|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "reference_processor.h" | 
|  |  | 
|  | #include "art_field-inl.h" | 
|  | #include "base/mutex.h" | 
|  | #include "base/time_utils.h" | 
|  | #include "base/utils.h" | 
|  | #include "base/systrace.h" | 
|  | #include "class_root-inl.h" | 
|  | #include "collector/garbage_collector.h" | 
|  | #include "jni/java_vm_ext.h" | 
|  | #include "mirror/class-inl.h" | 
|  | #include "mirror/object-inl.h" | 
|  | #include "mirror/reference-inl.h" | 
|  | #include "nativehelper/scoped_local_ref.h" | 
|  | #include "object_callbacks.h" | 
|  | #include "reflection.h" | 
|  | #include "scoped_thread_state_change-inl.h" | 
|  | #include "task_processor.h" | 
|  | #include "thread-inl.h" | 
|  | #include "thread_pool.h" | 
|  | #include "well_known_classes.h" | 
|  |  | 
|  | namespace art { | 
|  | namespace gc { | 
|  |  | 
|  | static constexpr bool kAsyncReferenceQueueAdd = false; | 
|  |  | 
|  | ReferenceProcessor::ReferenceProcessor() | 
|  | : collector_(nullptr), | 
|  | condition_("reference processor condition", *Locks::reference_processor_lock_) , | 
|  | soft_reference_queue_(Locks::reference_queue_soft_references_lock_), | 
|  | weak_reference_queue_(Locks::reference_queue_weak_references_lock_), | 
|  | finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), | 
|  | phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), | 
|  | cleared_references_(Locks::reference_queue_cleared_references_lock_) { | 
|  | } | 
|  |  | 
|  | static inline MemberOffset GetSlowPathFlagOffset(ObjPtr<mirror::Class> reference_class) | 
|  | REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(reference_class == GetClassRoot<mirror::Reference>()); | 
|  | // Second static field | 
|  | ArtField* field = reference_class->GetStaticField(1); | 
|  | DCHECK_STREQ(field->GetName(), "slowPathEnabled"); | 
|  | return field->GetOffset(); | 
|  | } | 
|  |  | 
|  | static inline void SetSlowPathFlag(bool enabled) REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>(); | 
|  | MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class); | 
|  | reference_class->SetFieldBoolean</* kTransactionActive= */ false, /* kCheckTransaction= */ false>( | 
|  | slow_path_offset, enabled ? 1 : 0); | 
|  | } | 
|  |  | 
|  | void ReferenceProcessor::EnableSlowPath() { | 
|  | SetSlowPathFlag(/* enabled= */ true); | 
|  | } | 
|  |  | 
|  | void ReferenceProcessor::DisableSlowPath(Thread* self) { | 
|  | SetSlowPathFlag(/* enabled= */ false); | 
|  | condition_.Broadcast(self); | 
|  | } | 
|  |  | 
|  | bool ReferenceProcessor::SlowPathEnabled() { | 
|  | ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>(); | 
|  | MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class); | 
|  | return reference_class->GetFieldBoolean(slow_path_offset); | 
|  | } | 
|  |  | 
|  | void ReferenceProcessor::BroadcastForSlowPath(Thread* self) { | 
|  | MutexLock mu(self, *Locks::reference_processor_lock_); | 
|  | condition_.Broadcast(self); | 
|  | } | 
|  |  | 
|  | ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self, | 
|  | ObjPtr<mirror::Reference> reference) { | 
|  | auto slow_path_required = [this, self]() REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | return gUseReadBarrier ? !self->GetWeakRefAccessEnabled() : SlowPathEnabled(); | 
|  | }; | 
|  | if (!slow_path_required()) { | 
|  | return reference->GetReferent(); | 
|  | } | 
|  | // If the referent is null then it is already cleared, we can just return null since there is no | 
|  | // scenario where it becomes non-null during the reference processing phase. | 
|  | // A read barrier may be unsafe here, and we use the result only when it's null or marked. | 
|  | ObjPtr<mirror::Object> referent = reference->template GetReferent<kWithoutReadBarrier>(); | 
|  | if (referent.IsNull()) { | 
|  | return referent; | 
|  | } | 
|  |  | 
|  | bool started_trace = false; | 
|  | uint64_t start_millis; | 
|  | auto finish_trace = [](uint64_t start_millis) { | 
|  | ATraceEnd(); | 
|  | uint64_t millis = MilliTime() - start_millis; | 
|  | static constexpr uint64_t kReportMillis = 10;  // Long enough to risk dropped frames. | 
|  | if (millis > kReportMillis) { | 
|  | LOG(WARNING) << "Weak pointer dereference blocked for " << millis << " milliseconds."; | 
