blob: 13aa9e7decb8324a61dee6eaca3bbe3c4f267614 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_
#define ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_
#include "interpreter_switch_impl.h"
#include "base/enums.h"
#include "base/globals.h"
#include "base/memory_tool.h"
#include "base/quasi_atomic.h"
#include "dex/dex_file_types.h"
#include "dex/dex_instruction_list.h"
#include "experimental_flags.h"
#include "handle_scope.h"
#include "interpreter_common.h"
#include "interpreter/shadow_frame.h"
#include "jit/jit-inl.h"
#include "jvalue-inl.h"
#include "mirror/string-alloc-inl.h"
#include "mirror/throwable.h"
#include "monitor.h"
#include "nth_caller_visitor.h"
#include "safe_math.h"
#include "shadow_frame-inl.h"
#include "thread.h"
#include "verifier/method_verifier.h"
namespace art {
namespace interpreter {
// Short-lived helper class which executes single DEX bytecode. It is inlined by compiler.
//
// The function names must match the names from dex_instruction_list.h and have no arguments.
//
// Any relevant execution information is stored in the fields - it should be kept to minimum.
//
// Helper methods may return boolean value - in which case 'false' always means
// "stop executing current opcode" (which does not necessarily exit the interpreter loop).
//
template<bool do_access_check, bool transaction_active, Instruction::Format kFormat>
class InstructionHandler {
public:
ALWAYS_INLINE WARN_UNUSED bool CheckForceReturn()
REQUIRES_SHARED(Locks::mutator_lock_) {
if (PerformNonStandardReturn<kMonitorState>(self,
shadow_frame,
ctx->result,
instrumentation,
Accessor().InsSize(),
inst->GetDexPc(Insns()))) {
exit_interpreter_loop = true;
return false;
}
return true;
}
NO_INLINE WARN_UNUSED bool HandlePendingExceptionWithInstrumentationImpl(
const instrumentation::Instrumentation* instr)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(self->IsExceptionPending());
self->AllowThreadSuspension();
if (!CheckForceReturn()) {
return false;
}
if (!MoveToExceptionHandler(self, shadow_frame, instr)) {
/* Structured locking is to be enforced for abnormal termination, too. */
DoMonitorCheckOnExit<do_assignability_check>(self, &shadow_frame);
if (ctx->interpret_one_instruction) {
/* Signal mterp to return to caller */
shadow_frame.SetDexPC(dex::kDexNoIndex);
}
ctx->result = JValue(); /* Handled in caller. */
exit_interpreter_loop = true;
return false; // Return to caller.
}
if (!CheckForceReturn()) {
return false;
}
int32_t displacement =
static_cast<int32_t>(shadow_frame.GetDexPC()) - static_cast<int32_t>(dex_pc);
SetNextInstruction(inst->RelativeAt(displacement));
return false; // Stop executing this opcode and continue in the exception handler.
}
// Forwards the call to the NO_INLINE HandlePendingExceptionWithInstrumentationImpl.
ALWAYS_INLINE WARN_UNUSED bool HandlePendingExceptionWithInstrumentation(
const instrumentation::Instrumentation* instr)
REQUIRES_SHARED(Locks::mutator_lock_) {
// We need to help the compiler a bit to make the NO_INLINE call efficient.
// * All handler fields should be in registers, so we do not want to take the object
// address (for 'this' argument). Make a copy of the handler just for the slow path.
// * The modifiable fields should also be in registers, so we don't want to store their
// address even in the handler copy. Make a copy of them just for the call as well.
const Instruction* next_copy = next;
bool exit_copy = exit_interpreter_loop;
InstructionHandler<do_access_check, transaction_active, kFormat> handler_copy(
ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next_copy, exit_copy);
bool result = handler_copy.HandlePendingExceptionWithInstrumentationImpl(instr);
next = next_copy;
exit_interpreter_loop = exit_copy;
return result;
}
ALWAYS_INLINE WARN_UNUSED bool HandlePendingException()
REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePendingExceptionWithInstrumentation(instrumentation);
}
ALWAYS_INLINE WARN_UNUSED bool PossiblyHandlePendingExceptionOnInvokeImpl(
bool is_exception_pending,
const Instruction* next_inst)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (UNLIKELY(shadow_frame.GetForceRetryInstruction())) {
/* Don't need to do anything except clear the flag and exception. We leave the */
/* instruction the same so it will be re-executed on the next go-around. */
DCHECK(inst->IsInvoke());
shadow_frame.SetForceRetryInstruction(false);
if (UNLIKELY(is_exception_pending)) {
DCHECK(self->IsExceptionPending());
if (kIsDebugBuild) {
LOG(WARNING) << "Suppressing exception for instruction-retry: "
<< self->GetException()->Dump();
}
self->ClearException();
}
SetNextInstruction(inst);
} else if (UNLIKELY(is_exception_pending)) {
/* Should have succeeded. */
DCHECK(!shadow_frame.GetForceRetryInstruction());
if (!HandlePendingException()) {
return false;
}
} else {
SetNextInstruction(next_inst);
}
return true;
}
ALWAYS_INLINE WARN_UNUSED bool PossiblyHandlePendingException(
bool is_exception_pending,
const Instruction* next_inst)
REQUIRES_SHARED(Locks::mutator_lock_) {
/* Should only be on invoke instructions. */
DCHECK(!shadow_frame.GetForceRetryInstruction());
if (UNLIKELY(is_exception_pending)) {
if (!HandlePendingException()) {
return false;
}
} else {
SetNextInstruction(next_inst);
}
return true;
}
ALWAYS_INLINE WARN_UNUSED bool HandleMonitorChecks()
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!DoMonitorCheckOnExit<do_assignability_check>(self, &shadow_frame)) {
if (!HandlePendingException()) {
return false;
}
}
return true;
}
// Code to run before each dex instruction.
ALWAYS_INLINE WARN_UNUSED bool Preamble()
REQUIRES_SHARED(Locks::mutator_lock_) {
/* We need to put this before & after the instrumentation to avoid having to put in a */
/* post-script macro. */
if (!CheckForceReturn()) {
return false;
}
if (UNLIKELY(instrumentation->HasDexPcListeners())) {
uint8_t opcode = inst->Opcode(inst_data);
bool is_move_result_object = (opcode == Instruction::MOVE_RESULT_OBJECT);
JValue* save_ref = is_move_result_object ? &ctx->result_register : nullptr;
if (UNLIKELY(!DoDexPcMoveEvent(self,
Accessor(),
shadow_frame,
dex_pc,
instrumentation,
save_ref))) {
if (!HandlePendingException()) {
return false;
}
}
if (!CheckForceReturn()) {
return false;
}
}
return true;
}
ALWAYS_INLINE WARN_UNUSED bool BranchInstrumentation(int32_t offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (UNLIKELY(instrumentation->HasBranchListeners())) {
instrumentation->Branch(self, shadow_frame.GetMethod(), dex_pc, offset);
}
JValue result;
if (jit::Jit::MaybeDoOnStackReplacement(self,
shadow_frame.GetMethod(),
dex_pc,
offset,
&result)) {
if (ctx->interpret_one_instruction) {
/* OSR has completed execution of the method. Signal mterp to return to caller */
shadow_frame.SetDexPC(dex::kDexNoIndex);
}
ctx->result = result;
exit_interpreter_loop = true;
return false;
}
return true;
}
ALWAYS_INLINE void HotnessUpdate()
REQUIRES_SHARED(Locks::mutator_lock_) {
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr) {
jit->AddSamples(self, shadow_frame.GetMethod(), 1, /*with_backedges=*/ true);
}
}
ALWAYS_INLINE WARN_UNUSED bool HandleAsyncException()
REQUIRES_SHARED(Locks::mutator_lock_) {
if (UNLIKELY(self->ObserveAsyncException())) {
if (!HandlePendingException()) {
return false;
}
}
return true;
}
ALWAYS_INLINE void HandleBackwardBranch(int32_t offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (IsBackwardBranch(offset)) {
HotnessUpdate();
/* Record new dex pc early to have consistent suspend point at loop header. */
shadow_frame.SetDexPC(next->GetDexPc(Insns()));
self->AllowThreadSuspension();
}
}
// Unlike most other events the DexPcMovedEvent can be sent when there is a pending exception (if
// the next instruction is MOVE_EXCEPTION). This means it needs to be handled carefully to be able
// to detect exceptions thrown by the DexPcMovedEvent itself. These exceptions could be thrown by
// jvmti-agents while handling breakpoint or single step events. We had to move this into its own
// function because it was making ExecuteSwitchImpl have too large a stack.
