|  | /* | 
|  | * Copyright (C) 2013 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #ifndef ART_RUNTIME_GC_HEAP_INL_H_ | 
|  | #define ART_RUNTIME_GC_HEAP_INL_H_ | 
|  |  | 
|  | #include "heap.h" | 
|  |  | 
|  | #include "allocation_listener.h" | 
|  | #include "base/quasi_atomic.h" | 
|  | #include "base/time_utils.h" | 
|  | #include "gc/accounting/atomic_stack.h" | 
|  | #include "gc/accounting/card_table-inl.h" | 
|  | #include "gc/allocation_record.h" | 
|  | #include "gc/collector/semi_space.h" | 
|  | #include "gc/space/bump_pointer_space-inl.h" | 
|  | #include "gc/space/dlmalloc_space-inl.h" | 
|  | #include "gc/space/large_object_space.h" | 
|  | #include "gc/space/region_space-inl.h" | 
|  | #include "gc/space/rosalloc_space-inl.h" | 
|  | #include "handle_scope-inl.h" | 
|  | #include "obj_ptr-inl.h" | 
|  | #include "runtime.h" | 
|  | #include "thread-inl.h" | 
|  | #include "verify_object.h" | 
|  | #include "write_barrier-inl.h" | 
|  |  | 
|  | namespace art { | 
|  | namespace gc { | 
|  |  | 
|  | template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor> | 
|  | inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, | 
|  | ObjPtr<mirror::Class> klass, | 
|  | size_t byte_count, | 
|  | AllocatorType allocator, | 
|  | const PreFenceVisitor& pre_fence_visitor) { | 
|  | auto no_suspend_pre_fence_visitor = | 
|  | [&pre_fence_visitor](auto... x) REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | ScopedAssertNoThreadSuspension sants("No thread suspension during pre-fence visitor"); | 
|  | pre_fence_visitor(x...); | 
|  | }; | 
|  |  | 
|  | if (kIsDebugBuild) { | 
|  | CheckPreconditionsForAllocObject(klass, byte_count); | 
|  | // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are | 
|  | // done in the runnable state where suspension is expected. | 
|  | CHECK_EQ(self->GetState(), ThreadState::kRunnable); | 
|  | self->AssertThreadSuspensionIsAllowable(); | 
|  | self->AssertNoPendingException(); | 
|  | // Make sure to preserve klass. | 
|  | StackHandleScope<1> hs(self); | 
|  | HandleWrapperObjPtr<mirror::Class> h = hs.NewHandleWrapper(&klass); | 
|  | self->PoisonObjectPointers(); | 
|  | } | 
|  | auto pre_object_allocated = [&]() REQUIRES_SHARED(Locks::mutator_lock_) | 
|  | REQUIRES(!Roles::uninterruptible_ /* only suspends if kInstrumented */) { | 
|  | if constexpr (kInstrumented) { | 
|  | AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst); | 
|  | if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) { | 
|  | StackHandleScope<1> hs(self); | 
|  | HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(&klass)); | 
|  | l->PreObjectAllocated(self, h_klass, &byte_count); | 
|  | } | 
|  | } | 
|  | }; | 
|  | ObjPtr<mirror::Object> obj; | 
|  | // bytes allocated for the (individual) object. | 
|  | size_t bytes_allocated; | 
|  | size_t usable_size; | 
|  | size_t new_num_bytes_allocated = 0; | 
|  | bool need_gc = false; | 
|  | uint32_t starting_gc_num;  // o.w. GC number at which we observed need for GC. | 
|  | { | 
|  | // Bytes allocated that includes bulk thread-local buffer allocations in addition to direct | 
|  | // non-TLAB object allocations. Only set for non-thread-local allocation, | 
|  | size_t bytes_tl_bulk_allocated = 0u; | 
|  | // Do the initial pre-alloc | 
|  | // TODO: Consider what happens if the allocator is switched while suspended here. | 
|  | pre_object_allocated(); | 
|  |  | 
|  | // Need to check that we aren't the large object allocator since the large object allocation | 
|  | // code path includes this function. If we didn't check we would have an infinite loop. | 
|  | if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) { | 
|  | // AllocLargeObject can suspend and will recall PreObjectAllocated if needed. | 
|  | obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count, | 
|  | pre_fence_visitor); | 
|  | if (obj != nullptr) { | 
|  | return obj.Ptr(); | 
|  | } | 
|  | // There should be an OOM exception, since we are retrying, clear it. | 
|  | self->ClearException(); | 
