blob: 402bb72945d0255f18ea27792972a23cb25b3803 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_
#define ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_
#include "dex_cache.h"
#include <android-base/logging.h>
#include "art_field.h"
#include "art_method.h"
#include "base/atomic_pair.h"
#include "base/casts.h"
#include "base/enums.h"
#include "class_linker.h"
#include "dex/dex_file.h"
#include "gc_root-inl.h"
#include "linear_alloc-inl.h"
#include "mirror/call_site.h"
#include "mirror/class.h"
#include "mirror/method_type.h"
#include "obj_ptr.h"
#include "object-inl.h"
#include "runtime.h"
#include "write_barrier-inl.h"
#include <atomic>
namespace art {
namespace mirror {
template<typename DexCachePair>
static void InitializeArray(std::atomic<DexCachePair>* array) {
DexCachePair::Initialize(array);
}
template<typename T>
static void InitializeArray(GcRoot<T>*) {
// No special initialization is needed.
}
template<typename T, size_t kMaxCacheSize>
T* DexCache::AllocArray(MemberOffset obj_offset,
MemberOffset num_offset,
size_t num,
LinearAllocKind kind) {
num = std::min<size_t>(num, kMaxCacheSize);
if (num == 0) {
return nullptr;
}
mirror::DexCache* dex_cache = this;
if (gUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
// Several code paths use DexCache without read-barrier for performance.
// We have to check the "to-space" object here to avoid allocating twice.
dex_cache = reinterpret_cast<DexCache*>(ReadBarrier::Mark(dex_cache));
}
Thread* self = Thread::Current();
ClassLinker* linker = Runtime::Current()->GetClassLinker();
LinearAlloc* alloc = linker->GetOrCreateAllocatorForClassLoader(GetClassLoader());
MutexLock mu(self, *Locks::dex_cache_lock_); // Avoid allocation by multiple threads.
T* array = dex_cache->GetFieldPtr64<T*>(obj_offset);
if (array != nullptr) {
DCHECK(alloc->Contains(array));
return array; // Other thread just allocated the array.
}
array = reinterpret_cast<T*>(alloc->AllocAlign16(self, RoundUp(num * sizeof(T), 16), kind));
InitializeArray(array); // Ensure other threads see the array initialized.
dex_cache->SetField32Volatile<false, false>(num_offset, num);
dex_cache->SetField64Volatile<false, false>(obj_offset, reinterpret_cast64<uint64_t>(array));
return array;
}
template <typename T>
inline DexCachePair<T>::DexCachePair(ObjPtr<T> object, uint32_t index)
: object(object), index(index) {}
template <typename T>
inline void DexCachePair<T>::Initialize(std::atomic<DexCachePair<T>>* dex_cache) {
DexCachePair<T> first_elem;
first_elem.object = GcRoot<T>(nullptr);
first_elem.index = InvalidIndexForSlot(0);
dex_cache[0].store(first_elem, std::memory_order_relaxed);
}
template <typename T>
inline T* DexCachePair<T>::GetObjectForIndex(uint32_t idx) {
if (idx != index) {
return nullptr;
}
DCHECK(!object.IsNull());
return object.Read();
}
template <typename T>
inline void NativeDexCachePair<T>::Initialize(std::atomic<NativeDexCachePair<T>>* dex_cache) {
NativeDexCachePair<T> first_elem;
first_elem.object = nullptr;
first_elem.index = InvalidIndexForSlot(0);
DexCache::SetNativePair(dex_cache, 0, first_elem);
}
inline uint32_t DexCache::ClassSize(PointerSize pointer_size) {
const uint32_t vtable_entries = Object::kVTableLength;
return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