NO_INLINE static bool DoDexPcMoveEvent(Thread* self,
const CodeItemDataAccessor& accessor,
const ShadowFrame& shadow_frame,
uint32_t dex_pc,
const instrumentation::Instrumentation* instrumentation,
JValue* save_ref)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(instrumentation->HasDexPcListeners());
StackHandleScope<2> hs(self);
Handle<mirror::Throwable> thr(hs.NewHandle(self->GetException()));
mirror::Object* null_obj = nullptr;
HandleWrapper<mirror::Object> h(
hs.NewHandleWrapper(LIKELY(save_ref == nullptr) ? &null_obj : save_ref->GetGCRoot()));
self->ClearException();
instrumentation->DexPcMovedEvent(self,
shadow_frame.GetThisObject(accessor.InsSize()),
shadow_frame.GetMethod(),
dex_pc);
if (UNLIKELY(self->IsExceptionPending())) {
// We got a new exception in the dex-pc-moved event.
// We just let this exception replace the old one.
// TODO It would be good to add the old exception to the
// suppressed exceptions of the new one if possible.
return false;
} else {
if (UNLIKELY(!thr.IsNull())) {
self->SetException(thr.Get());
}
return true;
}
}
#define BRANCH_INSTRUMENTATION(offset) \
if (!BranchInstrumentation(offset)) { \
return false; \
}
#define HANDLE_PENDING_EXCEPTION() \
if (!HandlePendingException()) { \
return false; \
}
#define POSSIBLY_HANDLE_PENDING_EXCEPTION(is_exception_pending, next_function) \
if (!PossiblyHandlePendingException(is_exception_pending, inst->next_function())) { \
return false; \
}
#define POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE_POLYMORPHIC(is_exception_pending) \
if (!PossiblyHandlePendingExceptionOnInvokeImpl(is_exception_pending, inst->Next_4xx())) { \
return false; \
}
#define POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE(is_exception_pending) \
if (!PossiblyHandlePendingExceptionOnInvokeImpl(is_exception_pending, inst->Next_3xx())) { \
return false; \
}
ALWAYS_INLINE WARN_UNUSED bool HandleReturn(JValue result) REQUIRES_SHARED(Locks::mutator_lock_) {
self->AllowThreadSuspension();
if (!HandleMonitorChecks()) {
return false;
}
if (UNLIKELY(NeedsMethodExitEvent(instrumentation) &&
!SendMethodExitEvents(self,
instrumentation,
shadow_frame,
shadow_frame.GetThisObject(Accessor().InsSize()),
shadow_frame.GetMethod(),
inst->GetDexPc(Insns()),
result))) {
if (!HandlePendingExceptionWithInstrumentation(nullptr)) {
return false;
}
}
if (ctx->interpret_one_instruction) {
/* Signal mterp to return to caller */
shadow_frame.SetDexPC(dex::kDexNoIndex);
}
ctx->result = result;
exit_interpreter_loop = true;
return true;
}
ALWAYS_INLINE WARN_UNUSED bool HandleGoto(int32_t offset) REQUIRES_SHARED(Locks::mutator_lock_) {
if (!HandleAsyncException()) {
return false;
}
BRANCH_INSTRUMENTATION(offset);
SetNextInstruction(inst->RelativeAt(offset));
HandleBackwardBranch(offset);
return true;
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
template<typename T>
ALWAYS_INLINE WARN_UNUSED bool HandleCmpl(T val1, T val2) REQUIRES_SHARED(Locks::mutator_lock_) {
int32_t result;
if (val1 > val2) {
result = 1;
} else if (val1 == val2) {
result = 0;
} else {
result = -1;
}
SetVReg(A(), result);
return true;
}
// Returns the same result as the function above. It only differs for NaN values.
template<typename T>
ALWAYS_INLINE WARN_UNUSED bool HandleCmpg(T val1, T val2) REQUIRES_SHARED(Locks::mutator_lock_) {
int32_t result;
if (val1 < val2) {
result = -1;
} else if (val1 == val2) {
result = 0;
} else {
result = 1;
}
SetVReg(A(), result);
return true;
}
#pragma clang diagnostic pop
ALWAYS_INLINE WARN_UNUSED bool HandleIf(bool cond, int32_t offset)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (cond) {
BRANCH_INSTRUMENTATION(offset);
SetNextInstruction(inst->RelativeAt(offset));
HandleBackwardBranch(offset);
} else {
BRANCH_INSTRUMENTATION(2);
}
return true;
}
template<typename ArrayType, typename SetVRegFn>
ALWAYS_INLINE bool HandleAGet(SetVRegFn setVReg) REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> a = GetVRegReference(B());
if (UNLIKELY(a == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
HANDLE_PENDING_EXCEPTION();
}
int32_t index = GetVReg(C());
ObjPtr<ArrayType> array = ObjPtr<ArrayType>::DownCast(a);
if (UNLIKELY(!array->CheckIsValidIndex(index))) {
HANDLE_PENDING_EXCEPTION();
} else {
(this->*setVReg)(A(), array->GetWithoutChecks(index));
}
return true;
}
template<typename ArrayType, typename T>
ALWAYS_INLINE bool HandleAPut(T value) REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> a = GetVRegReference(B());
if (UNLIKELY(a == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
HANDLE_PENDING_EXCEPTION();
}
int32_t index = GetVReg(C());
ObjPtr<ArrayType> array = ObjPtr<ArrayType>::DownCast(a);
if (UNLIKELY(!array->CheckIsValidIndex(index))) {
HANDLE_PENDING_EXCEPTION();
} else {
array->template SetWithoutChecks<transaction_active>(index, value);
}
return true;
}
template<FindFieldType find_type, Primitive::Type field_type>
ALWAYS_INLINE WARN_UNUSED bool HandleGet() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoFieldGet<find_type, field_type, do_access_check, transaction_active>(
self, shadow_frame, inst, inst_data);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
template<Primitive::Type field_type>
ALWAYS_INLINE WARN_UNUSED bool HandleGetQuick() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoIGetQuick<field_type>(shadow_frame, inst, inst_data);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
template<FindFieldType find_type, Primitive::Type field_type>
ALWAYS_INLINE WARN_UNUSED bool HandlePut() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoFieldPut<find_type, field_type, do_access_check, transaction_active>(
self, shadow_frame, inst, inst_data);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
template<Primitive::Type field_type>
ALWAYS_INLINE WARN_UNUSED bool HandlePutQuick() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoIPutQuick<field_type, transaction_active>(
shadow_frame, inst, inst_data);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
template<InvokeType type, bool is_range, bool is_quick = false>