|  | } | 
|  | }; | 
|  |  | 
|  | MutexLock mu(self, *Locks::reference_processor_lock_); | 
|  | // Keeping reference_processor_lock_ blocks the broadcast when we try to reenable the fast path. | 
|  | while (slow_path_required()) { | 
|  | DCHECK(collector_ != nullptr); | 
|  | const bool other_read_barrier = !kUseBakerReadBarrier && gUseReadBarrier; | 
|  | if (UNLIKELY(reference->IsFinalizerReferenceInstance() | 
|  | || rp_state_ == RpState::kStarting /* too early to determine mark state */ | 
|  | || (other_read_barrier && reference->IsPhantomReferenceInstance()))) { | 
|  | // Odd cases in which it doesn't hurt to just wait, or the wait is likely to be very brief. | 
|  |  | 
|  | // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the | 
|  | // presence of threads blocking for weak ref access. | 
|  | self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); | 
|  | if (!started_trace) { | 
|  | ATraceBegin("GetReferent blocked"); | 
|  | started_trace = true; | 
|  | start_millis = MilliTime(); | 
|  | } | 
|  | condition_.WaitHoldingLocks(self); | 
|  | continue; | 
|  | } | 
|  | DCHECK(!reference->IsPhantomReferenceInstance()); | 
|  |  | 
|  | if (rp_state_ == RpState::kInitClearingDone) { | 
|  | // Reachable references have their final referent values. | 
|  | break; | 
|  | } | 
|  | // Although reference processing is not done, we can always predict the correct return value | 
|  | // based on the current mark state. No additional marking from finalizers has been done, since | 
|  | // we hold reference_processor_lock_, which is required to advance to kInitClearingDone. | 
|  | DCHECK(rp_state_ == RpState::kInitMarkingDone); | 
|  | // Re-load and re-check referent, since the current one may have been read before we acquired | 
|  | // reference_lock. In particular a Reference.clear() call may have intervened. (b/33569625) | 
|  | referent = reference->GetReferent<kWithoutReadBarrier>(); | 
|  | ObjPtr<mirror::Object> forwarded_ref = | 
|  | referent.IsNull() ? nullptr : collector_->IsMarked(referent.Ptr()); | 
|  | // Either the referent was marked, and forwarded_ref is the correct return value, or it | 
|  | // was not, and forwarded_ref == null, which is again the correct return value. | 
|  | if (started_trace) { | 
|  | finish_trace(start_millis); | 
|  | } | 
|  | return forwarded_ref; | 
|  | } | 
|  | if (started_trace) { | 
|  | finish_trace(start_millis); | 
|  | } | 
|  | return reference->GetReferent(); | 
|  | } | 
|  |  | 
|  | // Forward SoftReferences. Can be done before we disable Reference access. Only | 
|  | // invoked if we are not clearing SoftReferences. | 
|  | uint32_t ReferenceProcessor::ForwardSoftReferences(TimingLogger* timings) { | 
|  | TimingLogger::ScopedTiming split( | 
|  | concurrent_ ? "ForwardSoftReferences" : "(Paused)ForwardSoftReferences", timings); | 
|  | // We used to argue that we should be smarter about doing this conditionally, but it's unclear | 
|  | // that's actually better than the more predictable strategy of basically only clearing | 
|  | // SoftReferences just before we would otherwise run out of memory. | 
|  | uint32_t non_null_refs = soft_reference_queue_.ForwardSoftReferences(collector_); | 
|  | if (ATraceEnabled()) { | 
|  | static constexpr size_t kBufSize = 80; | 
|  | char buf[kBufSize]; | 
|  | snprintf(buf, kBufSize, "Marking for %" PRIu32 " SoftReferences", non_null_refs); | 
|  | ATraceBegin(buf); | 
|  | collector_->ProcessMarkStack(); | 
|  | ATraceEnd(); | 
|  | } else { | 
|  | collector_->ProcessMarkStack(); | 
|  | } | 
|  | return non_null_refs; | 
|  | } | 
|  |  | 
|  | void ReferenceProcessor::Setup(Thread* self, | 
|  | collector::GarbageCollector* collector, | 
|  | bool concurrent, | 
|  | bool clear_soft_references) { | 
|  | DCHECK(collector != nullptr); | 
|  | MutexLock mu(self, *Locks::reference_processor_lock_); | 
|  | collector_ = collector; | 
|  | rp_state_ = RpState::kStarting; | 
|  | concurrent_ = concurrent; | 
|  | clear_soft_references_ = clear_soft_references; | 
|  | } | 
|  |  | 
|  | // Process reference class instances and schedule finalizations. | 
|  | // We advance rp_state_ to signal partial completion for the benefit of GetReferent. | 
|  | void ReferenceProcessor::ProcessReferences(Thread* self, TimingLogger* timings) { | 
