blob: 43398c5804431ceaa4e5c500aac8c9804cc2c3d3 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_riscv64.h"
#include "android-base/logging.h"
#include "android-base/macros.h"
#include "arch/riscv64/registers_riscv64.h"
#include "base/macros.h"
#include "dwarf/register.h"
#include "heap_poisoning.h"
#include "intrinsics_list.h"
#include "jit/profiling_info.h"
#include "mirror/class-inl.h"
#include "optimizing/nodes.h"
#include "stack_map_stream.h"
#include "utils/label.h"
#include "utils/riscv64/assembler_riscv64.h"
#include "utils/stack_checks.h"
namespace art {
namespace riscv64 {
static constexpr XRegister kCoreCalleeSaves[] = {
// S1(TR) is excluded as the ART thread register.
S0, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, RA
};
static constexpr FRegister kFpuCalleeSaves[] = {
FS0, FS1, FS2, FS3, FS4, FS5, FS6, FS7, FS8, FS9, FS10, FS11
};
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kRiscv64PointerSize, x).Int32Value()
Location RegisterOrZeroBitPatternLocation(HInstruction* instruction) {
return IsZeroBitPattern(instruction)
? Location::ConstantLocation(instruction->AsConstant())
: Location::RequiresRegister();
}
XRegister InputXRegisterOrZero(Location location) {
if (location.IsConstant()) {
DCHECK(location.GetConstant()->IsZeroBitPattern());
return Zero;
} else {
return location.AsRegister<XRegister>();
}
}
Location Riscv64ReturnLocation(DataType::Type return_type) {
switch (return_type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kUint32:
case DataType::Type::kInt32:
case DataType::Type::kReference:
case DataType::Type::kUint64:
case DataType::Type::kInt64:
return Location::RegisterLocation(A0);
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
return Location::FpuRegisterLocation(FA0);
case DataType::Type::kVoid:
return Location::NoLocation();
}
UNREACHABLE();
}
Location InvokeDexCallingConventionVisitorRISCV64::GetReturnLocation(DataType::Type type) const {
return Riscv64ReturnLocation(type);
}
Location InvokeDexCallingConventionVisitorRISCV64::GetMethodLocation() const {
return Location::RegisterLocation(kArtMethodRegister);
}
Location InvokeDexCallingConventionVisitorRISCV64::GetNextLocation(DataType::Type type) {
Location next_location;
if (type == DataType::Type::kVoid) {
LOG(FATAL) << "Unexpected parameter type " << type;
}
// Note: Unlike the RISC-V C/C++ calling convention, managed ABI does not use
// GPRs to pass FP args when we run out of FPRs.
if (DataType::IsFloatingPointType(type) &&
float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
next_location =
Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
} else if (!DataType::IsFloatingPointType(type) &&
(gp_index_ < calling_convention.GetNumberOfRegisters())) {
next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index_++));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) :
Location::StackSlot(stack_offset);
}
// Space on the stack is reserved for all arguments.
stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
return next_location;
}
#define __ down_cast<CodeGeneratorRISCV64*>(codegen)->GetAssembler()-> // NOLINT
void LocationsBuilderRISCV64::HandleInvoke(HInvoke* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
Location LocationsBuilderRISCV64::RegisterOrZeroConstant(HInstruction* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
UNREACHABLE();
}
Location LocationsBuilderRISCV64::FpuRegisterOrConstantForStore(HInstruction* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
UNREACHABLE();
}
class CompileOptimizedSlowPathRISCV64 : public SlowPathCodeRISCV64 {
public:
CompileOptimizedSlowPathRISCV64() : SlowPathCodeRISCV64(/*instruction=*/ nullptr) {}
void EmitNativeCode(CodeGenerator* codegen) override {
uint32_t entrypoint_offset =
GetThreadOffset<kRiscv64PointerSize>(kQuickCompileOptimized).Int32Value();
__ Bind(GetEntryLabel());
__ Loadd(RA, TR, entrypoint_offset);
// Note: we don't record the call here (and therefore don't generate a stack
// map), as the entrypoint should never be suspended.
__ Jalr(RA);
__ J(GetExitLabel());
}
const char* GetDescription() const override { return "CompileOptimizedSlowPath"; }
private:
DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathRISCV64);
};
class SuspendCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 {
public:
SuspendCheckSlowPathRISCV64(HSuspendCheck* instruction, HBasicBlock* successor)
: SlowPathCodeRISCV64(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations); // Only saves live vector registers for SIMD.
riscv64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
RestoreLiveRegisters(codegen, locations); // Only restores live vector registers for SIMD.
if (successor_ == nullptr) {
__ J(GetReturnLabel());
} else {
__ J(riscv64_codegen->GetLabelOf(successor_));
}
}
Riscv64Label* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
const char* GetDescription() const override { return "SuspendCheckSlowPathRISCV64"; }
HBasicBlock* GetSuccessor() const { return successor_; }
private:
// If not null, the block to branch to after the suspend check.
HBasicBlock* const successor_;
// If `successor_` is null, the label to branch to after the suspend check.
Riscv64Label return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathRISCV64);
};
class NullCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 {
public:
explicit NullCheckSlowPathRISCV64(HNullCheck* instr) : SlowPathCodeRISCV64(instr) {}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
riscv64_codegen->InvokeRuntime(
kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
}
bool IsFatal() const override { return true; }
const char* GetDescription() const override { return "NullCheckSlowPathRISCV64"; }
private:
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathRISCV64);
};
#undef __
#define __ down_cast<Riscv64Assembler*>(GetAssembler())-> // NOLINT
InstructionCodeGeneratorRISCV64::InstructionCodeGeneratorRISCV64(HGraph* graph,
CodeGeneratorRISCV64* codegen)
: InstructionCodeGenerator(graph, codegen),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
void InstructionCodeGeneratorRISCV64::GenerateClassInitializationCheck(
SlowPathCodeRISCV64* slow_path, XRegister class_reg) {
UNUSED(slow_path);
UNUSED(class_reg);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateBitstringTypeCheckCompare(
HTypeCheckInstruction* instruction, XRegister temp) {
UNUSED(instruction);
UNUSED(temp);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
if (instruction->IsNoOp()) {
if (successor != nullptr) {
__ J(codegen_->GetLabelOf(successor));
}
return;
}
if (codegen_->CanUseImplicitSuspendCheck()) {
LOG(FATAL) << "Unimplemented ImplicitSuspendCheck";
return;
}
SuspendCheckSlowPathRISCV64* slow_path =
down_cast<SuspendCheckSlowPathRISCV64*>(instruction->GetSlowPath());
if (slow_path == nullptr) {
slow_path =
new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathRISCV64(instruction, successor);
instruction->SetSlowPath(slow_path);
codegen_->AddSlowPath(slow_path);
if (successor != nullptr) {
DCHECK(successor->IsLoopHeader());
}
} else {
DCHECK_EQ(slow_path->GetSuccessor(), successor);
}
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
__ Loadw(tmp, TR, Thread::ThreadFlagsOffset<kRiscv64PointerSize>().Int32Value());
static_assert(Thread::SuspendOrCheckpointRequestFlags() != std::numeric_limits<uint32_t>::max());
static_assert(IsPowerOfTwo(Thread::SuspendOrCheckpointRequestFlags() + 1u));
// Shift out other bits. Use an instruction that can be 16-bit with the "C" Standard Extension.
__ Slli(tmp, tmp, CLZ(static_cast<uint64_t>(Thread::SuspendOrCheckpointRequestFlags())));
if (successor == nullptr) {
__ Bnez(tmp, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ Beqz(tmp, codegen_->GetLabelOf(successor));
__ J(slow_path->GetEntryLabel());
// slow_path will return to GetLabelOf(successor).