|  |  | 
|  | // If the large object allocation failed, try to use the normal spaces (main space, | 
|  | // non moving space). This can happen if there is significant virtual address space | 
|  | // fragmentation. | 
|  | // kInstrumented may be out of date, so recurse without large object checking, rather than | 
|  | // continue. | 
|  | return AllocObjectWithAllocator</*kInstrumented=*/ true, /*kCheckLargeObject=*/ false> | 
|  | (self, klass, byte_count, GetUpdatedAllocator(allocator), pre_fence_visitor); | 
|  | } | 
|  | ScopedAssertNoThreadSuspension ants("Called PreObjectAllocated, no suspend until alloc"); | 
|  | if (IsTLABAllocator(allocator)) { | 
|  | byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment); | 
|  | } | 
|  | // If we have a thread local allocation we don't need to update bytes allocated. | 
|  | if (IsTLABAllocator(allocator) && byte_count <= self->TlabSize()) { | 
|  | obj = self->AllocTlab(byte_count); | 
|  | DCHECK(obj != nullptr) << "AllocTlab can't fail"; | 
|  | obj->SetClass(klass); | 
|  | if (kUseBakerReadBarrier) { | 
|  | obj->AssertReadBarrierState(); | 
|  | } | 
|  | bytes_allocated = byte_count; | 
|  | usable_size = bytes_allocated; | 
|  | no_suspend_pre_fence_visitor(obj, usable_size); | 
|  | QuasiAtomic::ThreadFenceForConstructor(); | 
|  | } else if ( | 
|  | !kInstrumented && allocator == kAllocatorTypeRosAlloc && | 
|  | (obj = rosalloc_space_->AllocThreadLocal(self, byte_count, &bytes_allocated)) != nullptr && | 
|  | LIKELY(obj != nullptr)) { | 
|  | DCHECK(!is_running_on_memory_tool_); | 
|  | obj->SetClass(klass); | 
|  | if (kUseBakerReadBarrier) { | 
|  | obj->AssertReadBarrierState(); | 
|  | } | 
|  | usable_size = bytes_allocated; | 
|  | no_suspend_pre_fence_visitor(obj, usable_size); | 
|  | QuasiAtomic::ThreadFenceForConstructor(); | 
|  | } else { | 
|  | obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated, | 
|  | &usable_size, &bytes_tl_bulk_allocated); | 
|  | if (UNLIKELY(obj == nullptr)) { | 
|  | // AllocateInternalWithGc internally re-allows, and can cause, thread suspension, if | 
|  | // someone instruments the entrypoints or changes the allocator in a suspend point here, | 
|  | // we need to retry the allocation. It will send the pre-alloc event again. | 
|  | obj = AllocateInternalWithGc(self, | 
|  | allocator, | 
|  | kInstrumented, | 
|  | byte_count, | 
|  | &bytes_allocated, | 
|  | &usable_size, | 
|  | &bytes_tl_bulk_allocated, | 
|  | &klass); | 
|  | if (obj == nullptr) { | 
|  | // The only way that we can get a null return if there is no pending exception is if the | 
|  | // allocator or instrumentation changed. | 
|  | if (!self->IsExceptionPending()) { | 
|  | // Since we are restarting, allow thread suspension. | 
|  | ScopedAllowThreadSuspension ats; | 
|  | // Get the new class size in case class redefinition changed the class size since alloc | 
|  | // started. | 
|  | int new_byte_count = klass->IsVariableSize()? byte_count : klass->GetObjectSize(); | 
|  | // AllocObject will pick up the new allocator type, and instrumented as true is the safe | 
|  | // default. | 
|  | return AllocObjectWithAllocator</*kInstrumented=*/true>(self, | 
|  | klass, | 
|  | new_byte_count, | 
|  | GetUpdatedAllocator(allocator), | 
|  | pre_fence_visitor); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | // Non-null result implies neither instrumentation nor allocator changed. | 
|  | } | 
|  | DCHECK_GT(bytes_allocated, 0u); | 
|  | DCHECK_GT(usable_size, 0u); | 
|  | obj->SetClass(klass); | 
|  | if (kUseBakerReadBarrier) { | 
|  | obj->AssertReadBarrierState(); | 
|  | } | 
|  | if (collector::SemiSpace::kUseRememberedSet && | 
|  | UNLIKELY(allocator == kAllocatorTypeNonMoving)) { | 
|  | // (Note this if statement will be constant folded away for the fast-path quick entry | 
|  | // points.) Because SetClass() has no write barrier, the GC may need a write barrier in the | 
|  | // case the object is non movable and points to a recently allocated movable class. | 