ALWAYS_INLINE WARN_UNUSED bool HandleInvoke() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoInvoke<type, is_range, do_access_check, /*is_mterp=*/ false, is_quick>(
self, shadow_frame, inst, inst_data, ResultRegister());
POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE(!success);
return true;
}
ALWAYS_INLINE WARN_UNUSED bool HandleUnused() REQUIRES_SHARED(Locks::mutator_lock_) {
UnexpectedOpcode(inst, shadow_frame);
return true;
}
ALWAYS_INLINE bool NOP() REQUIRES_SHARED(Locks::mutator_lock_) {
return true;
}
ALWAYS_INLINE bool MOVE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()));
return true;
}
ALWAYS_INLINE bool MOVE_FROM16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()));
return true;
}
ALWAYS_INLINE bool MOVE_16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()));
return true;
}
ALWAYS_INLINE bool MOVE_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool MOVE_WIDE_FROM16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool MOVE_WIDE_16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool MOVE_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegReference(A(), GetVRegReference(B()));
return true;
}
ALWAYS_INLINE bool MOVE_OBJECT_FROM16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegReference(A(), GetVRegReference(B()));
return true;
}
ALWAYS_INLINE bool MOVE_OBJECT_16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegReference(A(), GetVRegReference(B()));
return true;
}
ALWAYS_INLINE bool MOVE_RESULT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), ResultRegister()->GetI());
return true;
}
ALWAYS_INLINE bool MOVE_RESULT_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), ResultRegister()->GetJ());
return true;
}
ALWAYS_INLINE bool MOVE_RESULT_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegReference(A(), ResultRegister()->GetL());
return true;
}
ALWAYS_INLINE bool MOVE_EXCEPTION() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Throwable> exception = self->GetException();
DCHECK(exception != nullptr) << "No pending exception on MOVE_EXCEPTION instruction";
SetVRegReference(A(), exception);
self->ClearException();
return true;
}
ALWAYS_INLINE bool RETURN_VOID_NO_BARRIER() REQUIRES_SHARED(Locks::mutator_lock_) {
JValue result;
return HandleReturn(result);
}
ALWAYS_INLINE bool RETURN_VOID() REQUIRES_SHARED(Locks::mutator_lock_) {
QuasiAtomic::ThreadFenceForConstructor();
JValue result;
return HandleReturn(result);
}
ALWAYS_INLINE bool RETURN() REQUIRES_SHARED(Locks::mutator_lock_) {
JValue result;
result.SetJ(0);
result.SetI(GetVReg(A()));
return HandleReturn(result);
}
ALWAYS_INLINE bool RETURN_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
JValue result;
result.SetJ(GetVRegLong(A()));
return HandleReturn(result);
}
ALWAYS_INLINE bool RETURN_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
JValue result;
self->AllowThreadSuspension();
if (!HandleMonitorChecks()) {
return false;
}
const size_t ref_idx = A();
ObjPtr<mirror::Object> obj_result = GetVRegReference(ref_idx);
if (do_assignability_check && obj_result != nullptr) {
ObjPtr<mirror::Class> return_type = shadow_frame.GetMethod()->ResolveReturnType();
// Re-load since it might have moved.
obj_result = GetVRegReference(ref_idx);
if (return_type == nullptr) {
// Return the pending exception.
HANDLE_PENDING_EXCEPTION();
}
if (!obj_result->VerifierInstanceOf(return_type)) {
// This should never happen.
std::string temp1, temp2;
self->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Returning '%s' that is not instance of return type '%s'",
obj_result->GetClass()->GetDescriptor(&temp1),
return_type->GetDescriptor(&temp2));
HANDLE_PENDING_EXCEPTION();
}
}
StackHandleScope<1> hs(self);
MutableHandle<mirror::Object> h_result(hs.NewHandle(obj_result));
result.SetL(obj_result);
if (UNLIKELY(NeedsMethodExitEvent(instrumentation) &&
!SendMethodExitEvents(self,
instrumentation,
shadow_frame,
shadow_frame.GetThisObject(Accessor().InsSize()),
shadow_frame.GetMethod(),
inst->GetDexPc(Insns()),
h_result))) {
if (!HandlePendingExceptionWithInstrumentation(nullptr)) {
return false;
}
}
// Re-load since it might have moved or been replaced during the MethodExitEvent.
result.SetL(h_result.Get());
if (ctx->interpret_one_instruction) {
/* Signal mterp to return to caller */
shadow_frame.SetDexPC(dex::kDexNoIndex);
}
ctx->result = result;
exit_interpreter_loop = true;
return true;
}
ALWAYS_INLINE bool CONST_4() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t dst = inst->VRegA_11n(inst_data);
int4_t val = inst->VRegB_11n(inst_data);
SetVReg(dst, val);
if (val == 0) {
SetVRegReference(dst, nullptr);
}
return true;
}
ALWAYS_INLINE bool CONST_16() REQUIRES_SHARED(Locks::mutator_lock_) {
uint8_t dst = A();
int16_t val = B();
SetVReg(dst, val);
if (val == 0) {
SetVRegReference(dst, nullptr);
}
return true;
}
ALWAYS_INLINE bool CONST() REQUIRES_SHARED(Locks::mutator_lock_) {
uint8_t dst = A();
int32_t val = B();
SetVReg(dst, val);
if (val == 0) {
SetVRegReference(dst, nullptr);
}
return true;
}
ALWAYS_INLINE bool CONST_HIGH16() REQUIRES_SHARED(Locks::mutator_lock_) {
uint8_t dst = A();
int32_t val = static_cast<int32_t>(B() << 16);
SetVReg(dst, val);
if (val == 0) {
SetVRegReference(dst, nullptr);
}
return true;
}
ALWAYS_INLINE bool CONST_WIDE_16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), B());
return true;
}
ALWAYS_INLINE bool CONST_WIDE_32() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), B());
return true;
}
ALWAYS_INLINE bool CONST_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), inst->WideVRegB());
return true;
}
ALWAYS_INLINE bool CONST_WIDE_HIGH16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), static_cast<uint64_t>(B()) << 48);
return true;
}
ALWAYS_INLINE bool CONST_STRING() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::String> s = ResolveString(self, shadow_frame, dex::StringIndex(B()));
if (UNLIKELY(s == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
SetVRegReference(A(), s);
}
return true;
}