}
}
void InstructionCodeGeneratorRISCV64::GenerateMinMaxInt(LocationSummary* locations, bool is_min) {
UNUSED(locations);
UNUSED(is_min);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateMinMaxFP(LocationSummary* locations,
bool is_min,
DataType::Type type) {
UNUSED(locations);
UNUSED(is_min);
UNUSED(type);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateMinMax(HBinaryOperation* instruction, bool is_min) {
UNUSED(instruction);
UNUSED(is_min);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateReferenceLoadOneRegister(
HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
UNUSED(instruction);
UNUSED(out);
UNUSED(offset);
UNUSED(maybe_temp);
UNUSED(read_barrier_option);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateReferenceLoadTwoRegisters(
HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
UNUSED(instruction);
UNUSED(out);
UNUSED(offset);
UNUSED(maybe_temp);
UNUSED(read_barrier_option);
UNUSED(obj);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
XRegister obj,
uint32_t offset,
ReadBarrierOption read_barrier_option,
Riscv64Label* label_low) {
UNUSED(instruction);
UNUSED(root);
UNUSED(obj);
UNUSED(offset);
UNUSED(read_barrier_option);
UNUSED(label_low);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
Riscv64Label* true_target,
Riscv64Label* false_target) {
UNUSED(instruction);
UNUSED(condition_input_index);
UNUSED(true_target);
UNUSED(false_target);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateIntLongCondition(IfCondition cond,
LocationSummary* locations) {
XRegister rd = locations->Out().AsRegister<XRegister>();
XRegister rs1 = locations->InAt(0).AsRegister<XRegister>();
Location rs2_location = locations->InAt(1);
bool use_imm = rs2_location.IsConstant();
int64_t imm = use_imm ? CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant()) : 0;
XRegister rs2 = use_imm ? kNoXRegister : rs2_location.AsRegister<XRegister>();
switch (cond) {
case kCondEQ:
case kCondNE:
if (!use_imm) {
__ Sub(rd, rs1, rs2); // SUB is OK here even for 32-bit comparison.
} else if (imm != 0) {
DCHECK(IsInt<12>(-imm));
__ Addi(rd, rs1, -imm); // ADDI is OK here even for 32-bit comparison.
} // else test `rs1` directly without subtraction for `use_imm && imm == 0`.
if (cond == kCondEQ) {
__ Seqz(rd, (use_imm && imm == 0) ? rs1 : rd);
} else {
__ Snez(rd, (use_imm && imm == 0) ? rs1 : rd);
}
break;
case kCondLT:
case kCondGE:
if (use_imm) {
DCHECK(IsInt<12>(imm));
__ Slti(rd, rs1, imm);
} else {
__ Slt(rd, rs1, rs2);
}
if (cond == kCondGE) {
// Calculate `rs1 >= rhs` as `!(rs1 < rhs)` since there's only the SLT but no SGE.
__ Xori(rd, rd, 1);
}
break;
case kCondLE:
case kCondGT:
if (use_imm) {
// Calculate `rs1 <= imm` as `rs1 < imm + 1`.
DCHECK(IsInt<12>(imm + 1)); // The value that overflows would fail this check.
__ Slti(rd, rs1, imm + 1);
} else {
__ Slt(rd, rs2, rs1);
}
if ((cond == kCondGT) == use_imm) {
// Calculate `rs1 > imm` as `!(rs1 < imm + 1)` and calculate
// `rs1 <= rs2` as `!(rs2 < rs1)` since there's only the SLT but no SGE.
__ Xori(rd, rd, 1);
}
break;
case kCondB:
case kCondAE:
if (use_imm) {
// Sltiu sign-extends its 12-bit immediate operand before the comparison
// and thus lets us compare directly with unsigned values in the ranges
// [0, 0x7ff] and [0x[ffffffff]fffff800, 0x[ffffffff]ffffffff].
DCHECK(IsInt<12>(imm));
__ Sltiu(rd, rs1, imm);
} else {
__ Sltu(rd, rs1, rs2);
}
if (cond == kCondAE) {
// Calculate `rs1 AE rhs` as `!(rs1 B rhs)` since there's only the SLTU but no SGEU.
__ Xori(rd, rd, 1);
}
break;
case kCondBE:
case kCondA:
if (use_imm) {
// Calculate `rs1 BE imm` as `rs1 B imm + 1`.
// Sltiu sign-extends its 12-bit immediate operand before the comparison
// and thus lets us compare directly with unsigned values in the ranges
// [0, 0x7ff] and [0x[ffffffff]fffff800, 0x[ffffffff]ffffffff].
DCHECK(IsInt<12>(imm + 1)); // The value that overflows would fail this check.
__ Sltiu(rd, rs1, imm + 1);
} else {
__ Sltu(rd, rs2, rs1);
}
if ((cond == kCondA) == use_imm) {
// Calculate `rs1 A imm` as `!(rs1 B imm + 1)` and calculate
// `rs1 BE rs2` as `!(rs2 B rs1)` since there's only the SLTU but no SGEU.
__ Xori(rd, rd, 1);
}
break;
}
}
bool InstructionCodeGeneratorRISCV64::MaterializeIntLongCompare(IfCondition cond,
bool is_64bit,
LocationSummary* locations,
XRegister dest) {
UNUSED(cond);
UNUSED(is_64bit);
UNUSED(locations);
UNUSED(dest);
LOG(FATAL) << "UniMplemented";
UNREACHABLE();
}
void InstructionCodeGeneratorRISCV64::GenerateIntLongCompareAndBranch(IfCondition cond,
bool is_64bit,
LocationSummary* locations,
Riscv64Label* label) {
UNUSED(cond);
UNUSED(is_64bit);
UNUSED(locations);
UNUSED(label);
LOG(FATAL) << "UniMplemented";
}
void InstructionCodeGeneratorRISCV64::GenerateFpCondition(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations) {
XRegister rd = locations->Out().AsRegister<XRegister>();
FRegister rs1 = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rs2 = locations->InAt(1).AsFpuRegister<FRegister>();
// All FP compare operations yield 0 for NaN on either side but we need the result to be 1
// for certain combinations of `gt_bias` and `cond`.
// There is no dex instruction or HIR that would need the "equal or unordered" or "not equal"
// and the conditions "equal" and "not equal or unordered" do not need the NaN check here.
Riscv64Label done;
if (gt_bias ? (cond == kCondGT || cond == kCondGE) : (cond == kCondLT || cond == kCondLE)) {
// FCLASS.S/D examines the value in the floating-point register and writes to integer
// register a 10-bit mask that indicates the class of the floating-point number.
// rd[8]: Singaling NaN
// rd[9]: Quiet NaN
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
XRegister tmp2 = srs.AllocateXRegister();
if (type == DataType::Type::kFloat32) {
__ FClassS(tmp, rs1);
__ FClassS(tmp2, rs2);
} else {
DCHECK_EQ(type, DataType::Type::kFloat64);
__ FClassD(tmp, rs1);
__ FClassS(tmp2, rs2);
}
__ Li(rd, 1); // Pre-load the result for NaN to avoid branching over it later.
__ Or(tmp, tmp, tmp2);
__ Srli(tmp, tmp, 8);
__ Bnez(tmp, &done); // goto done if either input was NaN.
}
if (type == DataType::Type::kFloat32) {
switch (cond) {
case kCondEQ:
__ FEqS(rd, rs1, rs2);
break;
case kCondNE:
__ FEqS(rd, rs1, rs2);
__ Xori(rd, rd, 1);
break;
case kCondLT:
__ FLtS(rd, rs1, rs2);
break;
case kCondLE:
__ FLeS(rd, rs1, rs2);
break;
case kCondGT:
__ FLtS(rd, rs2, rs1);
break;
case kCondGE:
__ FLeS(rd, rs2, rs1);
break;
default:
LOG(FATAL) << "Unexpected floating-point condition " << cond;
UNREACHABLE();
}
} else {
DCHECK_EQ(type, DataType::Type::kFloat64);
switch (cond) {
case kCondEQ:
__ FEqD(rd, rs1, rs2);
break;
case kCondNE:
__ FEqD(rd, rs1, rs2);
__ Xori(rd, rd, 1);
break;
case kCondLT:
__ FLtD(rd, rs1, rs2);
break;
case kCondLE:
__ FLeD(rd, rs1, rs2);
break;
case kCondGT:
__ FLtD(rd, rs2, rs1);
break;
case kCondGE:
__ FLeD(rd, rs2, rs1);
break;
default:
LOG(FATAL) << "Unexpected floating-point condition " << cond;
UNREACHABLE();
}
}
if (done.IsLinked()) {
__ Bind(&done);
}
}
bool InstructionCodeGeneratorRISCV64::MaterializeFpCompare(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations,
XRegister dest) {
UNUSED(cond);
UNUSED(gt_bias);
UNUSED(type);
UNUSED(locations);
UNUSED(dest);
LOG(FATAL) << "Unimplemented";
UNREACHABLE();
}
void InstructionCodeGeneratorRISCV64::GenerateFpCompareAndBranch(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations,
Riscv64Label* label) {
UNUSED(cond);
UNUSED(gt_bias);
UNUSED(type);
UNUSED(locations);
UNUSED(label);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::HandleGoto(HInstruction* instruction,
HBasicBlock* successor) {
if (successor->IsExitBlock()) {
DCHECK(instruction->GetPrevious()->AlwaysThrows());
return; // no code needed
}
HBasicBlock* block = instruction->GetBlock();
HInstruction* previous = instruction->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
codegen_->MaybeIncrementHotness(/*is_frame_entry=*/ false);
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return; // `GenerateSuspendCheck()` emitted the jump.