}
inline uint32_t DexCache::StringSlotIndex(dex::StringIndex string_idx) {
DCHECK_LT(string_idx.index_, GetDexFile()->NumStringIds());
const uint32_t slot_idx = string_idx.index_ % kDexCacheStringCacheSize;
DCHECK_LT(slot_idx, NumStrings());
return slot_idx;
}
inline String* DexCache::GetResolvedString(dex::StringIndex string_idx) {
StringDexCacheType* strings = GetStrings();
if (UNLIKELY(strings == nullptr)) {
return nullptr;
}
return strings[StringSlotIndex(string_idx)].load(
std::memory_order_relaxed).GetObjectForIndex(string_idx.index_);
}
inline void DexCache::SetResolvedString(dex::StringIndex string_idx, ObjPtr<String> resolved) {
DCHECK(resolved != nullptr);
StringDexCacheType* strings = GetStrings();
if (UNLIKELY(strings == nullptr)) {
strings = AllocArray<StringDexCacheType, kDexCacheStringCacheSize>(
StringsOffset(),
NumStringsOffset(),
GetDexFile()->NumStringIds(),
LinearAllocKind::kDexCacheArray);
}
strings[StringSlotIndex(string_idx)].store(
StringDexCachePair(resolved, string_idx.index_), std::memory_order_relaxed);
Runtime* const runtime = Runtime::Current();
if (UNLIKELY(runtime->IsActiveTransaction())) {
DCHECK(runtime->IsAotCompiler());
runtime->RecordResolveString(this, string_idx);
}
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
WriteBarrier::ForEveryFieldWrite(this);
}
inline void DexCache::ClearString(dex::StringIndex string_idx) {
DCHECK(Runtime::Current()->IsAotCompiler());
uint32_t slot_idx = StringSlotIndex(string_idx);
StringDexCacheType* strings = GetStrings();
if (UNLIKELY(strings == nullptr)) {
return;
}
StringDexCacheType* slot = &strings[slot_idx];
// This is racy but should only be called from the transactional interpreter.
if (slot->load(std::memory_order_relaxed).index == string_idx.index_) {
StringDexCachePair cleared(nullptr, StringDexCachePair::InvalidIndexForSlot(slot_idx));
slot->store(cleared, std::memory_order_relaxed);
}
}
inline uint32_t DexCache::TypeSlotIndex(dex::TypeIndex type_idx) {
DCHECK_LT(type_idx.index_, GetDexFile()->NumTypeIds());
const uint32_t slot_idx = type_idx.index_ % kDexCacheTypeCacheSize;
DCHECK_LT(slot_idx, NumResolvedTypes());
return slot_idx;
}
inline Class* DexCache::GetResolvedType(dex::TypeIndex type_idx) {
// It is theorized that a load acquire is not required since obtaining the resolved class will
// always have an address dependency or a lock.
TypeDexCacheType* resolved_types = GetResolvedTypes();
if (UNLIKELY(resolved_types == nullptr)) {
return nullptr;
}
return resolved_types[TypeSlotIndex(type_idx)].load(
std::memory_order_relaxed).GetObjectForIndex(type_idx.index_);
}
inline void DexCache::SetResolvedType(dex::TypeIndex type_idx, ObjPtr<Class> resolved) {
DCHECK(resolved != nullptr);
DCHECK(resolved->IsResolved()) << resolved->GetStatus();
TypeDexCacheType* resolved_types = GetResolvedTypes();
if (UNLIKELY(resolved_types == nullptr)) {
resolved_types = AllocArray<TypeDexCacheType, kDexCacheTypeCacheSize>(
ResolvedTypesOffset(),
NumResolvedTypesOffset(),
GetDexFile()->NumTypeIds(),
LinearAllocKind::kDexCacheArray);
}
// TODO default transaction support.
// Use a release store for SetResolvedType. This is done to prevent other threads from seeing a
// class but not necessarily seeing the loaded members like the static fields array.