|  | WriteBarrier::ForFieldWrite(obj, mirror::Object::ClassOffset(), klass); | 
|  | } | 
|  | no_suspend_pre_fence_visitor(obj, usable_size); | 
|  | QuasiAtomic::ThreadFenceForConstructor(); | 
|  | } | 
|  | if (bytes_tl_bulk_allocated > 0) { | 
|  | starting_gc_num = GetCurrentGcNum(); | 
|  | size_t num_bytes_allocated_before = | 
|  | num_bytes_allocated_.fetch_add(bytes_tl_bulk_allocated, std::memory_order_relaxed); | 
|  | new_num_bytes_allocated = num_bytes_allocated_before + bytes_tl_bulk_allocated; | 
|  | // Only trace when we get an increase in the number of bytes allocated. This happens when | 
|  | // obtaining a new TLAB and isn't often enough to hurt performance according to golem. | 
|  | if (region_space_) { | 
|  | // With CC collector, during a GC cycle, the heap usage increases as | 
|  | // there are two copies of evacuated objects. Therefore, add evac-bytes | 
|  | // to the heap size. When the GC cycle is not running, evac-bytes | 
|  | // are 0, as required. | 
|  | TraceHeapSize(new_num_bytes_allocated + region_space_->EvacBytes()); | 
|  | } else { | 
|  | TraceHeapSize(new_num_bytes_allocated); | 
|  | } | 
|  | // IsGcConcurrent() isn't known at compile time so we can optimize by not checking it for the | 
|  | // BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be | 
|  | // optimized out. | 
|  | if (IsGcConcurrent() && UNLIKELY(ShouldConcurrentGCForJava(new_num_bytes_allocated))) { | 
|  | need_gc = true; | 
|  | } | 
|  | GetMetrics()->TotalBytesAllocated()->Add(bytes_tl_bulk_allocated); | 
|  | GetMetrics()->TotalBytesAllocatedDelta()->Add(bytes_tl_bulk_allocated); | 
|  | } | 
|  | } | 
|  | if (kIsDebugBuild && Runtime::Current()->IsStarted()) { | 
|  | CHECK_LE(obj->SizeOf(), usable_size); | 
|  | } | 
|  | // TODO: Deprecate. | 
|  | if (kInstrumented) { | 
|  | if (Runtime::Current()->HasStatsEnabled()) { | 
|  | RuntimeStats* thread_stats = self->GetStats(); | 
|  | ++thread_stats->allocated_objects; | 
|  | thread_stats->allocated_bytes += bytes_allocated; | 
|  | RuntimeStats* global_stats = Runtime::Current()->GetStats(); | 
|  | ++global_stats->allocated_objects; | 
|  | global_stats->allocated_bytes += bytes_allocated; | 
|  | } | 
|  | } else { | 
|  | DCHECK(!Runtime::Current()->HasStatsEnabled()); | 
|  | } | 
|  | if (kInstrumented) { | 
|  | if (IsAllocTrackingEnabled()) { | 
|  | // allocation_records_ is not null since it never becomes null after allocation tracking is | 
|  | // enabled. | 
|  | DCHECK(allocation_records_ != nullptr); | 
|  | allocation_records_->RecordAllocation(self, &obj, bytes_allocated); | 
|  | } | 
|  | AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst); | 
|  | if (l != nullptr) { | 
|  | // Same as above. We assume that a listener that was once stored will never be deleted. | 
|  | // Otherwise we'd have to perform this under a lock. | 
|  | l->ObjectAllocated(self, &obj, bytes_allocated); | 
|  | } | 
|  | } else { | 
|  | DCHECK(!IsAllocTrackingEnabled()); | 
|  | } | 
|  | if (AllocatorHasAllocationStack(allocator)) { | 
|  | PushOnAllocationStack(self, &obj); | 
|  | } | 
|  | if (kInstrumented) { | 
|  | if (gc_stress_mode_) { | 
|  | CheckGcStressMode(self, &obj); | 
|  | } | 
|  | } else { | 
|  | DCHECK(!gc_stress_mode_); | 
|  | } | 
|  | if (need_gc) { | 
|  | // Do this only once thread suspension is allowed again, and we're done with kInstrumented. | 
|  | RequestConcurrentGCAndSaveObject(self, /*force_full=*/ false, starting_gc_num, &obj); | 
|  | } | 
|  | VerifyObject(obj); | 
|  | self->VerifyStack(); | 
|  | return obj.Ptr(); | 
|  | } | 
|  |  | 
|  | // The size of a thread-local allocation stack in the number of references. | 
|  | static constexpr size_t kThreadLocalAllocationStackSize = 128; | 
|  |  | 
|  | inline void Heap::PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) { | 
|  | if (kUseThreadLocalAllocationStack) { | 
|  | if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(obj->Ptr()))) { | 
|  | PushOnThreadLocalAllocationStackWithInternalGC(self, obj); | 
