkedCallback, this);
timings_.EndSplit();
}
mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
// We don't actually want to sweep the object, so lets return "marked"
return obj;
}
void MarkSweep::VerifyIsLive(const Object* obj) {
Heap* heap = GetHeap();
if (!heap->GetLiveBitmap()->Test(obj)) {
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
if (!large_object_space->GetLiveObjects()->Test(obj)) {
if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
heap->allocation_stack_->End()) {
// Object not found!
heap->DumpSpaces();
LOG(FATAL) << "Found dead object " << obj;
}
}
}
}
void MarkSweep::VerifySystemWeaks() {
// Verify system weaks, uses a special object visitor which returns the input object.
Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
}
class CheckpointMarkThreadRoots : public Closure {
public:
explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
ATRACE_BEGIN("Marking thread roots");
// Note: self is not necessarily equal to thread since thread may be suspended.
Thread* self = Thread::Current();
CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
<< thread->GetState() << " thread " << thread << " self " << self;
thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
ATRACE_END();
if (kUseThreadLocalAllocationStack) {
thread->RevokeThreadLocalAllocationStack();
}
mark_sweep_->GetBarrier().Pass(self);
}
private:
MarkSweep* mark_sweep_;
};
void MarkSweep::MarkRootsCheckpoint(Thread* self) {
CheckpointMarkThreadRoots check_point(this);
timings_.StartSplit("MarkRootsCheckpoint");
ThreadList* thread_list = Runtime::Current()->GetThreadList();
// Request the check point is run on all threads returning a count of the threads that must
// run through the barrier including self.
size_t barrier_count = thread_list->RunCheckpoint(&check_point);
// Release locks then wait for all mutator threads to pass the barrier.
// TODO: optimize to not release locks when there are no threads to wait for.
Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
Locks::mutator_lock_->SharedUnlock(self);
ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
CHECK_EQ(old_state, kWaitingPerformingGc);
gc_barrier_->Increment(self, barrier_count);
self->SetState(kWaitingPerformingGc);
Locks::mutator_lock_->SharedLock(self);
Locks::heap_bitmap_lock_->ExclusiveLock(self);
timings_.EndSplit();
}
void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
timings_.StartSplit("SweepArray");
Thread* self = Thread::Current();
mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
size_t chunk_free_pos = 0;
size_t freed_bytes = 0;
size_t freed_large_object_bytes = 0;
size_t freed_objects = 0;
size_t freed_large_objects = 0;
// How many objects are left in the array, modified after each space is swept.
Object** objects = const_cast<Object**>(allocations->Begin());
size_t count = allocations->Size();
// Change the order to ensure that the non-moving space last swept as an optimization.
std::vector<space::ContinuousSpace*> sweep_spaces;
space::ContinuousSpace* non_moving_space = nullptr;
for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
if (space->IsAllocSpace() && !IsImmuneSpace(space) && space->GetLiveBitmap() != nullptr) {
if (space == heap_->GetNonMovingSpace()) {
non_moving_space = space;
} else {
sweep_spaces.push_back(space);
}
}
}
// Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
// the other alloc spaces as an optimization.
if (non_moving_space != nullptr) {
sweep_spaces.push_back(non_moving_space);
}
// Start by sweeping the continuous spaces.
for (space::ContinuousSpace* space : sweep_spaces) {
space::AllocSpace* alloc_space = space->AsAllocSpace();
accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
if (swap_bitmaps) {
std::swap(live_bitmap, mark_bitmap);
}
Object** out = objects;
for (size_t i = 0; i < count; ++i) {
Object* obj = objects[i];
if (kUseThreadLocalAllocationStack && obj == nullptr) {
continue;
}
if (space->HasAddress(obj)) {
// This object is in the space, remove it from the array and add it to the sweep buffer
// if needed.
if (!mark_bitmap->Test(obj)) {
if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
timings_.StartSplit("FreeList");
freed_objects += chunk_free_pos;
freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
timings_.EndSplit();
chunk_free_pos = 0;
}
chunk_free_buffer[chunk_free_pos++] = obj;
}
} else {
*(out++) = obj;
}
}
if (chunk_free_pos > 0) {
timings_.StartSplit("FreeList");
freed_objects += chunk_free_pos;
freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
timings_.EndSplit();
chunk_free_pos = 0;
}
// All of the references which space contained are no longer in the allocation stack, update
// the count.
count = out - objects;
}
// Handle the large object space.
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects();
if (swap_bitmaps) {
std::swap(large_live_objects, large_mark_objects);
}
for (size_t i = 0; i < count; ++i) {
Object* obj = objects[i];
// Handle large objects.