ALWAYS_INLINE bool CONST_STRING_JUMBO() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::String> s = ResolveString(self, shadow_frame, dex::StringIndex(B()));
if (UNLIKELY(s == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
SetVRegReference(A(), s);
}
return true;
}
ALWAYS_INLINE bool CONST_CLASS() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> c = ResolveVerifyAndClinit(dex::TypeIndex(B()),
shadow_frame.GetMethod(),
self,
false,
do_access_check);
if (UNLIKELY(c == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
SetVRegReference(A(), c);
}
return true;
}
ALWAYS_INLINE bool CONST_METHOD_HANDLE() REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* cl = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::MethodHandle> mh = cl->ResolveMethodHandle(self,
B(),
shadow_frame.GetMethod());
if (UNLIKELY(mh == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
SetVRegReference(A(), mh);
}
return true;
}
ALWAYS_INLINE bool CONST_METHOD_TYPE() REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* cl = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::MethodType> mt = cl->ResolveMethodType(self,
dex::ProtoIndex(B()),
shadow_frame.GetMethod());
if (UNLIKELY(mt == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
SetVRegReference(A(), mt);
}
return true;
}
ALWAYS_INLINE bool MONITOR_ENTER() REQUIRES_SHARED(Locks::mutator_lock_) {
if (!HandleAsyncException()) {
return false;
}
ObjPtr<mirror::Object> obj = GetVRegReference(A());
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
HANDLE_PENDING_EXCEPTION();
} else {
DoMonitorEnter<do_assignability_check>(self, &shadow_frame, obj);
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx);
}
return true;
}
ALWAYS_INLINE bool MONITOR_EXIT() REQUIRES_SHARED(Locks::mutator_lock_) {
if (!HandleAsyncException()) {
return false;
}
ObjPtr<mirror::Object> obj = GetVRegReference(A());
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
HANDLE_PENDING_EXCEPTION();
} else {
DoMonitorExit<do_assignability_check>(self, &shadow_frame, obj);
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx);
}
return true;
}
ALWAYS_INLINE bool CHECK_CAST() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> c = ResolveVerifyAndClinit(dex::TypeIndex(B()),
shadow_frame.GetMethod(),
self,
false,
do_access_check);
if (UNLIKELY(c == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
ObjPtr<mirror::Object> obj = GetVRegReference(A());
if (UNLIKELY(obj != nullptr && !obj->InstanceOf(c))) {
ThrowClassCastException(c, obj->GetClass());
HANDLE_PENDING_EXCEPTION();
}
}
return true;
}
ALWAYS_INLINE bool INSTANCE_OF() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Class> c = ResolveVerifyAndClinit(dex::TypeIndex(C()),
shadow_frame.GetMethod(),
self,
false,
do_access_check);
if (UNLIKELY(c == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
ObjPtr<mirror::Object> obj = GetVRegReference(B());
SetVReg(A(), (obj != nullptr && obj->InstanceOf(c)) ? 1 : 0);
}
return true;
}
ALWAYS_INLINE bool ARRAY_LENGTH() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> array = GetVRegReference(B());
if (UNLIKELY(array == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
HANDLE_PENDING_EXCEPTION();
} else {
SetVReg(A(), array->AsArray()->GetLength());
}
return true;
}
ALWAYS_INLINE bool NEW_INSTANCE() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> obj = nullptr;
ObjPtr<mirror::Class> c = ResolveVerifyAndClinit(dex::TypeIndex(B()),
shadow_frame.GetMethod(),
self,
false,
do_access_check);
if (LIKELY(c != nullptr)) {
// Don't allow finalizable objects to be allocated during a transaction since these can't
// be finalized without a started runtime.
if (transaction_active && c->IsFinalizable()) {
AbortTransactionF(self,
"Allocating finalizable object in transaction: %s",
c->PrettyDescriptor().c_str());
HANDLE_PENDING_EXCEPTION();
}
gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator();
if (UNLIKELY(c->IsStringClass())) {
obj = mirror::String::AllocEmptyString(self, allocator_type);
} else {
obj = AllocObjectFromCode(c, self, allocator_type);
}
}
if (UNLIKELY(obj == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
obj->GetClass()->AssertInitializedOrInitializingInThread(self);
SetVRegReference(A(), obj);
}
return true;
}
ALWAYS_INLINE bool NEW_ARRAY() REQUIRES_SHARED(Locks::mutator_lock_) {
int32_t length = GetVReg(B());
ObjPtr<mirror::Object> obj = AllocArrayFromCode<do_access_check>(
dex::TypeIndex(C()),
length,
shadow_frame.GetMethod(),
self,
Runtime::Current()->GetHeap()->GetCurrentAllocator());
if (UNLIKELY(obj == nullptr)) {
HANDLE_PENDING_EXCEPTION();
} else {
SetVRegReference(A(), obj);
}
return true;
}
ALWAYS_INLINE bool FILLED_NEW_ARRAY() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success =
DoFilledNewArray<false, do_access_check, transaction_active>(inst, shadow_frame, self,
ResultRegister());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
return true;
}
ALWAYS_INLINE bool FILLED_NEW_ARRAY_RANGE() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success =
DoFilledNewArray<true, do_access_check, transaction_active>(inst, shadow_frame,
self, ResultRegister());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
return true;
}
ALWAYS_INLINE bool FILL_ARRAY_DATA() REQUIRES_SHARED(Locks::mutator_lock_) {
const uint16_t* payload_addr = reinterpret_cast<const uint16_t*>(inst) + B();
const Instruction::ArrayDataPayload* payload =
reinterpret_cast<const Instruction::ArrayDataPayload*>(payload_addr);
ObjPtr<mirror::Object> obj = GetVRegReference(A());
bool success = FillArrayData(obj, payload);
if (!success) {
HANDLE_PENDING_EXCEPTION();
}
if (transaction_active) {
RecordArrayElementsInTransaction(obj->AsArray(), payload->element_count);
}
return true;
}
ALWAYS_INLINE bool THROW() REQUIRES_SHARED(Locks::mutator_lock_) {
if (!HandleAsyncException()) {
return false;
}
ObjPtr<mirror::Object> exception = GetVRegReference(A());
if (UNLIKELY(exception == nullptr)) {
ThrowNullPointerException("throw with null exception");
} else if (do_assignability_check && !exception->GetClass()->IsThrowableClass()) {
// This should never happen.