// See b/32075261.
resolved_types[TypeSlotIndex(type_idx)].store(
TypeDexCachePair(resolved, type_idx.index_), std::memory_order_release);
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
WriteBarrier::ForEveryFieldWrite(this);
}
inline void DexCache::ClearResolvedType(dex::TypeIndex type_idx) {
DCHECK(Runtime::Current()->IsAotCompiler());
TypeDexCacheType* resolved_types = GetResolvedTypes();
if (UNLIKELY(resolved_types == nullptr)) {
return;
}
uint32_t slot_idx = TypeSlotIndex(type_idx);
TypeDexCacheType* slot = &resolved_types[slot_idx];
// This is racy but should only be called from the single-threaded ImageWriter and tests.
if (slot->load(std::memory_order_relaxed).index == type_idx.index_) {
TypeDexCachePair cleared(nullptr, TypeDexCachePair::InvalidIndexForSlot(slot_idx));
slot->store(cleared, std::memory_order_relaxed);
}
}
inline uint32_t DexCache::MethodTypeSlotIndex(dex::ProtoIndex proto_idx) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(proto_idx.index_, GetDexFile()->NumProtoIds());
const uint32_t slot_idx = proto_idx.index_ % kDexCacheMethodTypeCacheSize;
DCHECK_LT(slot_idx, NumResolvedMethodTypes());
return slot_idx;
}
inline MethodType* DexCache::GetResolvedMethodType(dex::ProtoIndex proto_idx) {
MethodTypeDexCacheType* methods = GetResolvedMethodTypes();
if (UNLIKELY(methods == nullptr)) {
return nullptr;
}
return methods[MethodTypeSlotIndex(proto_idx)].load(
std::memory_order_relaxed).GetObjectForIndex(proto_idx.index_);
}
inline void DexCache::SetResolvedMethodType(dex::ProtoIndex proto_idx, MethodType* resolved) {
DCHECK(resolved != nullptr);
MethodTypeDexCacheType* methods = GetResolvedMethodTypes();
if (UNLIKELY(methods == nullptr)) {
methods = AllocArray<MethodTypeDexCacheType, kDexCacheMethodTypeCacheSize>(
ResolvedMethodTypesOffset(),
NumResolvedMethodTypesOffset(),
GetDexFile()->NumProtoIds(),
LinearAllocKind::kDexCacheArray);
}
methods[MethodTypeSlotIndex(proto_idx)].store(
MethodTypeDexCachePair(resolved, proto_idx.index_), std::memory_order_relaxed);
Runtime* const runtime = Runtime::Current();
if (UNLIKELY(runtime->IsActiveTransaction())) {
DCHECK(runtime->IsAotCompiler());
runtime->RecordResolveMethodType(this, proto_idx);
}
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
WriteBarrier::ForEveryFieldWrite(this);
}
inline void DexCache::ClearMethodType(dex::ProtoIndex proto_idx) {
DCHECK(Runtime::Current()->IsAotCompiler());
uint32_t slot_idx = MethodTypeSlotIndex(proto_idx);
MethodTypeDexCacheType* slot = &GetResolvedMethodTypes()[slot_idx];
// This is racy but should only be called from the transactional interpreter.
if (slot->load(std::memory_order_relaxed).index == proto_idx.index_) {
MethodTypeDexCachePair cleared(nullptr,
MethodTypeDexCachePair::InvalidIndexForSlot(proto_idx.index_));
slot->store(cleared, std::memory_order_relaxed);
}
}
inline CallSite* DexCache::GetResolvedCallSite(uint32_t call_site_idx) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(call_site_idx, GetDexFile()->NumCallSiteIds());
GcRoot<CallSite>* call_sites = GetResolvedCallSites();
if (UNLIKELY(call_sites == nullptr)) {
return nullptr;
}
GcRoot<mirror::CallSite>& target = call_sites[call_site_idx];
Atomic<GcRoot<mirror::CallSite>>& ref =
reinterpret_cast<Atomic<GcRoot<mirror::CallSite>>&>(target);
return ref.load(std::memory_order_seq_cst).Read();
}
inline ObjPtr<CallSite> DexCache::SetResolvedCallSite(uint32_t call_site_idx,
ObjPtr<CallSite> call_site) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(call_site_idx, GetDexFile()->NumCallSiteIds());
GcRoot<mirror::CallSite> null_call_site(nullptr);
GcRoot<mirror::CallSite> candidate(call_site);
GcRoot<CallSite>* call_sites = GetResolvedCallSites();
if (UNLIKELY(call_sites == nullptr)) {
call_sites = AllocArray<GcRoot<CallSite>, std::numeric_limits<size_t>::max()>(
ResolvedCallSitesOffset(),
NumResolvedCallSitesOffset(),
GetDexFile()->NumCallSiteIds(),
LinearAllocKind::kGCRootArray);
}
GcRoot<mirror::CallSite>& target = call_sites[call_site_idx];
// The first assignment for a given call site wins.