}
if (block->IsEntryBlock() && previous != nullptr && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(block, successor)) {
__ J(codegen_->GetLabelOf(successor));
}
}
void InstructionCodeGeneratorRISCV64::GenPackedSwitchWithCompares(XRegister reg,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block) {
UNUSED(reg);
UNUSED(lower_bound);
UNUSED(num_entries);
UNUSED(switch_block);
UNUSED(default_block);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::GenTableBasedPackedSwitch(XRegister reg,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block) {
UNUSED(reg);
UNUSED(lower_bound);
UNUSED(num_entries);
UNUSED(switch_block);
UNUSED(default_block);
LOG(FATAL) << "Unimplemented";
}
int32_t InstructionCodeGeneratorRISCV64::VecAddress(LocationSummary* locations,
size_t size,
/*out*/ XRegister* adjusted_base) {
UNUSED(locations);
UNUSED(size);
UNUSED(adjusted_base);
LOG(FATAL) << "Unimplemented";
UNREACHABLE();
}
void InstructionCodeGeneratorRISCV64::GenConditionalMove(HSelect* select) {
UNUSED(select);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::HandleBinaryOp(HBinaryOperation* instruction) {
DCHECK_EQ(instruction->InputCount(), 2u);
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
DataType::Type type = instruction->GetResultType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
locations->SetInAt(0, Location::RequiresRegister());
HInstruction* right = instruction->InputAt(1);
bool can_use_imm = false;
if (right->IsConstant()) {
int64_t imm = CodeGenerator::GetInt64ValueOf(right->AsConstant());
can_use_imm = IsInt<12>(instruction->IsSub() ? -imm : imm);
}
if (can_use_imm) {
locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
UNREACHABLE();
}
}
void InstructionCodeGeneratorRISCV64::HandleBinaryOp(HBinaryOperation* instruction) {
DataType::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
XRegister rd = locations->Out().AsRegister<XRegister>();
XRegister rs1 = locations->InAt(0).AsRegister<XRegister>();
Location rs2_location = locations->InAt(1);
bool use_imm = rs2_location.IsConstant();
XRegister rs2 = use_imm ? kNoXRegister : rs2_location.AsRegister<XRegister>();
int64_t imm = use_imm ? CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant()) : 0;
if (instruction->IsAnd()) {
if (use_imm) {
__ Andi(rd, rs1, imm);
} else {
__ And(rd, rs1, rs2);
}
} else if (instruction->IsOr()) {
if (use_imm) {
__ Ori(rd, rs1, imm);
} else {
__ Or(rd, rs1, rs2);
}
} else if (instruction->IsXor()) {
if (use_imm) {
__ Xori(rd, rs1, imm);
} else {
__ Xor(rd, rs1, rs2);
}
} else {
DCHECK(instruction->IsAdd() || instruction->IsSub());
if (type == DataType::Type::kInt32) {
if (use_imm) {
__ Addiw(rd, rs1, instruction->IsSub() ? -imm : imm);
} else if (instruction->IsAdd()) {
__ Addw(rd, rs1, rs2);
} else {
DCHECK(instruction->IsSub());
__ Subw(rd, rs1, rs2);
}
} else {
if (use_imm) {
__ Addi(rd, rs1, instruction->IsSub() ? -imm : imm);
} else if (instruction->IsAdd()) {
__ Add(rd, rs1, rs2);
} else {
DCHECK(instruction->IsSub());
__ Sub(rd, rs1, rs2);
}
}
}
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
FRegister rd = locations->Out().AsFpuRegister<FRegister>();
FRegister rs1 = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rs2 = locations->InAt(1).AsFpuRegister<FRegister>();
if (instruction->IsAdd()) {
if (type == DataType::Type::kFloat32) {
__ FAddS(rd, rs1, rs2);
} else {
__ FAddD(rd, rs1, rs2);
}
} else {
DCHECK(instruction->IsSub());
if (type == DataType::Type::kFloat32) {
__ FSubS(rd, rs1, rs2);
} else {
__ FSubD(rd, rs1, rs2);
}
}
break;
}
default:
LOG(FATAL) << "Unexpected binary operation type " << type;
UNREACHABLE();
}
}
void LocationsBuilderRISCV64::HandleCondition(HCondition* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
switch (instruction->InputAt(0)->GetType()) {
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
break;
default: {
locations->SetInAt(0, Location::RequiresRegister());
HInstruction* rhs = instruction->InputAt(1);
bool use_imm = false;
if (rhs->IsConstant()) {
int64_t imm = CodeGenerator::GetInt64ValueOf(rhs->AsConstant());
switch (instruction->GetCondition()) {
case kCondEQ:
case kCondNE:
imm = -imm;
break;
case kCondLE:
case kCondGT:
case kCondBE:
case kCondA:
imm += 1;
break;
default:
break;
}
// Constants that cannot be embedded in an instruction's 12-bit immediate shall be
// materialized. This simplifies the code and avoids cases with arithmetic overflow.
use_imm = IsInt<12>(imm);
}
if (use_imm) {
locations->SetInAt(1, Location::ConstantLocation(rhs->AsConstant()));
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
break;
}
}
if (!instruction->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorRISCV64::HandleCondition(HCondition* instruction) {
if (instruction->IsEmittedAtUseSite()) {
return;
}
DataType::Type type = instruction->InputAt(0)->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
GenerateFpCondition(instruction->GetCondition(), instruction->IsGtBias(), type, locations);
return;
default:
// Integral types.
GenerateIntLongCondition(instruction->GetCondition(), locations);
return;
}
}
void LocationsBuilderRISCV64::HandleShift(HBinaryOperation* instruction) {
DCHECK(instruction->IsShl() ||
instruction->IsShr() ||
instruction->IsUShr() ||
instruction->IsRor());
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
DataType::Type type = instruction->GetResultType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected shift type " << type;
UNREACHABLE();
}
}
void InstructionCodeGeneratorRISCV64::HandleShift(HBinaryOperation* instruction) {
DCHECK(instruction->IsShl() ||
instruction->IsShr() ||
instruction->IsUShr() ||
instruction->IsRor());
LocationSummary* locations = instruction->GetLocations();
DataType::Type type = instruction->GetType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
XRegister rd = locations->Out().AsRegister<XRegister>();
XRegister rs1 = locations->InAt(0).AsRegister<XRegister>();
Location rs2_location = locations->InAt(1);
if (rs2_location.IsConstant()) {
int64_t imm = CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant());
uint32_t shamt =
imm & (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
if (shamt == 0) {
if (rd != rs1) {
__ Mv(rd, rs1);
}
} else if (type == DataType::Type::kInt32) {
if (instruction->IsShl()) {
__ Slliw(rd, rs1, shamt);
} else if (instruction->IsShr()) {
__ Sraiw(rd, rs1, shamt);
} else if (instruction->IsUShr()) {
__ Srliw(rd, rs1, shamt);
} else {
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
__ Srliw(tmp, rs1, shamt);
__ Slliw(rd, rs1, 32 - shamt);
__ Or(rd, rd, tmp);
}
} else {
if (instruction->IsShl()) {
__ Slli(rd, rs1, shamt);
} else if (instruction->IsShr()) {
__ Srai(rd, rs1, shamt);
} else if (instruction->IsUShr()) {
__ Srli(rd, rs1, shamt);
} else {
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
__ Srli(tmp, rs1, shamt);
__ Slli(rd, rs1, 64 - shamt);
__ Or(rd, rd, tmp);
}
}
} else {
XRegister rs2 = rs2_location.AsRegister<XRegister>();
if (type == DataType::Type::kInt32) {
if (instruction->IsShl()) {
__ Sllw(rd, rs1, rs2);
} else if (instruction->IsShr()) {
__ Sraw(rd, rs1, rs2);
} else if (instruction->IsUShr()) {
__ Srlw(rd, rs1, rs2);
} else {
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
XRegister tmp2 = srs.AllocateXRegister();