std::string temp;
self->ThrowNewExceptionF("Ljava/lang/InternalError;",
"Throwing '%s' that is not instance of Throwable",
exception->GetClass()->GetDescriptor(&temp));
} else {
self->SetException(exception->AsThrowable());
}
HANDLE_PENDING_EXCEPTION();
return true;
}
ALWAYS_INLINE bool GOTO() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGoto(A());
}
ALWAYS_INLINE bool GOTO_16() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGoto(A());
}
ALWAYS_INLINE bool GOTO_32() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGoto(A());
}
ALWAYS_INLINE bool PACKED_SWITCH() REQUIRES_SHARED(Locks::mutator_lock_) {
int32_t offset = DoPackedSwitch(inst, shadow_frame, inst_data);
BRANCH_INSTRUMENTATION(offset);
SetNextInstruction(inst->RelativeAt(offset));
HandleBackwardBranch(offset);
return true;
}
ALWAYS_INLINE bool SPARSE_SWITCH() REQUIRES_SHARED(Locks::mutator_lock_) {
int32_t offset = DoSparseSwitch(inst, shadow_frame, inst_data);
BRANCH_INSTRUMENTATION(offset);
SetNextInstruction(inst->RelativeAt(offset));
HandleBackwardBranch(offset);
return true;
}
ALWAYS_INLINE bool CMPL_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleCmpl<float>(GetVRegFloat(B()), GetVRegFloat(C()));
}
ALWAYS_INLINE bool CMPG_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleCmpg<float>(GetVRegFloat(B()), GetVRegFloat(C()));
}
ALWAYS_INLINE bool CMPL_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleCmpl<double>(GetVRegDouble(B()), GetVRegDouble(C()));
}
ALWAYS_INLINE bool CMPG_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleCmpg<double>(GetVRegDouble(B()), GetVRegDouble(C()));
}
ALWAYS_INLINE bool CMP_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleCmpl<int64_t>(GetVRegLong(B()), GetVRegLong(C()));
}
ALWAYS_INLINE bool IF_EQ() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) == GetVReg(B()), C());
}
ALWAYS_INLINE bool IF_NE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) != GetVReg(B()), C());
}
ALWAYS_INLINE bool IF_LT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) < GetVReg(B()), C());
}
ALWAYS_INLINE bool IF_GE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) >= GetVReg(B()), C());
}
ALWAYS_INLINE bool IF_GT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) > GetVReg(B()), C());
}
ALWAYS_INLINE bool IF_LE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) <= GetVReg(B()), C());
}
ALWAYS_INLINE bool IF_EQZ() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) == 0, B());
}
ALWAYS_INLINE bool IF_NEZ() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) != 0, B());
}
ALWAYS_INLINE bool IF_LTZ() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) < 0, B());
}
ALWAYS_INLINE bool IF_GEZ() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) >= 0, B());
}
ALWAYS_INLINE bool IF_GTZ() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) > 0, B());
}
ALWAYS_INLINE bool IF_LEZ() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleIf(GetVReg(A()) <= 0, B());
}
ALWAYS_INLINE bool AGET_BOOLEAN() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAGet<mirror::BooleanArray>(&InstructionHandler::SetVReg);
}
ALWAYS_INLINE bool AGET_BYTE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAGet<mirror::ByteArray>(&InstructionHandler::SetVReg);
}
ALWAYS_INLINE bool AGET_CHAR() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAGet<mirror::CharArray>(&InstructionHandler::SetVReg);
}
ALWAYS_INLINE bool AGET_SHORT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAGet<mirror::ShortArray>(&InstructionHandler::SetVReg);
}
ALWAYS_INLINE bool AGET() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAGet<mirror::IntArray>(&InstructionHandler::SetVReg);
}
ALWAYS_INLINE bool AGET_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAGet<mirror::LongArray>(&InstructionHandler::SetVRegLong);
}
ALWAYS_INLINE bool AGET_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAGet<mirror::ObjectArray<mirror::Object>>(&InstructionHandler::SetVRegReference);
}
ALWAYS_INLINE bool APUT_BOOLEAN() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAPut<mirror::BooleanArray>(GetVReg(A()));
}
ALWAYS_INLINE bool APUT_BYTE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAPut<mirror::ByteArray>(GetVReg(A()));
}
ALWAYS_INLINE bool APUT_CHAR() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAPut<mirror::CharArray>(GetVReg(A()));
}
ALWAYS_INLINE bool APUT_SHORT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAPut<mirror::ShortArray>(GetVReg(A()));
}
ALWAYS_INLINE bool APUT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAPut<mirror::IntArray>(GetVReg(A()));
}
ALWAYS_INLINE bool APUT_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleAPut<mirror::LongArray>(GetVRegLong(A()));
}
ALWAYS_INLINE bool APUT_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> a = GetVRegReference(B());
if (UNLIKELY(a == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
HANDLE_PENDING_EXCEPTION();
}
int32_t index = GetVReg(C());
ObjPtr<mirror::Object> val = GetVRegReference(A());
ObjPtr<mirror::ObjectArray<mirror::Object>> array = a->AsObjectArray<mirror::Object>();
if (array->CheckIsValidIndex(index) && array->CheckAssignable(val)) {
array->SetWithoutChecks<transaction_active>(index, val);
} else {
HANDLE_PENDING_EXCEPTION();
}
return true;
}
ALWAYS_INLINE bool IGET_BOOLEAN() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimBoolean>();
}
ALWAYS_INLINE bool IGET_BYTE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimByte>();
}
ALWAYS_INLINE bool IGET_CHAR() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimChar>();
}
ALWAYS_INLINE bool IGET_SHORT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimShort>();
}
ALWAYS_INLINE bool IGET() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimInt>();
}
ALWAYS_INLINE bool IGET_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<InstancePrimitiveRead, Primitive::kPrimLong>();
}
ALWAYS_INLINE bool IGET_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<InstanceObjectRead, Primitive::kPrimNot>();
}
ALWAYS_INLINE bool IGET_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGetQuick<Primitive::kPrimInt>();
}
ALWAYS_INLINE bool IGET_WIDE_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGetQuick<Primitive::kPrimLong>();
}
ALWAYS_INLINE bool IGET_OBJECT_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGetQuick<Primitive::kPrimNot>();
}
ALWAYS_INLINE bool IGET_BOOLEAN_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGetQuick<Primitive::kPrimBoolean>();
}
ALWAYS_INLINE bool IGET_BYTE_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGetQuick<Primitive::kPrimByte>();
}
ALWAYS_INLINE bool IGET_CHAR_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGetQuick<Primitive::kPrimChar>();
}
ALWAYS_INLINE bool IGET_SHORT_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGetQuick<Primitive::kPrimShort>();
}
ALWAYS_INLINE bool SGET_BOOLEAN() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimBoolean>();
}
ALWAYS_INLINE bool SGET_BYTE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimByte>();
}
ALWAYS_INLINE bool SGET_CHAR() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimChar>();
}
ALWAYS_INLINE bool SGET_SHORT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimShort>();
}
ALWAYS_INLINE bool SGET() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimInt>();
}
ALWAYS_INLINE bool SGET_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<StaticPrimitiveRead, Primitive::kPrimLong>();
}
ALWAYS_INLINE bool SGET_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleGet<StaticObjectRead, Primitive::kPrimNot>();
}
ALWAYS_INLINE bool IPUT_BOOLEAN() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimBoolean>();
}
ALWAYS_INLINE bool IPUT_BYTE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimByte>();
}
ALWAYS_INLINE bool IPUT_CHAR() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimChar>();
}
ALWAYS_INLINE bool IPUT_SHORT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimShort>();
}
ALWAYS_INLINE bool IPUT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimInt>();
}
ALWAYS_INLINE bool IPUT_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<InstancePrimitiveWrite, Primitive::kPrimLong>();
}
ALWAYS_INLINE bool IPUT_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<InstanceObjectWrite, Primitive::kPrimNot>();
}
ALWAYS_INLINE bool IPUT_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePutQuick<Primitive::kPrimInt>();