|  | TimingLogger::ScopedTiming t(concurrent_ ? __FUNCTION__ : "(Paused)ProcessReferences", timings); | 
|  | if (!clear_soft_references_) { | 
|  | // Forward any additional SoftReferences we discovered late, now that reference access has been | 
|  | // inhibited. | 
|  | while (!soft_reference_queue_.IsEmpty()) { | 
|  | ForwardSoftReferences(timings); | 
|  | } | 
|  | } | 
|  | { | 
|  | MutexLock mu(self, *Locks::reference_processor_lock_); | 
|  | if (!gUseReadBarrier) { | 
|  | CHECK_EQ(SlowPathEnabled(), concurrent_) << "Slow path must be enabled iff concurrent"; | 
|  | } else { | 
|  | // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent_ == false). | 
|  | CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent_); | 
|  | } | 
|  | DCHECK(rp_state_ == RpState::kStarting); | 
|  | rp_state_ = RpState::kInitMarkingDone; | 
|  | condition_.Broadcast(self); | 
|  | } | 
|  | if (kIsDebugBuild && collector_->IsTransactionActive()) { | 
|  | // In transaction mode, we shouldn't enqueue any Reference to the queues. | 
|  | // See DelayReferenceReferent(). | 
|  | DCHECK(soft_reference_queue_.IsEmpty()); | 
|  | DCHECK(weak_reference_queue_.IsEmpty()); | 
|  | DCHECK(finalizer_reference_queue_.IsEmpty()); | 
|  | DCHECK(phantom_reference_queue_.IsEmpty()); | 
|  | } | 
|  | // Clear all remaining soft and weak references with white referents. | 
|  | // This misses references only reachable through finalizers. | 
|  | soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_); | 
|  | weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_); | 
|  | // Defer PhantomReference processing until we've finished marking through finalizers. | 
|  | { | 
|  | // TODO: Capture mark state of some system weaks here. If the referent was marked here, | 
|  | // then it is now safe to return, since it can only refer to marked objects. If it becomes | 
|  | // marked below, that is no longer guaranteed. | 
|  | MutexLock mu(self, *Locks::reference_processor_lock_); | 
|  | rp_state_ = RpState::kInitClearingDone; | 
|  | // At this point, all mutator-accessible data is marked (black). Objects enqueued for | 
|  | // finalization will only be made available to the mutator via CollectClearedReferences after | 
|  | // we're fully done marking. Soft and WeakReferences accessible to the mutator have been | 
|  | // processed and refer only to black objects.  Thus there is no danger of the mutator getting | 
|  | // access to non-black objects.  Weak reference processing is still nominally suspended, | 
|  | // But many kinds of references, including all java.lang.ref ones, are handled normally from | 
|  | // here on. See GetReferent(). | 
|  | } | 
|  | { | 
|  | TimingLogger::ScopedTiming t2( | 
|  | concurrent_ ? "EnqueueFinalizerReferences" : "(Paused)EnqueueFinalizerReferences", timings); | 
|  | // Preserve all white objects with finalize methods and schedule them for finalization. | 
|  | FinalizerStats finalizer_stats = | 
|  | finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector_); | 
|  | if (ATraceEnabled()) { | 
|  | static constexpr size_t kBufSize = 80; | 
|  | char buf[kBufSize]; | 
|  | snprintf(buf, kBufSize, "Marking from %" PRIu32 " / %" PRIu32 " finalizers", | 
|  | finalizer_stats.num_enqueued_, finalizer_stats.num_refs_); | 
|  | ATraceBegin(buf); | 
|  | collector_->ProcessMarkStack(); | 
|  | ATraceEnd(); | 
|  | } else { | 
|  | collector_->ProcessMarkStack(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process all soft and weak references with white referents, where the references are reachable | 
|  | // only from finalizers. It is unclear that there is any way to do this without slightly | 
|  | // violating some language spec. We choose to apply normal Reference processing rules for these. | 
|  | // This exposes the following issues: | 
|  | // 1) In the case of an unmarked referent, we may end up enqueuing an "unreachable" reference. | 
|  | //    This appears unavoidable, since we need to clear the reference for safety, unless we | 
|  | //    mark the referent and undo finalization decisions for objects we encounter during marking. | 
|  | //    (Some versions of the RI seem to do something along these lines.) | 