__ Srlw(tmp, rs1, rs2);
__ Sub(tmp2, Zero, rs2); // tmp2 = -rs; we can use this instead of `32 - rs`
__ Sllw(rd, rs1, tmp2); // because only low 5 bits are used for SLLW.
__ Or(rd, rd, tmp);
}
} else {
if (instruction->IsShl()) {
__ Sll(rd, rs1, rs2);
} else if (instruction->IsShr()) {
__ Sra(rd, rs1, rs2);
} else if (instruction->IsUShr()) {
__ Srl(rd, rs1, rs2);
} else {
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
XRegister tmp2 = srs.AllocateXRegister();
__ Srl(tmp, rs1, rs2);
__ Sub(tmp2, Zero, rs2); // tmp2 = -rs; we can use this instead of `64 - rs`
__ Sll(rd, rs1, tmp2); // because only low 6 bits are used for SLL.
__ Or(rd, rd, tmp);
}
}
}
break;
}
default:
LOG(FATAL) << "Unexpected shift operation type " << type;
}
}
void LocationsBuilderRISCV64::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info) {
UNUSED(instruction);
UNUSED(field_info);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null) {
UNUSED(instruction);
UNUSED(field_info);
UNUSED(value_can_be_null);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
UNUSED(instruction);
UNUSED(field_info);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
UNUSED(instruction);
UNUSED(field_info);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitAbove(HAbove* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitAbove(HAbove* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitAboveOrEqual(HAboveOrEqual* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitAboveOrEqual(HAboveOrEqual* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitAbs(HAbs* abs) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
switch (abs->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected abs type " << abs->GetResultType();
}
}
void InstructionCodeGeneratorRISCV64::VisitAbs(HAbs* abs) {
LocationSummary* locations = abs->GetLocations();
switch (abs->GetResultType()) {
case DataType::Type::kInt32: {
XRegister in = locations->InAt(0).AsRegister<XRegister>();
XRegister out = locations->Out().AsRegister<XRegister>();
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
__ Sraiw(tmp, in, 31);
__ Xor(out, in, tmp);
__ Subw(out, out, tmp);
break;
}
case DataType::Type::kInt64: {
XRegister in = locations->InAt(0).AsRegister<XRegister>();
XRegister out = locations->Out().AsRegister<XRegister>();
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
__ Srai(tmp, in, 63);
__ Xor(out, in, tmp);
__ Sub(out, out, tmp);
break;
}
case DataType::Type::kFloat32: {
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
__ FAbsS(out, in);
break;
}
case DataType::Type::kFloat64: {
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
__ FAbsD(out, in);
break;
}
default:
LOG(FATAL) << "Unexpected abs type " << abs->GetResultType();
}
}
void LocationsBuilderRISCV64::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderRISCV64::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderRISCV64::VisitArrayGet(HArrayGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitArrayGet(HArrayGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitArrayLength(HArrayLength* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitArrayLength(HArrayLength* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitArraySet(HArraySet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitArraySet(HArraySet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitBelow(HBelow* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitBelow(HBelow* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitBelowOrEqual(HBelowOrEqual* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitBelowOrEqual(HBelowOrEqual* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorRISCV64::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
__ Xori(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>(), 1);
}
void LocationsBuilderRISCV64::VisitBoundsCheck(HBoundsCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitBoundsCheck(HBoundsCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitBoundType(HBoundType* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitBoundType(HBoundType* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitCheckCast(HCheckCast* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitCheckCast(HCheckCast* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitClassTableGet(HClassTableGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitClassTableGet(HClassTableGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
static int32_t GetExceptionTlsOffset() {
return Thread::ExceptionOffset<kRiscv64PointerSize>().Int32Value();
}
void LocationsBuilderRISCV64::VisitClearException(HClearException* instruction) {
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
}
void InstructionCodeGeneratorRISCV64::VisitClearException(
[[maybe_unused]] HClearException* instruction) {
__ Stored(Zero, TR, GetExceptionTlsOffset());
}
void LocationsBuilderRISCV64::VisitClinitCheck(HClinitCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitClinitCheck(HClinitCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitCompare(HCompare* instruction) {
DataType::Type in_type = instruction->InputAt(0)->GetType();
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
switch (in_type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, RegisterOrZeroBitPatternLocation(instruction->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type for compare operation " << in_type;
UNREACHABLE();
}
}
void InstructionCodeGeneratorRISCV64::VisitCompare(HCompare* instruction) {
LocationSummary* locations = instruction->GetLocations();
XRegister result = locations->Out().AsRegister<XRegister>();
DataType::Type in_type = instruction->InputAt(0)->GetType();
// 0 if: left == right
// 1 if: left > right
// -1 if: left < right
switch (in_type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
XRegister left = locations->InAt(0).AsRegister<XRegister>();
XRegister right = InputXRegisterOrZero(locations->InAt(1));
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
__ Slt(tmp, left, right);
__ Slt(result, right, left);
__ Sub(result, result, tmp);
break;
}
case DataType::Type::kFloat32: {
FRegister left = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister right = locations->InAt(1).AsFpuRegister<FRegister>();
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
if (instruction->IsGtBias()) {
__ FLeS(tmp, left, right);
__ FLtS(result, left, right);
__ Xori(tmp, tmp, 1);
__ Sub(result, tmp, result);
} else {
__ FLeS(tmp, right, left);
__ FLtS(result, right, left);
__ Addi(tmp, tmp, -1);
__ Add(result, result, tmp);
}
break;
}
case DataType::Type::kFloat64: {
FRegister left = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister right = locations->InAt(1).AsFpuRegister<FRegister>();
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
if (instruction->IsGtBias()) {
__ FLeD(tmp, left, right);
__ FLtD(result, left, right);
__ Xori(tmp, tmp, 1);
__ Sub(result, tmp, result);
} else {
__ FLeD(tmp, right, left);
__ FLtD(result, right, left);
__ Addi(tmp, tmp, -1);
__ Add(result, result, tmp);
}
break;
}
default:
LOG(FATAL) << "Unimplemented compare type " << in_type;
}
}
void LocationsBuilderRISCV64::VisitConstructorFence(HConstructorFence* instruction) {
instruction->SetLocations(nullptr);
}
void InstructionCodeGeneratorRISCV64::VisitConstructorFence(
[[maybe_unused]] HConstructorFence* instruction) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
void LocationsBuilderRISCV64::VisitCurrentMethod(HCurrentMethod* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitCurrentMethod(HCurrentMethod* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorRISCV64::VisitShouldDeoptimizeFlag(
HShouldDeoptimizeFlag* instruction) {
__ Loadw(instruction->GetLocations()->Out().AsRegister<XRegister>(),
SP,
codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
}
void LocationsBuilderRISCV64::VisitDeoptimize(HDeoptimize* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitDeoptimize(HDeoptimize* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitDiv(HDiv* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitDiv(HDiv* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitDoubleConstant(HDoubleConstant* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(instruction));
}
void InstructionCodeGeneratorRISCV64::VisitDoubleConstant(
[[maybe_unused]] HDoubleConstant* instruction) {
// Will be generated at use site.
}
void LocationsBuilderRISCV64::VisitEqual(HEqual* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitEqual(HEqual* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitExit(HExit* instruction) {
instruction->SetLocations(nullptr);
}
void InstructionCodeGeneratorRISCV64::VisitExit([[maybe_unused]] HExit* instruction) {}
void LocationsBuilderRISCV64::VisitFloatConstant(HFloatConstant* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(instruction));
}
void InstructionCodeGeneratorRISCV64::VisitFloatConstant(
[[maybe_unused]] HFloatConstant* instruction) {
// Will be generated at use site.