Atomic<GcRoot<mirror::CallSite>>& ref =
reinterpret_cast<Atomic<GcRoot<mirror::CallSite>>&>(target);
if (ref.CompareAndSetStrongSequentiallyConsistent(null_call_site, candidate)) {
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
WriteBarrier::ForEveryFieldWrite(this);
return call_site;
} else {
return target.Read();
}
}
inline uint32_t DexCache::FieldSlotIndex(uint32_t field_idx) {
DCHECK_LT(field_idx, GetDexFile()->NumFieldIds());
const uint32_t slot_idx = field_idx % kDexCacheFieldCacheSize;
DCHECK_LT(slot_idx, NumResolvedFields());
return slot_idx;
}
inline ArtField* DexCache::GetResolvedField(uint32_t field_idx) {
FieldDexCacheType* fields = GetResolvedFields();
if (UNLIKELY(fields == nullptr)) {
return nullptr;
}
auto pair = GetNativePair(fields, FieldSlotIndex(field_idx));
return pair.GetObjectForIndex(field_idx);
}
inline void DexCache::SetResolvedField(uint32_t field_idx, ArtField* field) {
DCHECK(field != nullptr);
FieldDexCachePair pair(field, field_idx);
FieldDexCacheType* fields = GetResolvedFields();
if (UNLIKELY(fields == nullptr)) {
fields = AllocArray<FieldDexCacheType, kDexCacheFieldCacheSize>(
ResolvedFieldsOffset(),
NumResolvedFieldsOffset(),
GetDexFile()->NumFieldIds(),
LinearAllocKind::kNoGCRoots);
}
SetNativePair(fields, FieldSlotIndex(field_idx), pair);
}
inline uint32_t DexCache::MethodSlotIndex(uint32_t method_idx) {
DCHECK_LT(method_idx, GetDexFile()->NumMethodIds());
const uint32_t slot_idx = method_idx % kDexCacheMethodCacheSize;
DCHECK_LT(slot_idx, NumResolvedMethods());
return slot_idx;
}
inline ArtMethod* DexCache::GetResolvedMethod(uint32_t method_idx) {
MethodDexCacheType* methods = GetResolvedMethods();
if (UNLIKELY(methods == nullptr)) {
return nullptr;
}
auto pair = GetNativePair(methods, MethodSlotIndex(method_idx));
return pair.GetObjectForIndex(method_idx);
}
inline void DexCache::SetResolvedMethod(uint32_t method_idx, ArtMethod* method) {
DCHECK(method != nullptr);
MethodDexCachePair pair(method, method_idx);
MethodDexCacheType* methods = GetResolvedMethods();
if (UNLIKELY(methods == nullptr)) {
methods = AllocArray<MethodDexCacheType, kDexCacheMethodCacheSize>(
ResolvedMethodsOffset(),
NumResolvedMethodsOffset(),
GetDexFile()->NumMethodIds(),
LinearAllocKind::kNoGCRoots);
}
SetNativePair(methods, MethodSlotIndex(method_idx), pair);
}
template <typename T>
NativeDexCachePair<T> DexCache::GetNativePair(std::atomic<NativeDexCachePair<T>>* pair_array,
size_t idx) {
auto* array = reinterpret_cast<std::atomic<AtomicPair<uintptr_t>>*>(pair_array);
AtomicPair<uintptr_t> value = AtomicPairLoadAcquire(&array[idx]);
return NativeDexCachePair<T>(reinterpret_cast<T*>(value.first), value.second);
}
template <typename T>
void DexCache::SetNativePair(std::atomic<NativeDexCachePair<T>>* pair_array,
size_t idx,
NativeDexCachePair<T> pair) {
auto* array = reinterpret_cast<std::atomic<AtomicPair<uintptr_t>>*>(pair_array);
AtomicPair<uintptr_t> v(reinterpret_cast<size_t>(pair.object), pair.index);
AtomicPairStoreRelease(&array[idx], v);
}
template <typename T,
ReadBarrierOption kReadBarrierOption,
typename Visitor>
inline void VisitDexCachePairs(std::atomic<DexCachePair<T>>* pairs,
size_t num_pairs,
const Visitor& visitor)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
// Check both the data pointer and count since the array might be initialized
// concurrently on other thread, and we might observe just one of the values.