|  | //    Or we could clear the reference without enqueuing it, which also seems strange and | 
|  | //    unhelpful. | 
|  | // 2) In the case of a marked referent, we will preserve a reference to objects that may have | 
|  | //    been enqueued for finalization. Again fixing this would seem to involve at least undoing | 
|  | //    previous finalization / reference clearing decisions. (This would also mean than an object | 
|  | //    containing both a strong and a WeakReference to the same referent could see the | 
|  | //    WeakReference cleared.) | 
|  | // The treatment in (2) is potentially quite dangerous, since Reference.get() can e.g. return a | 
|  | // finalized object containing pointers to native objects that have already been deallocated. | 
|  | // But it can be argued that this is just an instance of the broader rule that it is not safe | 
|  | // for finalizers to access otherwise inaccessible finalizable objects. | 
|  | soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_, | 
|  | /*report_cleared=*/ true); | 
|  | weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_, | 
|  | /*report_cleared=*/ true); | 
|  |  | 
|  | // Clear all phantom references with white referents. It's fine to do this just once here. | 
|  | phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_); | 
|  |  | 
|  | // At this point all reference queues other than the cleared references should be empty. | 
|  | DCHECK(soft_reference_queue_.IsEmpty()); | 
|  | DCHECK(weak_reference_queue_.IsEmpty()); | 
|  | DCHECK(finalizer_reference_queue_.IsEmpty()); | 
|  | DCHECK(phantom_reference_queue_.IsEmpty()); | 
|  |  | 
|  | { | 
|  | MutexLock mu(self, *Locks::reference_processor_lock_); | 
|  | // Need to always do this since the next GC may be concurrent. Doing this for only concurrent | 
|  | // could result in a stale is_marked_callback_ being called before the reference processing | 
|  | // starts since there is a small window of time where slow_path_enabled_ is enabled but the | 
|  | // callback isn't yet set. | 
|  | if (!gUseReadBarrier && concurrent_) { | 
|  | // Done processing, disable the slow path and broadcast to the waiters. | 
|  | DisableSlowPath(self); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been | 
|  | // marked, put it on the appropriate list in the heap for later processing. | 
|  | void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass, | 
|  | ObjPtr<mirror::Reference> ref, | 
|  | collector::GarbageCollector* collector) { | 
|  | // klass can be the class of the old object if the visitor already updated the class of ref. | 
|  | DCHECK(klass != nullptr); | 
|  | DCHECK(klass->IsTypeOfReferenceClass()); | 
|  | mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); | 
|  | // do_atomic_update needs to be true because this happens outside of the reference processing | 
|  | // phase. | 
|  | if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update=*/true)) { | 
|  | if (UNLIKELY(collector->IsTransactionActive())) { | 
|  | // In transaction mode, keep the referent alive and avoid any reference processing to avoid the | 
|  | // issue of rolling back reference processing.  do_atomic_update needs to be true because this | 
|  | // happens outside of the reference processing phase. | 
|  | if (!referent->IsNull()) { | 
|  | collector->MarkHeapReference(referent, /*do_atomic_update=*/ true); | 
|  | } | 
|  | return; | 
|  | } | 
|  | Thread* self = Thread::Current(); | 
|  | // TODO: Remove these locks, and use atomic stacks for storing references? | 
|  | // We need to check that the references haven't already been enqueued since we can end up | 
|  | // scanning the same reference multiple times due to dirty cards. | 
|  | if (klass->IsSoftReferenceClass()) { | 
|  | soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); | 
|  | } else if (klass->IsWeakReferenceClass()) { | 
|  | weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); | 
|  | } else if (klass->IsFinalizerReferenceClass()) { | 
|  | finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); | 
|  | } else if (klass->IsPhantomReferenceClass()) { | 
|  | phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); | 
|  | } else { | 
|  | LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex | 
|  | << klass->GetAccessFlags(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) { | 