}
void LocationsBuilderRISCV64::VisitGoto(HGoto* instruction) {
instruction->SetLocations(nullptr);
}
void InstructionCodeGeneratorRISCV64::VisitGoto(HGoto* instruction) {
HandleGoto(instruction, instruction->GetSuccessor());
}
void LocationsBuilderRISCV64::VisitGreaterThan(HGreaterThan* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitGreaterThan(HGreaterThan* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitIf(HIf* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitIf(HIf* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitPredicatedInstanceFieldGet(
HPredicatedInstanceFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitPredicatedInstanceFieldGet(
HPredicatedInstanceFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInstanceOf(HInstanceOf* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInstanceOf(HInstanceOf* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitIntConstant(HIntConstant* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetOut(Location::ConstantLocation(instruction));
}
void InstructionCodeGeneratorRISCV64::VisitIntConstant([[maybe_unused]] HIntConstant* instruction) {
// Will be generated at use site.
}
void LocationsBuilderRISCV64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInvokeUnresolved(HInvokeUnresolved* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInvokeUnresolved(HInvokeUnresolved* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInvokeInterface(HInvokeInterface* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInvokeInterface(HInvokeInterface* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInvokeStaticOrDirect(
HInvokeStaticOrDirect* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInvokeVirtual(HInvokeVirtual* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInvokeVirtual(HInvokeVirtual* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInvokePolymorphic(HInvokePolymorphic* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInvokePolymorphic(HInvokePolymorphic* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitInvokeCustom(HInvokeCustom* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitInvokeCustom(HInvokeCustom* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitLessThan(HLessThan* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitLessThan(HLessThan* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitLessThanOrEqual(HLessThanOrEqual* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitLessThanOrEqual(HLessThanOrEqual* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitLoadClass(HLoadClass* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitLoadClass(HLoadClass* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitLoadException(HLoadException* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitLoadException(HLoadException* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitLoadMethodHandle(HLoadMethodHandle* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitLoadMethodHandle(HLoadMethodHandle* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitLoadMethodType(HLoadMethodType* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitLoadMethodType(HLoadMethodType* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitLoadString(HLoadString* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitLoadString(HLoadString* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitLongConstant(HLongConstant* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitLongConstant(HLongConstant* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitMax(HMax* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitMax(HMax* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitMemoryBarrier(HMemoryBarrier* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitMemoryBarrier(HMemoryBarrier* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitMethodExitHook(HMethodExitHook* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitMethodExitHook(HMethodExitHook* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitMin(HMin* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitMin(HMin* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitMonitorOperation(HMonitorOperation* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitMonitorOperation(HMonitorOperation* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitMul(HMul* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitMul(HMul* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitNeg(HNeg* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitNeg(HNeg* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitNewArray(HNewArray* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitNewArray(HNewArray* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitNewInstance(HNewInstance* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitNewInstance(HNewInstance* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitNop(HNop* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitNop(HNop* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitNot(HNot* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitNot(HNot* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitNotEqual(HNotEqual* instruction) {
HandleCondition(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitNotEqual(HNotEqual* instruction) {
HandleCondition(instruction);
}
void LocationsBuilderRISCV64::VisitNullConstant(HNullConstant* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitNullConstant(HNullConstant* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitNullCheck(HNullCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitNullCheck(HNullCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderRISCV64::VisitPackedSwitch(HPackedSwitch* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitPackedSwitch(HPackedSwitch* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitParallelMove(HParallelMove* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitParallelMove(HParallelMove* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorRISCV64::VisitParameterValue(
[[maybe_unused]] HParameterValue* instruction) {
// Nothing to do, the parameter is already at its location.
}
void LocationsBuilderRISCV64::VisitPhi(HPhi* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorRISCV64::VisitPhi([[maybe_unused]] HPhi* instruction) {
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderRISCV64::VisitRem(HRem* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitRem(HRem* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitReturn(HReturn* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
DataType::Type return_type = instruction->InputAt(0)->GetType();
DCHECK_NE(return_type, DataType::Type::kVoid);
locations->SetInAt(0, Riscv64ReturnLocation(return_type));
}
void InstructionCodeGeneratorRISCV64::VisitReturn(HReturn* instruction) {
if (GetGraph()->IsCompilingOsr()) {
// To simplify callers of an OSR method, we put a floating point return value
// in both floating point and core return registers.
switch (instruction->InputAt(0)->GetType()) {
case DataType::Type::kFloat32:
__ FMvXW(A0, FA0);
break;
case DataType::Type::kFloat64:
__ FMvXD(A0, FA0);
break;
default:
break;
}
}
codegen_->GenerateFrameExit();
}
void LocationsBuilderRISCV64::VisitReturnVoid(HReturnVoid* instruction) {
instruction->SetLocations(nullptr);
}
void InstructionCodeGeneratorRISCV64::VisitReturnVoid([[maybe_unused]] HReturnVoid* instruction) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderRISCV64::VisitRor(HRor* instruction) {
HandleShift(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitRor(HRor* instruction) {
HandleShift(instruction);
}
void LocationsBuilderRISCV64::VisitShl(HShl* instruction) {
HandleShift(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitShl(HShl* instruction) {
HandleShift(instruction);
}
void LocationsBuilderRISCV64::VisitShr(HShr* instruction) {
HandleShift(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitShr(HShr* instruction) {
HandleShift(instruction);
}
void LocationsBuilderRISCV64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitSelect(HSelect* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitSelect(HSelect* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderRISCV64::VisitSuspendCheck(HSuspendCheck* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator())
LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
// In suspend check slow path, usually there are no caller-save registers at all.
// If SIMD instructions are present, however, we force spilling all live SIMD
// registers in full width (since the runtime only saves/restores lower part).
locations->SetCustomSlowPathCallerSaves(GetGraph()->HasSIMD() ? RegisterSet::AllFpu() :
RegisterSet::Empty());
}
void InstructionCodeGeneratorRISCV64::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void LocationsBuilderRISCV64::VisitThrow(HThrow* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitThrow(HThrow* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitTryBoundary(HTryBoundary* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitTryBoundary(HTryBoundary* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitTypeConversion(HTypeConversion* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitTypeConversion(HTypeConversion* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitUShr(HUShr* instruction) {
HandleShift(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitUShr(HUShr* instruction) {
HandleShift(instruction);
}
void LocationsBuilderRISCV64::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorRISCV64::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderRISCV64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecExtractScalar(HVecExtractScalar* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecExtractScalar(HVecExtractScalar* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecReduce(HVecReduce* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecReduce(HVecReduce* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecCnv(HVecCnv* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecCnv(HVecCnv* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecNeg(HVecNeg* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecNeg(HVecNeg* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecAbs(HVecAbs* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecAbs(HVecAbs* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecNot(HVecNot* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecNot(HVecNot* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecAdd(HVecAdd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecAdd(HVecAdd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecSub(HVecSub* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecSub(HVecSub* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecMul(HVecMul* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecMul(HVecMul* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecDiv(HVecDiv* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecDiv(HVecDiv* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecMin(HVecMin* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecMin(HVecMin* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecMax(HVecMax* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecMax(HVecMax* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecAnd(HVecAnd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecAnd(HVecAnd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecAndNot(HVecAndNot* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecAndNot(HVecAndNot* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecOr(HVecOr* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecOr(HVecOr* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecXor(HVecXor* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecXor(HVecXor* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecSaturationAdd(HVecSaturationAdd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecSaturationAdd(HVecSaturationAdd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecSaturationSub(HVecSaturationSub* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecSaturationSub(HVecSaturationSub* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecShl(HVecShl* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecShl(HVecShl* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecShr(HVecShr* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecShr(HVecShr* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecUShr(HVecUShr* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecUShr(HVecUShr* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecSetScalars(HVecSetScalars* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecSetScalars(HVecSetScalars* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecMultiplyAccumulate(
HVecMultiplyAccumulate* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecDotProd(HVecDotProd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecDotProd(HVecDotProd* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecLoad(HVecLoad* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecLoad(HVecLoad* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecStore(HVecStore* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecStore(HVecStore* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecPredSetAll(HVecPredSetAll* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecPredSetAll(HVecPredSetAll* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecPredWhile(HVecPredWhile* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecPredWhile(HVecPredWhile* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecPredToBoolean(HVecPredToBoolean* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecPredToBoolean(HVecPredToBoolean* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecCondition(HVecCondition* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecCondition(HVecCondition* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void LocationsBuilderRISCV64::VisitVecPredNot(HVecPredNot* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorRISCV64::VisitVecPredNot(HVecPredNot* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
namespace detail {
// Mark which intrinsics we don't have handcrafted code for.
