blob: 637332e07fe0f0e2e83e4edfbd95cd75530e8589 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
#define ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
#include "memory_region.h"
#include "bit_utils.h"
#include "memory_tool.h"
namespace art {
// Bit memory region is a bit offset subregion of a normal memoryregion. This is useful for
// abstracting away the bit start offset to avoid needing passing as an argument everywhere.
class BitMemoryRegion final : public ValueObject {
public:
struct Less {
bool operator()(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) const {
return Compare(lhs, rhs) < 0;
}
};
BitMemoryRegion() = default;
ALWAYS_INLINE BitMemoryRegion(uint8_t* data, ssize_t bit_start, size_t bit_size) {
// Normalize the data pointer. Note that bit_start may be negative.
uint8_t* aligned_data = AlignDown(data + (bit_start >> kBitsPerByteLog2), sizeof(uintptr_t));
data_ = reinterpret_cast<uintptr_t*>(aligned_data);
bit_start_ = bit_start + kBitsPerByte * (data - aligned_data);
bit_size_ = bit_size;
DCHECK_LT(bit_start_, static_cast<size_t>(kBitsPerIntPtrT));
}
ALWAYS_INLINE explicit BitMemoryRegion(MemoryRegion region)
: BitMemoryRegion(region.begin(), /* bit_start */ 0, region.size_in_bits()) {
}
ALWAYS_INLINE BitMemoryRegion(MemoryRegion region, size_t bit_offset, size_t bit_length)
: BitMemoryRegion(region) {
*this = Subregion(bit_offset, bit_length);
}
ALWAYS_INLINE bool IsValid() const { return data_ != nullptr; }
const uint8_t* data() const {
DCHECK_ALIGNED(bit_start_, kBitsPerByte);
return reinterpret_cast<const uint8_t*>(data_) + bit_start_ / kBitsPerByte;
}
size_t size_in_bits() const {
return bit_size_;
}
void Resize(size_t bit_size) {
bit_size_ = bit_size;
}
ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset, size_t bit_length) const {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
BitMemoryRegion result = *this;
result.bit_start_ += bit_offset;
result.bit_size_ = bit_length;
return result;
}
ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset) const {
DCHECK_LE(bit_offset, bit_size_);
BitMemoryRegion result = *this;
result.bit_start_ += bit_offset;
result.bit_size_ -= bit_offset;
return result;
}
// Load a single bit in the region. The bit at offset 0 is the least
// significant bit in the first byte.
ALWAYS_INLINE bool LoadBit(size_t bit_offset) const {
DCHECK_LT(bit_offset, bit_size_);
uint8_t* data = reinterpret_cast<uint8_t*>(data_);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
return ((data[index] >> shift) & 1) != 0;
}
ALWAYS_INLINE void StoreBit(size_t bit_offset, bool value) {
DCHECK_LT(bit_offset, bit_size_);
uint8_t* data = reinterpret_cast<uint8_t*>(data_);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
data[index] &= ~(1 << shift); // Clear bit.
data[index] |= (value ? 1 : 0) << shift; // Set bit.
DCHECK_EQ(value, LoadBit(bit_offset));
}
// Load `bit_length` bits from `data` starting at given `bit_offset`.
// The least significant bit is stored in the smallest memory offset.
ATTRIBUTE_NO_SANITIZE_ADDRESS // We might touch extra bytes due to the alignment.
ALWAYS_INLINE uint32_t LoadBits(size_t bit_offset, size_t bit_length) const {
DCHECK(IsAligned<sizeof(uintptr_t)>(data_));
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
DCHECK_LE(bit_length, BitSizeOf<uint32_t>());
if (bit_length == 0) {
return 0;
}
uintptr_t mask = std::numeric_limits<uintptr_t>::max() >> (kBitsPerIntPtrT - bit_length);
size_t index = (bit_start_ + bit_offset) / kBitsPerIntPtrT;
size_t shift = (bit_start_ + bit_offset) % kBitsPerIntPtrT;
uintptr_t value = data_[index] >> shift;
size_t finished_bits = kBitsPerIntPtrT - shift;
if (finished_bits < bit_length) {
value |= data_[index + 1] << finished_bits;
}
return value & mask;
}
// Store `bit_length` bits in `data` starting at given `bit_offset`.
// The least significant bit is stored in the smallest memory offset.