}
ALWAYS_INLINE bool IPUT_BOOLEAN_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePutQuick<Primitive::kPrimBoolean>();
}
ALWAYS_INLINE bool IPUT_BYTE_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePutQuick<Primitive::kPrimByte>();
}
ALWAYS_INLINE bool IPUT_CHAR_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePutQuick<Primitive::kPrimChar>();
}
ALWAYS_INLINE bool IPUT_SHORT_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePutQuick<Primitive::kPrimShort>();
}
ALWAYS_INLINE bool IPUT_WIDE_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePutQuick<Primitive::kPrimLong>();
}
ALWAYS_INLINE bool IPUT_OBJECT_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePutQuick<Primitive::kPrimNot>();
}
ALWAYS_INLINE bool SPUT_BOOLEAN() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimBoolean>();
}
ALWAYS_INLINE bool SPUT_BYTE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimByte>();
}
ALWAYS_INLINE bool SPUT_CHAR() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimChar>();
}
ALWAYS_INLINE bool SPUT_SHORT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimShort>();
}
ALWAYS_INLINE bool SPUT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimInt>();
}
ALWAYS_INLINE bool SPUT_WIDE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<StaticPrimitiveWrite, Primitive::kPrimLong>();
}
ALWAYS_INLINE bool SPUT_OBJECT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandlePut<StaticObjectWrite, Primitive::kPrimNot>();
}
ALWAYS_INLINE bool INVOKE_VIRTUAL() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kVirtual, /*is_range=*/ false>();
}
ALWAYS_INLINE bool INVOKE_VIRTUAL_RANGE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kVirtual, /*is_range=*/ true>();
}
ALWAYS_INLINE bool INVOKE_SUPER() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kSuper, /*is_range=*/ false>();
}
ALWAYS_INLINE bool INVOKE_SUPER_RANGE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kSuper, /*is_range=*/ true>();
}
ALWAYS_INLINE bool INVOKE_DIRECT() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kDirect, /*is_range=*/ false>();
}
ALWAYS_INLINE bool INVOKE_DIRECT_RANGE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kDirect, /*is_range=*/ true>();
}
ALWAYS_INLINE bool INVOKE_INTERFACE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kInterface, /*is_range=*/ false>();
}
ALWAYS_INLINE bool INVOKE_INTERFACE_RANGE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kInterface, /*is_range=*/ true>();
}
ALWAYS_INLINE bool INVOKE_STATIC() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kStatic, /*is_range=*/ false>();
}
ALWAYS_INLINE bool INVOKE_STATIC_RANGE() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kStatic, /*is_range=*/ true>();
}
ALWAYS_INLINE bool INVOKE_VIRTUAL_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kVirtual, /*is_range=*/ false, /*is_quick=*/ true>();
}
ALWAYS_INLINE bool INVOKE_VIRTUAL_RANGE_QUICK() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleInvoke<kVirtual, /*is_range=*/ true, /*is_quick=*/ true>();
}
ALWAYS_INLINE bool INVOKE_POLYMORPHIC() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
bool success = DoInvokePolymorphic</* is_range= */ false>(
self, shadow_frame, inst, inst_data, ResultRegister());
POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE_POLYMORPHIC(!success);
return true;
}
ALWAYS_INLINE bool INVOKE_POLYMORPHIC_RANGE() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
bool success = DoInvokePolymorphic</* is_range= */ true>(
self, shadow_frame, inst, inst_data, ResultRegister());
POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE_POLYMORPHIC(!success);
return true;
}
ALWAYS_INLINE bool INVOKE_CUSTOM() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
bool success = DoInvokeCustom</* is_range= */ false>(
self, shadow_frame, inst, inst_data, ResultRegister());
POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE(!success);
return true;
}
ALWAYS_INLINE bool INVOKE_CUSTOM_RANGE() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
bool success = DoInvokeCustom</* is_range= */ true>(
self, shadow_frame, inst, inst_data, ResultRegister());
POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE(!success);
return true;
}
ALWAYS_INLINE bool NEG_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), -GetVReg(B()));
return true;
}
ALWAYS_INLINE bool NOT_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), ~GetVReg(B()));
return true;
}
ALWAYS_INLINE bool NEG_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), -GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool NOT_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), ~GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool NEG_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), -GetVRegFloat(B()));
return true;
}
ALWAYS_INLINE bool NEG_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), -GetVRegDouble(B()));
return true;
}
ALWAYS_INLINE bool INT_TO_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVReg(B()));
return true;
}
ALWAYS_INLINE bool INT_TO_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), GetVReg(B()));
return true;
}
ALWAYS_INLINE bool INT_TO_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), GetVReg(B()));
return true;
}
ALWAYS_INLINE bool LONG_TO_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool LONG_TO_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool LONG_TO_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool FLOAT_TO_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
float val = GetVRegFloat(B());
int32_t result = art_float_to_integral<int32_t, float>(val);
SetVReg(A(), result);
return true;
}
ALWAYS_INLINE bool FLOAT_TO_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
float val = GetVRegFloat(B());
int64_t result = art_float_to_integral<int64_t, float>(val);
SetVRegLong(A(), result);
return true;
}
ALWAYS_INLINE bool FLOAT_TO_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), GetVRegFloat(B()));
return true;
}
ALWAYS_INLINE bool DOUBLE_TO_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
double val = GetVRegDouble(B());
int32_t result = art_float_to_integral<int32_t, double>(val);
SetVReg(A(), result);
return true;
}
ALWAYS_INLINE bool DOUBLE_TO_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
double val = GetVRegDouble(B());
int64_t result = art_float_to_integral<int64_t, double>(val);
SetVRegLong(A(), result);
return true;
}
ALWAYS_INLINE bool DOUBLE_TO_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), GetVRegDouble(B()));
return true;
}
ALWAYS_INLINE bool INT_TO_BYTE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), static_cast<int8_t>(GetVReg(B())));
return true;
}
ALWAYS_INLINE bool INT_TO_CHAR() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), static_cast<uint16_t>(GetVReg(B())));
return true;
}
ALWAYS_INLINE bool INT_TO_SHORT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), static_cast<int16_t>(GetVReg(B())));
return true;
}
ALWAYS_INLINE bool ADD_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeAdd(GetVReg(B()), GetVReg(C())));
return true;
}
ALWAYS_INLINE bool SUB_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeSub(GetVReg(B()), GetVReg(C())));
return true;
}
ALWAYS_INLINE bool MUL_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeMul(GetVReg(B()), GetVReg(C())));
return true;
}
ALWAYS_INLINE bool DIV_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoIntDivide(shadow_frame, A(), GetVReg(B()), GetVReg(C()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
ALWAYS_INLINE bool REM_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoIntRemainder(shadow_frame, A(), GetVReg(B()), GetVReg(C()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
ALWAYS_INLINE bool SHL_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) << (GetVReg(C()) & 0x1f));
return true;
}
ALWAYS_INLINE bool SHR_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) >> (GetVReg(C()) & 0x1f));
return true;
}
ALWAYS_INLINE bool USHR_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), static_cast<uint32_t>(GetVReg(B())) >> (GetVReg(C()) & 0x1f));
return true;
}
ALWAYS_INLINE bool AND_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) & GetVReg(C()));
return true;
}
ALWAYS_INLINE bool OR_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) | GetVReg(C()));
return true;
}
ALWAYS_INLINE bool XOR_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) ^ GetVReg(C()));