template <Intrinsics T>
struct IsUnimplemented {
bool is_unimplemented = false;
};
#define TRUE_OVERRIDE(Name, ...) \
template <> \
struct IsUnimplemented<Intrinsics::k##Name> { \
bool is_unimplemented = true; \
};
UNIMPLEMENTED_INTRINSIC_LIST_RISCV64(TRUE_OVERRIDE)
#undef TRUE_OVERRIDE
static constexpr bool kIsIntrinsicUnimplemented[] = {
false, // kNone
#define IS_UNIMPLEMENTED(Intrinsic, ...) \
IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented,
ART_INTRINSICS_LIST(IS_UNIMPLEMENTED)
#undef IS_UNIMPLEMENTED
};
} // namespace detail
CodeGeneratorRISCV64::CodeGeneratorRISCV64(HGraph* graph,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats)
: CodeGenerator(graph,
kNumberOfXRegisters,
kNumberOfFRegisters,
/*number_of_register_pairs=*/ 0u,
ComputeRegisterMask(kCoreCalleeSaves, arraysize(kCoreCalleeSaves)),
ComputeRegisterMask(kFpuCalleeSaves, arraysize(kFpuCalleeSaves)),
compiler_options,
stats,
ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)),
assembler_(graph->GetAllocator(),
compiler_options.GetInstructionSetFeatures()->AsRiscv64InstructionSetFeatures()),
location_builder_(graph, this),
block_labels_(nullptr) {}
void CodeGeneratorRISCV64::MaybeIncrementHotness(bool is_frame_entry) {
if (GetCompilerOptions().CountHotnessInCompiledCode()) {
ScratchRegisterScope srs(GetAssembler());
XRegister method = is_frame_entry ? kArtMethodRegister : srs.AllocateXRegister();
if (!is_frame_entry) {
__ Loadd(method, SP, 0);
}
XRegister counter = srs.AllocateXRegister();
__ Loadhu(counter, method, ArtMethod::HotnessCountOffset().Int32Value());
Riscv64Label done;
DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
__ Beqz(counter, &done); // Can clobber `TMP` if taken.
__ Addi(counter, counter, -1);
// We may not have another scratch register available for `Storeh`()`,
// so we must use the `Sh()` function directly.
static_assert(IsInt<12>(ArtMethod::HotnessCountOffset().Int32Value()));
__ Sh(counter, method, ArtMethod::HotnessCountOffset().Int32Value());
__ Bind(&done);
}
if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
SlowPathCodeRISCV64* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathRISCV64();
AddSlowPath(slow_path);
ProfilingInfo* info = GetGraph()->GetProfilingInfo();
DCHECK(info != nullptr);
DCHECK(!HasEmptyFrame());
uint64_t address = reinterpret_cast64<uint64_t>(info);
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
__ LoadConst64(tmp, address);
XRegister counter = srs.AllocateXRegister();
__ Loadhu(counter, tmp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value());
__ Beqz(counter, slow_path->GetEntryLabel()); // Can clobber `TMP` if taken.
__ Addi(counter, counter, -1);
// We do not have another scratch register available for `Storeh`()`,
// so we must use the `Sh()` function directly.
static_assert(IsInt<12>(ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
__ Sh(counter, tmp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value());
__ Bind(slow_path->GetExitLabel());
}
}
bool CodeGeneratorRISCV64::CanUseImplicitSuspendCheck() const {
// TODO(riscv64): Implement implicit suspend checks to reduce code size.
return false;
}
void CodeGeneratorRISCV64::GenerateMemoryBarrier(MemBarrierKind kind) {
switch (kind) {
case MemBarrierKind::kAnyAny:
case MemBarrierKind::kAnyStore:
case MemBarrierKind::kLoadAny:
case MemBarrierKind::kStoreStore: {
// TODO(riscv64): Use more specific fences.
__ Fence();
break;
}
default:
LOG(FATAL) << "Unexpected memory barrier " << kind;
UNREACHABLE();
}
}
void CodeGeneratorRISCV64::GenerateFrameEntry() {
// Check if we need to generate the clinit check. We will jump to the
// resolution stub if the class is not initialized and the executing thread is
// not the thread initializing it.
// We do this before constructing the frame to get the correct stack trace if
// an exception is thrown.
if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) {
Riscv64Label resolution;
Riscv64Label memory_barrier;
static constexpr uint32_t kShiftedVisiblyInitializedValue =
enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << status_lsb_position;
static constexpr uint32_t kShiftedInitializedValue =
enum_cast<uint32_t>(ClassStatus::kInitialized) << status_lsb_position;
static constexpr uint32_t kShiftedInitializingValue =
enum_cast<uint32_t>(ClassStatus::kInitializing) << status_lsb_position;
// We shall load the full 32-bit status word with sign-extension and compare as unsigned
// to the sign-extended status values above. This yields the same comparison as loading and
// materializing unsigned but the constant is materialized with a single LUI instruction.
auto extend64 = [](uint32_t shifted_status_value) {
DCHECK_GE(shifted_status_value, 0x80000000u);
return static_cast<int64_t>(shifted_status_value) - (INT64_C(1) << 32);
};
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
XRegister tmp2 = srs.AllocateXRegister();
// We don't emit a read barrier here to save on code size. We rely on the
// resolution trampoline to do a clinit check before re-entering this code.
__ Loadd(tmp2, kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value());
__ Loadw(tmp, tmp2, mirror::Class::StatusOffset().SizeValue()); // Sign-extended.
// Check if we're visibly initialized.
__ Li(tmp2, extend64(kShiftedVisiblyInitializedValue));
__ Bgeu(tmp, tmp2, &frame_entry_label_); // Can clobber `TMP` if taken.
// Check if we're initialized and jump to code that does a memory barrier if so.
__ Li(tmp2, extend64(kShiftedInitializedValue));
__ Bgeu(tmp, tmp2, &memory_barrier); // Can clobber `TMP` if taken.
// Check if we're initializing and the thread initializing is the one
// executing the code.
__ Li(tmp2, extend64(kShiftedInitializingValue));
__ Bltu(tmp, tmp2, &resolution); // Can clobber `TMP` if taken.
__ Loadd(tmp2, kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value());
__ Loadw(tmp, tmp2, mirror::Class::ClinitThreadIdOffset().Int32Value());
__ Loadw(tmp2, TR, Thread::TidOffset<kRiscv64PointerSize>().Int32Value());
__ Beq(tmp, tmp2, &frame_entry_label_);
__ Bind(&resolution);
// Jump to the resolution stub.
ThreadOffset64 entrypoint_offset =
GetThreadOffset<kRiscv64PointerSize>(kQuickQuickResolutionTrampoline);
__ Loadd(tmp, TR, entrypoint_offset.Int32Value());
__ Jr(tmp);
__ Bind(&memory_barrier);
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
__ Bind(&frame_entry_label_);
bool do_overflow_check =
FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kRiscv64) || !IsLeafMethod();
if (do_overflow_check) {
__ Loadw(
Zero, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kRiscv64)));
RecordPcInfo(nullptr, 0);
}
if (!HasEmptyFrame()) {
// Make sure the frame size isn't unreasonably large.
if (GetFrameSize() > GetStackOverflowReservedBytes(InstructionSet::kRiscv64)) {
LOG(FATAL) << "Stack frame larger than "
<< GetStackOverflowReservedBytes(InstructionSet::kRiscv64) << " bytes";
}
// Spill callee-saved registers.
uint32_t frame_size = GetFrameSize();
IncreaseFrame(frame_size);
uint32_t offset = frame_size;
for (size_t i = arraysize(kCoreCalleeSaves); i != 0; ) {
--i;
XRegister reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
offset -= kRiscv64DoublewordSize;
__ Stored(reg, SP, offset);
__ cfi().RelOffset(dwarf::Reg::Riscv64Core(reg), offset);
}
}
for (size_t i = arraysize(kFpuCalleeSaves); i != 0; ) {
--i;
FRegister reg = kFpuCalleeSaves[i];
if (allocated_registers_.ContainsFloatingPointRegister(reg)) {
offset -= kRiscv64DoublewordSize;
__ FStored(reg, SP, offset);
__ cfi().RelOffset(dwarf::Reg::Riscv64Fp(reg), offset);
}
}
// Save the current method if we need it. Note that we do not
// do this in HCurrentMethod, as the instruction might have been removed
// in the SSA graph.
if (RequiresCurrentMethod()) {
__ Stored(kArtMethodRegister, SP, 0);
}
if (GetGraph()->HasShouldDeoptimizeFlag()) {
// Initialize should_deoptimize flag to 0.