|  | cleared_references_.UpdateRoots(visitor); | 
|  | } | 
|  |  | 
|  | class ClearedReferenceTask : public HeapTask { | 
|  | public: | 
|  | explicit ClearedReferenceTask(jobject cleared_references) | 
|  | : HeapTask(NanoTime()), cleared_references_(cleared_references) { | 
|  | } | 
|  | void Run(Thread* thread) override { | 
|  | ScopedObjectAccess soa(thread); | 
|  | WellKnownClasses::java_lang_ref_ReferenceQueue_add->InvokeStatic<'V', 'L'>( | 
|  | thread, soa.Decode<mirror::Object>(cleared_references_)); | 
|  | soa.Env()->DeleteGlobalRef(cleared_references_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const jobject cleared_references_; | 
|  | }; | 
|  |  | 
|  | SelfDeletingTask* ReferenceProcessor::CollectClearedReferences(Thread* self) { | 
|  | Locks::mutator_lock_->AssertNotHeld(self); | 
|  | // By default we don't actually need to do anything. Just return this no-op task to avoid having | 
|  | // to put in ifs. | 
|  | std::unique_ptr<SelfDeletingTask> result(new FunctionTask([](Thread*) {})); | 
|  | // When a runtime isn't started there are no reference queues to care about so ignore. | 
|  | if (!cleared_references_.IsEmpty()) { | 
|  | if (LIKELY(Runtime::Current()->IsStarted())) { | 
|  | jobject cleared_references; | 
|  | { | 
|  | ReaderMutexLock mu(self, *Locks::mutator_lock_); | 
|  | cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef( | 
|  | self, cleared_references_.GetList()); | 
|  | } | 
|  | if (kAsyncReferenceQueueAdd) { | 
|  | // TODO: This can cause RunFinalization to terminate before newly freed objects are | 
|  | // finalized since they may not be enqueued by the time RunFinalization starts. | 
|  | Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( | 
|  | self, new ClearedReferenceTask(cleared_references)); | 
|  | } else { | 
|  | result.reset(new ClearedReferenceTask(cleared_references)); | 
|  | } | 
|  | } | 
|  | cleared_references_.Clear(); | 
|  | } | 
|  | return result.release(); | 
|  | } | 
|  |  | 
|  | void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) { | 
|  | Thread* self = Thread::Current(); | 
|  | MutexLock mu(self, *Locks::reference_processor_lock_); | 
|  | // Need to wait until reference processing is done since IsMarkedHeapReference does not have a | 
|  | // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions. | 
|  | // This also handles the race where the referent gets cleared after a null check but before | 
|  | // IsMarkedHeapReference is called. | 
|  | WaitUntilDoneProcessingReferences(self); | 
|  | if (Runtime::Current()->IsActiveTransaction()) { | 
|  | ref->ClearReferent<true>(); | 
|  | } else { | 
|  | ref->ClearReferent<false>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) { | 
|  | // Wait until we are done processing reference. | 
|  | while ((!gUseReadBarrier && SlowPathEnabled()) || | 
|  | (gUseReadBarrier && !self->GetWeakRefAccessEnabled())) { | 
|  | // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the | 
|  | // presence of threads blocking for weak ref access. | 
|  | self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); | 
|  | condition_.WaitHoldingLocks(self); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ReferenceProcessor::MakeCircularListIfUnenqueued( | 
|  | ObjPtr<mirror::FinalizerReference> reference) { | 
|  | Thread* self = Thread::Current(); | 
|  | MutexLock mu(self, *Locks::reference_processor_lock_); | 
|  | WaitUntilDoneProcessingReferences(self); | 
|  | // At this point, since the sentinel of the reference is live, it is guaranteed to not be | 
|  | // enqueued if we just finished processing references. Otherwise, we may be doing the main GC | 
|  | // phase. Since we are holding the reference processor lock, it guarantees that reference | 
|  | // processing can't begin. The GC could have just enqueued the reference one one of the internal | 
|  | // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this | 
|  | // race. | 
|  | MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); | 
|  | if (reference->IsUnprocessed()) { | 
|  | CHECK(reference->IsFinalizerReferenceInstance()); | 
|  | reference->SetPendingNext(reference); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | }  // namespace gc | 
|  | }  // namespace art |