return true;
}
ALWAYS_INLINE bool ADD_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), SafeAdd(GetVRegLong(B()), GetVRegLong(C())));
return true;
}
ALWAYS_INLINE bool SUB_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), SafeSub(GetVRegLong(B()), GetVRegLong(C())));
return true;
}
ALWAYS_INLINE bool MUL_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), SafeMul(GetVRegLong(B()), GetVRegLong(C())));
return true;
}
ALWAYS_INLINE bool DIV_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
DoLongDivide(shadow_frame, A(), GetVRegLong(B()), GetVRegLong(C()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_2xx);
return true;
}
ALWAYS_INLINE bool REM_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
DoLongRemainder(shadow_frame, A(), GetVRegLong(B()), GetVRegLong(C()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_2xx);
return true;
}
ALWAYS_INLINE bool AND_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVRegLong(B()) & GetVRegLong(C()));
return true;
}
ALWAYS_INLINE bool OR_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVRegLong(B()) | GetVRegLong(C()));
return true;
}
ALWAYS_INLINE bool XOR_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVRegLong(B()) ^ GetVRegLong(C()));
return true;
}
ALWAYS_INLINE bool SHL_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVRegLong(B()) << (GetVReg(C()) & 0x3f));
return true;
}
ALWAYS_INLINE bool SHR_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), GetVRegLong(B()) >> (GetVReg(C()) & 0x3f));
return true;
}
ALWAYS_INLINE bool USHR_LONG() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegLong(A(), static_cast<uint64_t>(GetVRegLong(B())) >> (GetVReg(C()) & 0x3f));
return true;
}
ALWAYS_INLINE bool ADD_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), GetVRegFloat(B()) + GetVRegFloat(C()));
return true;
}
ALWAYS_INLINE bool SUB_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), GetVRegFloat(B()) - GetVRegFloat(C()));
return true;
}
ALWAYS_INLINE bool MUL_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), GetVRegFloat(B()) * GetVRegFloat(C()));
return true;
}
ALWAYS_INLINE bool DIV_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), GetVRegFloat(B()) / GetVRegFloat(C()));
return true;
}
ALWAYS_INLINE bool REM_FLOAT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegFloat(A(), fmodf(GetVRegFloat(B()), GetVRegFloat(C())));
return true;
}
ALWAYS_INLINE bool ADD_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), GetVRegDouble(B()) + GetVRegDouble(C()));
return true;
}
ALWAYS_INLINE bool SUB_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), GetVRegDouble(B()) - GetVRegDouble(C()));
return true;
}
ALWAYS_INLINE bool MUL_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), GetVRegDouble(B()) * GetVRegDouble(C()));
return true;
}
ALWAYS_INLINE bool DIV_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), GetVRegDouble(B()) / GetVRegDouble(C()));
return true;
}
ALWAYS_INLINE bool REM_DOUBLE() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVRegDouble(A(), fmod(GetVRegDouble(B()), GetVRegDouble(C())));
return true;
}
ALWAYS_INLINE bool ADD_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, SafeAdd(GetVReg(vregA), GetVReg(B())));
return true;
}
ALWAYS_INLINE bool SUB_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, SafeSub(GetVReg(vregA), GetVReg(B())));
return true;
}
ALWAYS_INLINE bool MUL_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, SafeMul(GetVReg(vregA), GetVReg(B())));
return true;
}
ALWAYS_INLINE bool DIV_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
bool success = DoIntDivide(shadow_frame, vregA, GetVReg(vregA), GetVReg(B()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_1xx);
return true;
}
ALWAYS_INLINE bool REM_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
bool success = DoIntRemainder(shadow_frame, vregA, GetVReg(vregA), GetVReg(B()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_1xx);
return true;
}
ALWAYS_INLINE bool SHL_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, GetVReg(vregA) << (GetVReg(B()) & 0x1f));
return true;
}
ALWAYS_INLINE bool SHR_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, GetVReg(vregA) >> (GetVReg(B()) & 0x1f));
return true;
}
ALWAYS_INLINE bool USHR_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, static_cast<uint32_t>(GetVReg(vregA)) >> (GetVReg(B()) & 0x1f));
return true;
}
ALWAYS_INLINE bool AND_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, GetVReg(vregA) & GetVReg(B()));
return true;
}
ALWAYS_INLINE bool OR_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, GetVReg(vregA) | GetVReg(B()));
return true;
}
ALWAYS_INLINE bool XOR_INT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVReg(vregA, GetVReg(vregA) ^ GetVReg(B()));
return true;
}
ALWAYS_INLINE bool ADD_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, SafeAdd(GetVRegLong(vregA), GetVRegLong(B())));
return true;
}
ALWAYS_INLINE bool SUB_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, SafeSub(GetVRegLong(vregA), GetVRegLong(B())));
return true;
}
ALWAYS_INLINE bool MUL_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, SafeMul(GetVRegLong(vregA), GetVRegLong(B())));
return true;
}
ALWAYS_INLINE bool DIV_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
DoLongDivide(shadow_frame, vregA, GetVRegLong(vregA), GetVRegLong(B()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx);
return true;
}
ALWAYS_INLINE bool REM_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
DoLongRemainder(shadow_frame, vregA, GetVRegLong(vregA), GetVRegLong(B()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx);
return true;
}
ALWAYS_INLINE bool AND_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, GetVRegLong(vregA) & GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool OR_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, GetVRegLong(vregA) | GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool XOR_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, GetVRegLong(vregA) ^ GetVRegLong(B()));
return true;
}
ALWAYS_INLINE bool SHL_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, GetVRegLong(vregA) << (GetVReg(B()) & 0x3f));
return true;
}
ALWAYS_INLINE bool SHR_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, GetVRegLong(vregA) >> (GetVReg(B()) & 0x3f));
return true;
}
ALWAYS_INLINE bool USHR_LONG_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegLong(vregA, static_cast<uint64_t>(GetVRegLong(vregA)) >> (GetVReg(B()) & 0x3f));
return true;
}
ALWAYS_INLINE bool ADD_FLOAT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegFloat(vregA, GetVRegFloat(vregA) + GetVRegFloat(B()));
return true;
}
ALWAYS_INLINE bool SUB_FLOAT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegFloat(vregA, GetVRegFloat(vregA) - GetVRegFloat(B()));
return true;
}
ALWAYS_INLINE bool MUL_FLOAT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegFloat(vregA, GetVRegFloat(vregA) * GetVRegFloat(B()));
return true;
}
ALWAYS_INLINE bool DIV_FLOAT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegFloat(vregA, GetVRegFloat(vregA) / GetVRegFloat(B()));
return true;
}
ALWAYS_INLINE bool REM_FLOAT_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegFloat(vregA, fmodf(GetVRegFloat(vregA), GetVRegFloat(B())));
return true;
}
ALWAYS_INLINE bool ADD_DOUBLE_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegDouble(vregA, GetVRegDouble(vregA) + GetVRegDouble(B()));
return true;
}
ALWAYS_INLINE bool SUB_DOUBLE_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegDouble(vregA, GetVRegDouble(vregA) - GetVRegDouble(B()));
return true;
}
ALWAYS_INLINE bool MUL_DOUBLE_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegDouble(vregA, GetVRegDouble(vregA) * GetVRegDouble(B()));
return true;
}
ALWAYS_INLINE bool DIV_DOUBLE_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegDouble(vregA, GetVRegDouble(vregA) / GetVRegDouble(B()));
return true;
}
ALWAYS_INLINE bool REM_DOUBLE_2ADDR() REQUIRES_SHARED(Locks::mutator_lock_) {
uint4_t vregA = A();
SetVRegDouble(vregA, fmod(GetVRegDouble(vregA), GetVRegDouble(B())));
return true;
}
ALWAYS_INLINE bool ADD_INT_LIT16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeAdd(GetVReg(B()), C()));
return true;
}
ALWAYS_INLINE bool RSUB_INT() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeSub(C(), GetVReg(B())));