|  | } | 
|  | } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(obj->Ptr()))) { | 
|  | PushOnAllocationStackWithInternalGC(self, obj); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <bool kInstrumented, typename PreFenceVisitor> | 
|  | inline mirror::Object* Heap::AllocLargeObject(Thread* self, | 
|  | ObjPtr<mirror::Class>* klass, | 
|  | size_t byte_count, | 
|  | const PreFenceVisitor& pre_fence_visitor) { | 
|  | // Save and restore the class in case it moves. | 
|  | StackHandleScope<1> hs(self); | 
|  | auto klass_wrapper = hs.NewHandleWrapper(klass); | 
|  | mirror::Object* obj = AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor> | 
|  | (self, *klass, byte_count, kAllocatorTypeLOS, pre_fence_visitor); | 
|  | // Java Heap Profiler check and sample allocation. | 
|  | JHPCheckNonTlabSampleAllocation(self, obj, byte_count); | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | template <const bool kInstrumented, const bool kGrow> | 
|  | inline mirror::Object* Heap::TryToAllocate(Thread* self, | 
|  | AllocatorType allocator_type, | 
|  | size_t alloc_size, | 
|  | size_t* bytes_allocated, | 
|  | size_t* usable_size, | 
|  | size_t* bytes_tl_bulk_allocated) { | 
|  | if (allocator_type != kAllocatorTypeRegionTLAB && | 
|  | allocator_type != kAllocatorTypeTLAB && | 
|  | allocator_type != kAllocatorTypeRosAlloc && | 
|  | UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, alloc_size, kGrow))) { | 
|  | return nullptr; | 
|  | } | 
|  | mirror::Object* ret; | 
|  | switch (allocator_type) { | 
|  | case kAllocatorTypeBumpPointer: { | 
|  | DCHECK(bump_pointer_space_ != nullptr); | 
|  | alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment); | 
|  | ret = bump_pointer_space_->AllocNonvirtual(alloc_size); | 
|  | if (LIKELY(ret != nullptr)) { | 
|  | *bytes_allocated = alloc_size; | 
|  | *usable_size = alloc_size; | 
|  | *bytes_tl_bulk_allocated = alloc_size; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case kAllocatorTypeRosAlloc: { | 
|  | if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) { | 
|  | // If running on ASan, we should be using the instrumented path. | 
|  | size_t max_bytes_tl_bulk_allocated = rosalloc_space_->MaxBytesBulkAllocatedFor(alloc_size); | 
|  | if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, | 
|  | max_bytes_tl_bulk_allocated, | 
|  | kGrow))) { | 
|  | return nullptr; | 
|  | } | 
|  | ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size, | 
|  | bytes_tl_bulk_allocated); | 
|  | } else { | 
|  | DCHECK(!is_running_on_memory_tool_); | 
|  | size_t max_bytes_tl_bulk_allocated = | 
|  | rosalloc_space_->MaxBytesBulkAllocatedForNonvirtual(alloc_size); | 
|  | if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, | 
|  | max_bytes_tl_bulk_allocated, | 
|  | kGrow))) { | 
|  | return nullptr; | 
|  | } | 
|  | if (!kInstrumented) { | 
|  | DCHECK(!rosalloc_space_->CanAllocThreadLocal(self, alloc_size)); | 
|  | } | 
|  | ret = rosalloc_space_->AllocNonvirtual(self, | 
|  | alloc_size, | 
|  | bytes_allocated, | 
|  | usable_size, | 
|  | bytes_tl_bulk_allocated); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case kAllocatorTypeDlMalloc: { | 
|  | if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) { | 
|  | // If running on ASan, we should be using the instrumented path. | 
|  | ret = dlmalloc_space_->Alloc(self, | 
|  | alloc_size, | 
|  | bytes_allocated, | 
|  | usable_size, | 
|  | bytes_tl_bulk_allocated); | 
|  | } else { | 
|  | DCHECK(!is_running_on_memory_tool_); | 
|  | ret = dlmalloc_space_->AllocNonvirtual(self, | 
|  | alloc_size, | 
|  | bytes_allocated, | 
|  | usable_size, | 
|  | bytes_tl_bulk_allocated); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case kAllocatorTypeNonMoving: { | 
|  | ret = non_moving_space_->Alloc(self, | 
|  | alloc_size, | 
|  | bytes_allocated, | 
|  | usable_size, | 
|  | bytes_tl_bulk_allocated); | 
|  | break; | 
|  | } | 
|  | case kAllocatorTypeLOS: { | 
|  | ret = large_object_space_->Alloc(self, | 