__ Storew(Zero, SP, GetStackOffsetOfShouldDeoptimizeFlag());
}
}
MaybeIncrementHotness(/*is_frame_entry=*/ true);
}
void CodeGeneratorRISCV64::GenerateFrameExit() {
__ cfi().RememberState();
if (!HasEmptyFrame()) {
// Restore callee-saved registers.
// For better instruction scheduling restore RA before other registers.
uint32_t offset = GetFrameSize();
for (size_t i = arraysize(kCoreCalleeSaves); i != 0; ) {
--i;
XRegister reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
offset -= kRiscv64DoublewordSize;
__ Loadd(reg, SP, offset);
__ cfi().Restore(dwarf::Reg::Riscv64Core(reg));
}
}
for (size_t i = arraysize(kFpuCalleeSaves); i != 0; ) {
--i;
FRegister reg = kFpuCalleeSaves[i];
if (allocated_registers_.ContainsFloatingPointRegister(reg)) {
offset -= kRiscv64DoublewordSize;
__ FLoadd(reg, SP, offset);
__ cfi().Restore(dwarf::Reg::Riscv64Fp(reg));
}
}
DecreaseFrame(GetFrameSize());
}
__ Jr(RA);
__ cfi().RestoreState();
__ cfi().DefCFAOffset(GetFrameSize());
}
void CodeGeneratorRISCV64::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); }
void CodeGeneratorRISCV64::MoveConstant(Location destination, int32_t value) {
DCHECK(destination.IsRegister());
__ LoadConst32(destination.AsRegister<XRegister>(), value);
}
void CodeGeneratorRISCV64::MoveLocation(Location destination,
Location source,
DataType::Type dst_type) {
if (source.Equals(destination)) {
return;
}
// A valid move type can always be inferred from the destination and source locations.
// When moving from and to a register, the `dst_type` can be used to generate 32-bit instead
// of 64-bit moves but it's generally OK to use 64-bit moves for 32-bit values in registers.
bool unspecified_type = (dst_type == DataType::Type::kVoid);
// TODO(riscv64): Is the destination type known in all cases?
// TODO(riscv64): Can unspecified `dst_type` move 32-bit GPR to FPR without NaN-boxing?
CHECK(!unspecified_type);
if (destination.IsRegister() || destination.IsFpuRegister()) {
if (unspecified_type) {
HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
if (source.IsStackSlot() ||
(src_cst != nullptr &&
(src_cst->IsIntConstant() || src_cst->IsFloatConstant() || src_cst->IsNullConstant()))) {
// For stack slots and 32-bit constants, a 32-bit type is appropriate.
dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
} else {
// If the source is a double stack slot or a 64-bit constant, a 64-bit type
// is appropriate. Else the source is a register, and since the type has not
// been specified, we chose a 64-bit type to force a 64-bit move.
dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
}
}
DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
(destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
// Move to GPR/FPR from stack
if (DataType::IsFloatingPointType(dst_type)) {
if (DataType::Is64BitType(dst_type)) {
__ FLoadd(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
} else {
__ FLoadw(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
}
} else {
if (DataType::Is64BitType(dst_type)) {
__ Loadd(destination.AsRegister<XRegister>(), SP, source.GetStackIndex());
} else if (dst_type == DataType::Type::kReference) {
__ Loadwu(destination.AsRegister<XRegister>(), SP, source.GetStackIndex());
} else {
__ Loadw(destination.AsRegister<XRegister>(), SP, source.GetStackIndex());
}
}
} else if (source.IsConstant()) {
// Move to GPR/FPR from constant
// TODO(riscv64): Consider using literals for difficult-to-materialize 64-bit constants.
int64_t value = GetInt64ValueOf(source.GetConstant()->AsConstant());
ScratchRegisterScope srs(GetAssembler());
XRegister gpr = DataType::IsFloatingPointType(dst_type)
? srs.AllocateXRegister()
: destination.AsRegister<XRegister>();
if (DataType::IsFloatingPointType(dst_type) && value == 0) {
gpr = Zero; // Note: The scratch register allocated above shall not be used.
} else {
// Note: For `float` we load the sign-extended value here as it can sometimes yield
// a shorter instruction sequence. The higher 32 bits shall be ignored during the
// transfer to FP reg and the result shall be correctly NaN-boxed.
__ LoadConst64(gpr, value);
}
if (dst_type == DataType::Type::kFloat32) {
__ FMvWX(destination.AsFpuRegister<FRegister>(), gpr);
} else if (dst_type == DataType::Type::kFloat64) {
__ FMvDX(destination.AsFpuRegister<FRegister>(), gpr);
}
} else if (source.IsRegister()) {
if (destination.IsRegister()) {
// Move to GPR from GPR
__ Mv(destination.AsRegister<XRegister>(), source.AsRegister<XRegister>());
} else {
DCHECK(destination.IsFpuRegister());
if (DataType::Is64BitType(dst_type)) {
__ FMvDX(destination.AsFpuRegister<FRegister>(), source.AsRegister<XRegister>());
} else {
__ FMvWX(destination.AsFpuRegister<FRegister>(), source.AsRegister<XRegister>());
}
}
} else if (source.IsFpuRegister()) {
if (destination.IsFpuRegister()) {
if (GetGraph()->HasSIMD()) {
LOG(FATAL) << "Vector extension is unsupported";
UNREACHABLE();
} else {
// Move to FPR from FPR
if (dst_type == DataType::Type::kFloat32) {
__ FMvS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK_EQ(dst_type, DataType::Type::kFloat64);
__ FMvD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
}
}
} else {
DCHECK(destination.IsRegister());
if (DataType::Is64BitType(dst_type)) {
__ FMvXD(destination.AsRegister<XRegister>(), source.AsFpuRegister<FRegister>());
} else {
__ FMvXW(destination.AsRegister<XRegister>(), source.AsFpuRegister<FRegister>());
}
}
}
} else if (destination.IsSIMDStackSlot()) {
LOG(FATAL) << "SIMD is unsupported";
UNREACHABLE();
} else { // The destination is not a register. It must be a stack slot.
DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
if (source.IsRegister() || source.IsFpuRegister()) {
if (unspecified_type) {
if (source.IsRegister()) {
dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
} else {
dst_type =
destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
}
}
DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
(source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
// Move to stack from GPR/FPR
if (DataType::Is64BitType(dst_type)) {
if (source.IsRegister()) {
__ Stored(source.AsRegister<XRegister>(), SP, destination.GetStackIndex());
} else {
__ FStored(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
}
} else {
if (source.IsRegister()) {
__ Storew(source.AsRegister<XRegister>(), SP, destination.GetStackIndex());
} else {
__ FStorew(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
}
}
} else if (source.IsConstant()) {
// Move to stack from constant
int64_t value = GetInt64ValueOf(source.GetConstant());
ScratchRegisterScope srs(GetAssembler());
XRegister gpr = (value != 0) ? srs.AllocateXRegister() : Zero;
if (value != 0) {
__ LoadConst64(gpr, value);
}
if (destination.IsStackSlot()) {
__ Storew(gpr, SP, destination.GetStackIndex());
} else {
DCHECK(destination.IsDoubleStackSlot());
__ Stored(gpr, SP, destination.GetStackIndex());
}
} else {
DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
DCHECK_EQ(source.IsDoubleStackSlot(), destination.IsDoubleStackSlot());
// Move to stack from stack
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
if (destination.IsStackSlot()) {
__ Loadw(tmp, SP, source.GetStackIndex());
__ Storew(tmp, SP, destination.GetStackIndex());
} else {
__ Loadd(tmp, SP, source.GetStackIndex());
__ Stored(tmp, SP, destination.GetStackIndex());
}
}
}
}
void CodeGeneratorRISCV64::AddLocationAsTemp(Location location, LocationSummary* locations) {
if (location.IsRegister()) {
locations->AddTemp(location);
} else {
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
}
}
void CodeGeneratorRISCV64::SetupBlockedRegisters() const {
// ZERO, GP, SP, RA, TP and TR(S1) are reserved and can't be allocated.
blocked_core_registers_[Zero] = true;
blocked_core_registers_[GP] = true;
blocked_core_registers_[SP] = true;
blocked_core_registers_[RA] = true;
blocked_core_registers_[TP] = true;
blocked_core_registers_[TR] = true; // ART Thread register.