if (kUseThreadLocalAllocationStack && obj == nullptr) {
continue;
}
if (!large_mark_objects->Test(obj)) {
++freed_large_objects;
freed_large_object_bytes += large_object_space->Free(self, obj);
}
}
timings_.EndSplit();
timings_.StartSplit("RecordFree");
VLOG(heap) << "Freed " << freed_objects << "/" << count
<< " objects with size " << PrettySize(freed_bytes);
heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
freed_objects_.FetchAndAdd(freed_objects);
freed_large_objects_.FetchAndAdd(freed_large_objects);
freed_bytes_.FetchAndAdd(freed_bytes);
freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
timings_.EndSplit();
timings_.StartSplit("ResetStack");
allocations->Reset();
timings_.EndSplit();
}
void MarkSweep::Sweep(bool swap_bitmaps) {
DCHECK(mark_stack_->IsEmpty());
TimingLogger::ScopedSplit("Sweep", &timings_);
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->IsContinuousMemMapAllocSpace()) {
space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
TimingLogger::ScopedSplit split(
alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
size_t freed_objects = 0;
size_t freed_bytes = 0;
alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
heap_->RecordFree(freed_objects, freed_bytes);
freed_objects_.FetchAndAdd(freed_objects);
freed_bytes_.FetchAndAdd(freed_bytes);
}
}
SweepLargeObjects(swap_bitmaps);
}
void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
size_t freed_objects = 0;
size_t freed_bytes = 0;
GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
freed_large_objects_.FetchAndAdd(freed_objects);
freed_large_object_bytes_.FetchAndAdd(freed_bytes);
GetHeap()->RecordFree(freed_objects, freed_bytes);
}
// Process the "referent" field in a java.lang.ref.Reference. If the
// referent has not yet been marked, put it on the appropriate list in
// the heap for later processing.
void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
DCHECK(klass != nullptr);
DCHECK(klass->IsReferenceClass());
DCHECK(obj != NULL);
heap_->DelayReferenceReferent(klass, obj, IsMarkedCallback, this);
}
class MarkObjectVisitor {
public:
explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
// TODO: Fixme when anotatalysis works with visitors.
void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
bool /* is_static */) const ALWAYS_INLINE
NO_THREAD_SAFETY_ANALYSIS {
if (kCheckLocks) {
Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
}
mark_sweep_->MarkObject(ref);
}
private:
MarkSweep* const mark_sweep_;
};
// Scans an object reference. Determines the type of the reference
// and dispatches to a specialized scanning routine.
void MarkSweep::ScanObject(Object* obj) {
MarkObjectVisitor visitor(this);
ScanObjectVisit(obj, visitor);
}
void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
Thread* self = Thread::Current();
ThreadPool* thread_pool = GetHeap()->GetThreadPool();
const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
static_cast<size_t>(MarkStackTask<false>::kMaxSize));
CHECK_GT(chunk_size, 0U);
// Split the current mark stack up into work tasks.
for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
const_cast<const mirror::Object**>(it)));
it += delta;
}
thread_pool->SetMaxActiveWorkers(thread_count - 1);
thread_pool->StartWorkers(self);
thread_pool->Wait(self, true, true);
thread_pool->StopWorkers(self);
mark_stack_->Reset();
CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
}
// Scan anything that's on the mark stack.
void MarkSweep::ProcessMarkStack(bool paused) {
timings_.StartSplit("ProcessMarkStack");
size_t thread_count = GetThreadCount(paused);
if (kParallelProcessMarkStack && thread_count > 1 &&
mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
ProcessMarkStackParallel(thread_count);
} else {
// TODO: Tune this.
static const size_t kFifoSize = 4;
BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
for (;;) {
Object* obj = NULL;
if (kUseMarkStackPrefetch) {
while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
Object* obj = mark_stack_->PopBack();
DCHECK(obj != NULL);
__builtin_prefetch(obj);
prefetch_fifo.push_back(obj);
}
if (prefetch_fifo.empty()) {
break;
}
obj = prefetch_fifo.front();
prefetch_fifo.pop_front();
} else {
if (mark_stack_->IsEmpty()) {
break;
}
obj = mark_stack_->PopBack();
}
DCHECK(obj != NULL);
ScanObject(obj);
}
}
timings_.EndSplit();
}
inline bool MarkSweep::IsMarked(const Object* object) const
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
if (IsImmune(object)) {
return true;
}
DCHECK(current_mark_bitmap_ != NULL);
if (current_mark_bitmap_->HasAddress(object)) {
return current_mark_bitmap_->Test(object);
}
return heap_->GetMarkBitmap()->Test(object);
}
void MarkSweep::FinishPhase() {
TimingLogger::ScopedSplit split("FinishPhase", &timings_);
// Can't enqueue references if we hold the mutator lock.
Heap* heap = GetHeap();
timings_.NewSplit("PostGcVerification");
heap->PostGcVerification(this);
timings_.NewSplit("RequestHeapTrim");
heap->RequestHeapTrim();
// Update the cumulative statistics
total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
// Ensure that the mark stack is empty.
CHECK(mark_stack_->IsEmpty());
if (kCountScannedTypes) {
VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
<< " other=" << other_count_;
}
if (kCountTasks) {
VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
}
if (kMeasureOverhead) {
VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
}
if (kProfileLargeObjects) {
VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
}
if (kCountClassesMarked) {
VLOG(gc) << "Classes marked " << classes_marked_;
}
if (kCountJavaLangRefs) {
VLOG(gc) << "References scanned " << reference_count_;
}
// Update the cumulative loggers.
cumulative_timings_.Start();
cumulative_timings_.AddLogger(timings_);
cumulative_timings_.End();
// Clear all of the spaces' mark bitmaps.
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
if (bitmap != nullptr &&
space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
bitmap->Clear();
}
}
mark_stack_->Reset();
// Reset the marked large objects.
space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
large_objects->GetMarkObjects()->Clear();
}
} // namespace collector
} // namespace gc
} // namespace art