|  | alloc_size, | 
|  | bytes_allocated, | 
|  | usable_size, | 
|  | bytes_tl_bulk_allocated); | 
|  | // Note that the bump pointer spaces aren't necessarily next to | 
|  | // the other continuous spaces like the non-moving alloc space or | 
|  | // the zygote space. | 
|  | DCHECK(ret == nullptr || large_object_space_->Contains(ret)); | 
|  | break; | 
|  | } | 
|  | case kAllocatorTypeRegion: { | 
|  | DCHECK(region_space_ != nullptr); | 
|  | alloc_size = RoundUp(alloc_size, space::RegionSpace::kAlignment); | 
|  | ret = region_space_->AllocNonvirtual<false>(alloc_size, | 
|  | bytes_allocated, | 
|  | usable_size, | 
|  | bytes_tl_bulk_allocated); | 
|  | break; | 
|  | } | 
|  | case kAllocatorTypeTLAB: | 
|  | FALLTHROUGH_INTENDED; | 
|  | case kAllocatorTypeRegionTLAB: { | 
|  | DCHECK_ALIGNED(alloc_size, kObjectAlignment); | 
|  | static_assert(space::RegionSpace::kAlignment == space::BumpPointerSpace::kAlignment, | 
|  | "mismatched alignments"); | 
|  | static_assert(kObjectAlignment == space::BumpPointerSpace::kAlignment, | 
|  | "mismatched alignments"); | 
|  | if (UNLIKELY(self->TlabSize() < alloc_size)) { | 
|  | return AllocWithNewTLAB(self, | 
|  | allocator_type, | 
|  | alloc_size, | 
|  | kGrow, | 
|  | bytes_allocated, | 
|  | usable_size, | 
|  | bytes_tl_bulk_allocated); | 
|  | } | 
|  | // The allocation can't fail. | 
|  | ret = self->AllocTlab(alloc_size); | 
|  | DCHECK(ret != nullptr); | 
|  | *bytes_allocated = alloc_size; | 
|  | *bytes_tl_bulk_allocated = 0;  // Allocated in an existing buffer. | 
|  | *usable_size = alloc_size; | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | LOG(FATAL) << "Invalid allocator type"; | 
|  | ret = nullptr; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | inline bool Heap::ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const { | 
|  | // We need to have a zygote space or else our newly allocated large object can end up in the | 
|  | // Zygote resulting in it being prematurely freed. | 
|  | // We can only do this for primitive objects since large objects will not be within the card table | 
|  | // range. This also means that we rely on SetClass not dirtying the object's card. | 
|  | return byte_count >= large_object_threshold_ && (c->IsPrimitiveArray() || c->IsStringClass()); | 
|  | } | 
|  |  | 
|  | inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type ATTRIBUTE_UNUSED, | 
|  | size_t alloc_size, | 
|  | bool grow) { | 
|  | size_t old_target = target_footprint_.load(std::memory_order_relaxed); | 
|  | while (true) { | 
|  | size_t old_allocated = num_bytes_allocated_.load(std::memory_order_relaxed); | 
|  | size_t new_footprint = old_allocated + alloc_size; | 
|  | // Tests against heap limits are inherently approximate, since multiple allocations may | 
|  | // race, and this is not atomic with the allocation. | 
|  | if (UNLIKELY(new_footprint <= old_target)) { | 
|  | return false; | 
|  | } else if (UNLIKELY(new_footprint > growth_limit_)) { | 
|  | return true; | 
|  | } | 
|  | // We are between target_footprint_ and growth_limit_ . | 
|  | if (IsGcConcurrent()) { | 
|  | return false; | 
|  | } else { | 
|  | if (grow) { | 
|  | if (target_footprint_.compare_exchange_weak(/*inout ref*/old_target, new_footprint, | 
|  | std::memory_order_relaxed)) { | 
|  | VlogHeapGrowth(old_target, new_footprint, alloc_size); | 
|  | return false; | 
|  | }  // else try again. | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | inline bool Heap::ShouldConcurrentGCForJava(size_t new_num_bytes_allocated) { | 
|  | // For a Java allocation, we only check whether the number of Java allocated bytes excceeds a | 
|  | // threshold. By not considering native allocation here, we (a) ensure that Java heap bounds are | 
|  | // maintained, and (b) reduce the cost of the check here. | 
|  | return new_num_bytes_allocated >= concurrent_start_bytes_; | 
|  | } | 
|  |  | 
|  | }  // namespace gc | 
|  | }  // namespace art | 
|  |  | 
|  | #endif  // ART_RUNTIME_GC_HEAP_INL_H_ |