ALWAYS_INLINE void StoreBits(size_t bit_offset, uint32_t value, size_t bit_length) {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
DCHECK_LE(bit_length, BitSizeOf<uint32_t>());
DCHECK_LE(value, MaxInt<uint32_t>(bit_length));
if (bit_length == 0) {
return;
}
// Write data byte by byte to avoid races with other threads
// on bytes that do not overlap with this region.
uint8_t* data = reinterpret_cast<uint8_t*>(data_);
uint32_t mask = std::numeric_limits<uint32_t>::max() >> (BitSizeOf<uint32_t>() - bit_length);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
data[index] &= ~(mask << shift); // Clear bits.
data[index] |= (value << shift); // Set bits.
size_t finished_bits = kBitsPerByte - shift;
for (int i = 1; finished_bits < bit_length; i++, finished_bits += kBitsPerByte) {
data[index + i] &= ~(mask >> finished_bits); // Clear bits.
data[index + i] |= (value >> finished_bits); // Set bits.
}
DCHECK_EQ(value, LoadBits(bit_offset, bit_length));
}
// Store bits from other bit region.
ALWAYS_INLINE void StoreBits(size_t bit_offset, const BitMemoryRegion& src, size_t bit_length) {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
size_t bit = 0;
constexpr size_t kNumBits = BitSizeOf<uint32_t>();
for (; bit + kNumBits <= bit_length; bit += kNumBits) {
StoreBits(bit_offset + bit, src.LoadBits(bit, kNumBits), kNumBits);
}
size_t num_bits = bit_length - bit;
StoreBits(bit_offset + bit, src.LoadBits(bit, num_bits), num_bits);
}
// Count the number of set bits within the given bit range.
ALWAYS_INLINE size_t PopCount(size_t bit_offset, size_t bit_length) const {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
size_t count = 0;
size_t bit = 0;
constexpr size_t kNumBits = BitSizeOf<uint32_t>();
for (; bit + kNumBits <= bit_length; bit += kNumBits) {
count += POPCOUNT(LoadBits(bit_offset + bit, kNumBits));
}
count += POPCOUNT(LoadBits(bit_offset + bit, bit_length - bit));
return count;
}
static int Compare(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) {
if (lhs.size_in_bits() != rhs.size_in_bits()) {
return (lhs.size_in_bits() < rhs.size_in_bits()) ? -1 : 1;
}
size_t bit = 0;
constexpr size_t kNumBits = BitSizeOf<uint32_t>();
for (; bit + kNumBits <= lhs.size_in_bits(); bit += kNumBits) {
uint32_t lhs_bits = lhs.LoadBits(bit, kNumBits);
uint32_t rhs_bits = rhs.LoadBits(bit, kNumBits);
if (lhs_bits != rhs_bits) {
return (lhs_bits < rhs_bits) ? -1 : 1;
}
}
size_t num_bits = lhs.size_in_bits() - bit;
uint32_t lhs_bits = lhs.LoadBits(bit, num_bits);
uint32_t rhs_bits = rhs.LoadBits(bit, num_bits);
if (lhs_bits != rhs_bits) {
return (lhs_bits < rhs_bits) ? -1 : 1;
}
return 0;
}
private:
// The data pointer must be naturally aligned. This makes loading code faster.
uintptr_t* data_ = nullptr;
size_t bit_start_ = 0;
size_t bit_size_ = 0;
};
constexpr uint32_t kVarintHeaderBits = 4;
constexpr uint32_t kVarintSmallValue = 11; // Maximum value which is stored as-is.
class BitMemoryReader {
public:
BitMemoryReader(BitMemoryReader&&) = default;
explicit BitMemoryReader(BitMemoryRegion data)
: finished_region_(data.Subregion(0, 0) /* set the length to zero */ ) {
}
explicit BitMemoryReader(const uint8_t* data, ssize_t bit_offset = 0)
: finished_region_(const_cast<uint8_t*>(data), bit_offset, /* bit_length */ 0) {
}
const uint8_t* data() const { return finished_region_.data(); }
BitMemoryRegion GetReadRegion() const { return finished_region_; }
size_t NumberOfReadBits() const { return finished_region_.size_in_bits(); }
ALWAYS_INLINE BitMemoryRegion ReadRegion(size_t bit_length) {
size_t bit_offset = finished_region_.size_in_bits();
finished_region_.Resize(bit_offset + bit_length);
return finished_region_.Subregion(bit_offset, bit_length);
}
ALWAYS_INLINE uint32_t ReadBits(size_t bit_length) {
return ReadRegion(bit_length).LoadBits(/* bit_offset */ 0, bit_length);
}
ALWAYS_INLINE bool ReadBit() {
return ReadRegion(/* bit_length */ 1).LoadBit(/* bit_offset */ 0);
}
// Read variable-length bit-packed integer.