for (size_t i = 0; pairs != nullptr && i < num_pairs; ++i) {
DexCachePair<T> source = pairs[i].load(std::memory_order_relaxed);
// NOTE: We need the "template" keyword here to avoid a compilation
// failure. GcRoot<T> is a template argument-dependent type and we need to
// tell the compiler to treat "Read" as a template rather than a field or
// function. Otherwise, on encountering the "<" token, the compiler would
// treat "Read" as a field.
T* const before = source.object.template Read<kReadBarrierOption>();
visitor.VisitRootIfNonNull(source.object.AddressWithoutBarrier());
if (source.object.template Read<kReadBarrierOption>() != before) {
pairs[i].store(source, std::memory_order_relaxed);
}
}
}
template <typename Visitor>
void DexCache::VisitDexCachePairRoots(Visitor& visitor,
DexCachePair<Object>* pairs_begin,
DexCachePair<Object>* pairs_end) {
for (; pairs_begin < pairs_end; pairs_begin++) {
visitor.VisitRootIfNonNull(pairs_begin->object.AddressWithoutBarrier());
}
}
template <bool kVisitNativeRoots,
VerifyObjectFlags kVerifyFlags,
ReadBarrierOption kReadBarrierOption,
typename Visitor>
inline void DexCache::VisitReferences(ObjPtr<Class> klass, const Visitor& visitor) {
// Visit instance fields first.
VisitInstanceFieldsReferences<kVerifyFlags, kReadBarrierOption>(klass, visitor);
// Visit arrays after.
if (kVisitNativeRoots) {
VisitNativeRoots<kVerifyFlags, kReadBarrierOption>(visitor);
}
}
template <VerifyObjectFlags kVerifyFlags,
ReadBarrierOption kReadBarrierOption,
typename Visitor>
inline void DexCache::VisitNativeRoots(const Visitor& visitor) {
VisitDexCachePairs<String, kReadBarrierOption, Visitor>(
GetStrings<kVerifyFlags>(), NumStrings<kVerifyFlags>(), visitor);
VisitDexCachePairs<Class, kReadBarrierOption, Visitor>(
GetResolvedTypes<kVerifyFlags>(), NumResolvedTypes<kVerifyFlags>(), visitor);
VisitDexCachePairs<MethodType, kReadBarrierOption, Visitor>(
GetResolvedMethodTypes<kVerifyFlags>(), NumResolvedMethodTypes<kVerifyFlags>(), visitor);
GcRoot<mirror::CallSite>* resolved_call_sites = GetResolvedCallSites<kVerifyFlags>();
size_t num_call_sites = NumResolvedCallSites<kVerifyFlags>();
for (size_t i = 0; resolved_call_sites != nullptr && i != num_call_sites; ++i) {
visitor.VisitRootIfNonNull(resolved_call_sites[i].AddressWithoutBarrier());
}
}
template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline ObjPtr<String> DexCache::GetLocation() {
return GetFieldObject<String, kVerifyFlags, kReadBarrierOption>(
OFFSET_OF_OBJECT_MEMBER(DexCache, location_));
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_