return true;
}
ALWAYS_INLINE bool MUL_INT_LIT16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeMul(GetVReg(B()), C()));
return true;
}
ALWAYS_INLINE bool DIV_INT_LIT16() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoIntDivide(shadow_frame, A(), GetVReg(B()), C());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
ALWAYS_INLINE bool REM_INT_LIT16() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoIntRemainder(shadow_frame, A(), GetVReg(B()), C());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
ALWAYS_INLINE bool AND_INT_LIT16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) & C());
return true;
}
ALWAYS_INLINE bool OR_INT_LIT16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) | C());
return true;
}
ALWAYS_INLINE bool XOR_INT_LIT16() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) ^ C());
return true;
}
ALWAYS_INLINE bool ADD_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeAdd(GetVReg(B()), C()));
return true;
}
ALWAYS_INLINE bool RSUB_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeSub(C(), GetVReg(B())));
return true;
}
ALWAYS_INLINE bool MUL_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), SafeMul(GetVReg(B()), C()));
return true;
}
ALWAYS_INLINE bool DIV_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoIntDivide(shadow_frame, A(), GetVReg(B()), C());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
ALWAYS_INLINE bool REM_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
bool success = DoIntRemainder(shadow_frame, A(), GetVReg(B()), C());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
return true;
}
ALWAYS_INLINE bool AND_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) & C());
return true;
}
ALWAYS_INLINE bool OR_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) | C());
return true;
}
ALWAYS_INLINE bool XOR_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) ^ C());
return true;
}
ALWAYS_INLINE bool SHL_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) << (C() & 0x1f));
return true;
}
ALWAYS_INLINE bool SHR_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), GetVReg(B()) >> (C() & 0x1f));
return true;
}
ALWAYS_INLINE bool USHR_INT_LIT8() REQUIRES_SHARED(Locks::mutator_lock_) {
SetVReg(A(), static_cast<uint32_t>(GetVReg(B())) >> (C() & 0x1f));
return true;
}
ALWAYS_INLINE bool UNUSED_3E() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_3F() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_40() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_41() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_42() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_43() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_79() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_7A() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_F3() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_F4() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_F5() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_F6() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_F7() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_F8() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE bool UNUSED_F9() REQUIRES_SHARED(Locks::mutator_lock_) {
return HandleUnused();
}
ALWAYS_INLINE InstructionHandler(SwitchImplContext* ctx,
const instrumentation::Instrumentation* instrumentation,
Thread* self,
ShadowFrame& shadow_frame,
uint16_t dex_pc,
const Instruction* inst,
uint16_t inst_data,
const Instruction*& next,
bool& exit_interpreter_loop)
: ctx(ctx),
instrumentation(instrumentation),
self(self),
shadow_frame(shadow_frame),
dex_pc(dex_pc),
inst(inst),
inst_data(inst_data),
next(next),
exit_interpreter_loop(exit_interpreter_loop) {
}
private:
static constexpr bool do_assignability_check = do_access_check;
static constexpr MonitorState kMonitorState =
do_assignability_check ? MonitorState::kCountingMonitors : MonitorState::kNormalMonitors;
const CodeItemDataAccessor& Accessor() { return ctx->accessor; }
const uint16_t* Insns() { return ctx->accessor.Insns(); }
JValue* ResultRegister() { return &ctx->result_register; }
ALWAYS_INLINE int32_t A() { return inst->VRegA(kFormat, inst_data); }
ALWAYS_INLINE int32_t B() { return inst->VRegB(kFormat, inst_data); }
ALWAYS_INLINE int32_t C() { return inst->VRegC(kFormat); }
int32_t GetVReg(size_t i) const { return shadow_frame.GetVReg(i); }
int64_t GetVRegLong(size_t i) const { return shadow_frame.GetVRegLong(i); }
float GetVRegFloat(size_t i) const { return shadow_frame.GetVRegFloat(i); }
double GetVRegDouble(size_t i) const { return shadow_frame.GetVRegDouble(i); }
ObjPtr<mirror::Object> GetVRegReference(size_t i) const REQUIRES_SHARED(Locks::mutator_lock_) {
return shadow_frame.GetVRegReference(i);
}
void SetVReg(size_t i, int32_t val) { shadow_frame.SetVReg(i, val); }
void SetVRegLong(size_t i, int64_t val) { shadow_frame.SetVRegLong(i, val); }
void SetVRegFloat(size_t i, float val) { shadow_frame.SetVRegFloat(i, val); }
void SetVRegDouble(size_t i, double val) { shadow_frame.SetVRegDouble(i, val); }
void SetVRegReference(size_t i, ObjPtr<mirror::Object> val)
REQUIRES_SHARED(Locks::mutator_lock_) {
shadow_frame.SetVRegReference(i, val);
}
// Set the next instruction to be executed. It is the 'fall-through' instruction by default.
ALWAYS_INLINE void SetNextInstruction(const Instruction* next_inst) {
DCHECK_LT(next_inst->GetDexPc(Insns()), Accessor().InsnsSizeInCodeUnits());
next = next_inst;
}
SwitchImplContext* const ctx;
const instrumentation::Instrumentation* const instrumentation;
Thread* const self;
ShadowFrame& shadow_frame;
uint32_t const dex_pc;
const Instruction* const inst;
uint16_t const inst_data;
const Instruction*& next;
bool& exit_interpreter_loop;
};
#undef BRANCH_INSTRUMENTATION
#undef POSSIBLY_HANDLE_PENDING_EXCEPTION
#undef POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE
#undef POSSIBLY_HANDLE_PENDING_EXCEPTION_ON_INVOKE_POLYMORPHIC
#undef HANDLE_PENDING_EXCEPTION
// TODO On ASAN builds this function gets a huge stack frame. Since normally we run in the mterp
// this shouldn't cause any problems for stack overflow detection. Remove this once b/117341496 is
// fixed.
template<bool do_access_check, bool transaction_active>
ATTRIBUTE_NO_SANITIZE_ADDRESS void ExecuteSwitchImplCpp(SwitchImplContext* ctx) {
Thread* self = ctx->self;
const CodeItemDataAccessor& accessor = ctx->accessor;
ShadowFrame& shadow_frame = ctx->shadow_frame;
if (UNLIKELY(!shadow_frame.HasReferenceArray())) {
LOG(FATAL) << "Invalid shadow frame for interpreter use";
ctx->result = JValue();
return;
}
self->VerifyStack();
uint32_t dex_pc = shadow_frame.GetDexPC();
const auto* const instrumentation = Runtime::Current()->GetInstrumentation();
const uint16_t* const insns = accessor.Insns();
const Instruction* next = Instruction::At(insns + dex_pc);
uint16_t inst_data;
DCHECK(!shadow_frame.GetForceRetryInstruction())
<< "Entered interpreter from invoke without retry instruction being handled!";
bool const interpret_one_instruction = ctx->interpret_one_instruction;
while (true) {
const Instruction* const inst = next;
dex_pc = inst->GetDexPc(insns);
shadow_frame.SetDexPC(dex_pc);
TraceExecution(shadow_frame, inst, dex_pc);
inst_data = inst->Fetch16(0);
{
bool exit_loop = false;
InstructionHandler<do_access_check, transaction_active, Instruction::kInvalidFormat> handler(
ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit_loop);
if (!handler.Preamble()) {
if (UNLIKELY(exit_loop)) {
return;
}
if (UNLIKELY(interpret_one_instruction)) {
break;
}
continue;
}
}
switch (inst->Opcode(inst_data)) {
#define OPCODE_CASE(OPCODE, OPCODE_NAME, NAME, FORMAT, i, a, e, v) \
case OPCODE: { \
next = inst->RelativeAt(Instruction::SizeInCodeUnits(Instruction::FORMAT)); \
bool exit_loop = false; \
InstructionHandler<do_access_check, transaction_active, Instruction::FORMAT> handler( \
ctx, instrumentation, self, shadow_frame, dex_pc, inst, inst_data, next, exit_loop); \
handler.OPCODE_NAME(); \
if (UNLIKELY(exit_loop)) { \
return; \
} \
break; \
}
DEX_INSTRUCTION_LIST(OPCODE_CASE)
#undef OPCODE_CASE
}
if (UNLIKELY(interpret_one_instruction)) {
break;
}
}
// Record where we stopped.
shadow_frame.SetDexPC(next->GetDexPc(insns));
ctx->result = ctx->result_register;
return;
} // NOLINT(readability/fn_size)
} // namespace interpreter
} // namespace art
#endif // ART_RUNTIME_INTERPRETER_INTERPRETER_SWITCH_IMPL_INL_H_