// The first four bits determine the variable length of the encoded integer:
// Values 0..11 represent the result as-is, with no further following bits.
// Values 12..15 mean the result is in the next 8/16/24/32-bits respectively.
ALWAYS_INLINE uint32_t ReadVarint() {
uint32_t x = ReadBits(kVarintHeaderBits);
if (x > kVarintSmallValue) {
x = ReadBits((x - kVarintSmallValue) * kBitsPerByte);
}
return x;
}
// Optimized version to read several consecutive varints.
// It reads all the headers at once in a single bit read.
template<int N> // Inference works only with ref-arrays.
ALWAYS_INLINE void ReadVarints(uint32_t (&varints)[N]) {
static_assert(N * kVarintHeaderBits <= sizeof(uint32_t) * kBitsPerByte, "N too big");
uint32_t headers = ReadBits(N * kVarintHeaderBits);
uint32_t* out = varints;
for (int i = 0; i < N; out++) {
uint32_t header = BitFieldExtract(headers, (i++) * kVarintHeaderBits, kVarintHeaderBits);
if (LIKELY(header <= kVarintSmallValue)) {
// Fast-path: consume one of the headers and continue to the next varint.
*out = header;
} else {
// Slow-path: rollback reader, read large value, and read remaning headers.
finished_region_.Resize(finished_region_.size_in_bits() - (N-i) * kVarintHeaderBits);
*out = ReadBits((header - kVarintSmallValue) * kBitsPerByte);
headers = ReadBits((N-i) * kVarintHeaderBits) << (i * kVarintHeaderBits);
}
}
}
private:
// Represents all of the bits which were read so far. There is no upper bound.
// Therefore, by definition, the "cursor" is always at the end of the region.
BitMemoryRegion finished_region_;
DISALLOW_COPY_AND_ASSIGN(BitMemoryReader);
};
template<typename Vector>
class BitMemoryWriter {
public:
explicit BitMemoryWriter(Vector* out, size_t bit_offset = 0)
: out_(out), bit_start_(bit_offset), bit_offset_(bit_offset) {
DCHECK_EQ(NumberOfWrittenBits(), 0u);
}
BitMemoryRegion GetWrittenRegion() const {
return BitMemoryRegion(out_->data(), bit_start_, bit_offset_ - bit_start_);
}
const uint8_t* data() const { return out_->data(); }
size_t NumberOfWrittenBits() const { return bit_offset_ - bit_start_; }
ALWAYS_INLINE BitMemoryRegion Allocate(size_t bit_length) {
out_->resize(BitsToBytesRoundUp(bit_offset_ + bit_length));
BitMemoryRegion region(out_->data(), bit_offset_, bit_length);
DCHECK_LE(bit_length, std::numeric_limits<size_t>::max() - bit_offset_) << "Overflow";
bit_offset_ += bit_length;
return region;
}
ALWAYS_INLINE void WriteRegion(const BitMemoryRegion& region) {
Allocate(region.size_in_bits()).StoreBits(/* bit_offset */ 0, region, region.size_in_bits());
}
ALWAYS_INLINE void WriteBits(uint32_t value, size_t bit_length) {
Allocate(bit_length).StoreBits(/* bit_offset */ 0, value, bit_length);
}
ALWAYS_INLINE void WriteBit(bool value) {
Allocate(1).StoreBit(/* bit_offset */ 0, value);
}
// Write variable-length bit-packed integer.
ALWAYS_INLINE void WriteVarint(uint32_t value) {
if (value <= kVarintSmallValue) {
WriteBits(value, kVarintHeaderBits);
} else {
uint32_t num_bits = RoundUp(MinimumBitsToStore(value), kBitsPerByte);
uint32_t header = kVarintSmallValue + num_bits / kBitsPerByte;
WriteBits(header, kVarintHeaderBits);
WriteBits(value, num_bits);
}
}
ALWAYS_INLINE void ByteAlign() {
size_t end = bit_start_ + bit_offset_;
bit_offset_ += RoundUp(end, kBitsPerByte) - end;
}
private:
Vector* out_;
size_t bit_start_;
size_t bit_offset_;
DISALLOW_COPY_AND_ASSIGN(BitMemoryWriter);
};
} // namespace art
#endif // ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_