// TMP(T6), TMP2(T5) and FTMP(FT11) are used as temporary/scratch registers.
blocked_core_registers_[TMP] = true;
blocked_core_registers_[TMP2] = true;
blocked_fpu_registers_[FTMP] = true;
if (GetGraph()->IsDebuggable()) {
// Stubs do not save callee-save floating point registers. If the graph
// is debuggable, we need to deal with these registers differently. For
// now, just block them.
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
}
}
}
size_t CodeGeneratorRISCV64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ Stored(XRegister(reg_id), SP, stack_index);
return kRiscv64DoublewordSize;
}
size_t CodeGeneratorRISCV64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ Loadd(XRegister(reg_id), SP, stack_index);
return kRiscv64DoublewordSize;
}
size_t CodeGeneratorRISCV64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
if (GetGraph()->HasSIMD()) {
// TODO(riscv64): RISC-V vector extension.
UNIMPLEMENTED(FATAL) << "Vector extension is unsupported";
UNREACHABLE();
}
__ FStored(FRegister(reg_id), SP, stack_index);
return kRiscv64FloatRegSizeInBytes;
}
size_t CodeGeneratorRISCV64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
if (GetGraph()->HasSIMD()) {
// TODO(riscv64): RISC-V vector extension.
UNIMPLEMENTED(FATAL) << "Vector extension is unsupported";
UNREACHABLE();
}
__ FLoadd(FRegister(reg_id), SP, stack_index);
return kRiscv64FloatRegSizeInBytes;
}
void CodeGeneratorRISCV64::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << XRegister(reg);
}
void CodeGeneratorRISCV64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << FRegister(reg);
}
void CodeGeneratorRISCV64::Finalize() {
// Ensure that we fix up branches and literal loads and emit the literal pool.
__ FinalizeCode();
// Adjust native pc offsets in stack maps.
StackMapStream* stack_map_stream = GetStackMapStream();
for (size_t i = 0, num = stack_map_stream->GetNumberOfStackMaps(); i != num; ++i) {
uint32_t old_position = stack_map_stream->GetStackMapNativePcOffset(i);
uint32_t new_position = __ GetAdjustedPosition(old_position);
DCHECK_GE(new_position, old_position);
stack_map_stream->SetStackMapNativePcOffset(i, new_position);
}
// Adjust pc offsets for the disassembly information.
if (disasm_info_ != nullptr) {
GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
for (auto& entry : *disasm_info_->GetInstructionIntervals()) {
entry.second.start = __ GetAdjustedPosition(entry.second.start);
entry.second.end = __ GetAdjustedPosition(entry.second.end);
}
for (auto& entry : *disasm_info_->GetSlowPathIntervals()) {
entry.code_interval.start = __ GetAdjustedPosition(entry.code_interval.start);
entry.code_interval.end = __ GetAdjustedPosition(entry.code_interval.end);
}
}
CodeGenerator::Finalize();
}
// Generate code to invoke a runtime entry point.
void CodeGeneratorRISCV64::InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
ValidateInvokeRuntime(entrypoint, instruction, slow_path);
ThreadOffset64 entrypoint_offset = GetThreadOffset<kRiscv64PointerSize>(entrypoint);
// TODO(riscv64): Reduce code size for AOT by using shared trampolines for slow path
// runtime calls across the entire oat file.
__ Loadd(RA, TR, entrypoint_offset.Int32Value());
__ Jalr(RA);
if (EntrypointRequiresStackMap(entrypoint)) {
RecordPcInfo(instruction, dex_pc, slow_path);
}
}
// Generate code to invoke a runtime entry point, but do not record
// PC-related information in a stack map.
void CodeGeneratorRISCV64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path) {
ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
__ Loadd(RA, TR, entry_point_offset);
__ Jalr(RA);
}
void CodeGeneratorRISCV64::IncreaseFrame(size_t adjustment) {
int32_t adjustment32 = dchecked_integral_cast<int32_t>(adjustment);
__ AddConst32(SP, SP, -adjustment32);
GetAssembler()->cfi().AdjustCFAOffset(adjustment32);
}
void CodeGeneratorRISCV64::DecreaseFrame(size_t adjustment) {
int32_t adjustment32 = dchecked_integral_cast<int32_t>(adjustment);
__ AddConst32(SP, SP, adjustment32);
GetAssembler()->cfi().AdjustCFAOffset(-adjustment32);
}
void CodeGeneratorRISCV64::GenerateNop() {
__ Nop();
}
void CodeGeneratorRISCV64::GenerateImplicitNullCheck(HNullCheck* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void CodeGeneratorRISCV64::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeRISCV64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathRISCV64(instruction);
AddSlowPath(slow_path);
Location obj = instruction->GetLocations()->InAt(0);
__ Beqz(obj.AsRegister<XRegister>(), slow_path->GetEntryLabel());
}
HLoadString::LoadKind CodeGeneratorRISCV64::GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) {
switch (desired_string_load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
case HLoadString::LoadKind::kBootImageRelRo:
case HLoadString::LoadKind::kBssEntry:
DCHECK(!Runtime::Current()->UseJitCompilation());
break;
case HLoadString::LoadKind::kJitBootImageAddress:
case HLoadString::LoadKind::kJitTableAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
break;
case HLoadString::LoadKind::kRuntimeCall:
break;
}
return desired_string_load_kind;
}
HLoadClass::LoadKind CodeGeneratorRISCV64::GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) {
switch (desired_class_load_kind) {
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
case HLoadClass::LoadKind::kReferrersClass:
break;
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
case HLoadClass::LoadKind::kBootImageRelRo:
case HLoadClass::LoadKind::kBssEntry:
case HLoadClass::LoadKind::kBssEntryPublic:
case HLoadClass::LoadKind::kBssEntryPackage:
DCHECK(!Runtime::Current()->UseJitCompilation());
break;
case HLoadClass::LoadKind::kJitBootImageAddress:
case HLoadClass::LoadKind::kJitTableAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
break;
case HLoadClass::LoadKind::kRuntimeCall:
break;
}
return desired_class_load_kind;
}
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorRISCV64::GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, ArtMethod* method) {
UNUSED(method);
// On RISCV64 we support all dispatch types.
return desired_dispatch_info;
}
void CodeGeneratorRISCV64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
UNUSED(load_kind);
UNUSED(temp);
UNUSED(invoke);
LOG(FATAL) << "Unimplemented";
}
void CodeGeneratorRISCV64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke,
Location temp,
SlowPathCode* slow_path) {
UNUSED(temp);
UNUSED(invoke);
UNUSED(slow_path);
LOG(FATAL) << "Unimplemented";
}
void CodeGeneratorRISCV64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
XRegister klass) {
// We know the destination of an intrinsic, so no need to record inline caches.
if (!instruction->GetLocations()->Intrinsified() &&
GetGraph()->IsCompilingBaseline() &&
!Runtime::Current()->IsAotCompiler()) {
DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
ProfilingInfo* info = GetGraph()->GetProfilingInfo();
DCHECK(info != nullptr);
InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
uint64_t address = reinterpret_cast64<uint64_t>(cache);
Riscv64Label done;
{
ScratchRegisterScope srs(GetAssembler());
XRegister tmp = srs.AllocateXRegister();
__ LoadConst64(tmp, address);
__ Loadd(tmp, tmp, InlineCache::ClassesOffset().Int32Value());
// Fast path for a monomorphic cache.
__ Beq(klass, tmp, &done);
}
InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
__ Bind(&done);
}
}
void CodeGeneratorRISCV64::GenerateVirtualCall(HInvokeVirtual* invoke,
Location temp_location,
SlowPathCode* slow_path) {
// Use the calling convention instead of the location of the receiver, as
// intrinsics may have put the receiver in a different register. In the intrinsics
// slow path, the arguments have been moved to the right place, so here we are
// guaranteed that the receiver is the first register of the calling convention.
InvokeDexCallingConvention calling_convention;
XRegister receiver = calling_convention.GetRegisterAt(0);
XRegister temp = temp_location.AsRegister<XRegister>();
MemberOffset method_offset =
mirror::Class::EmbeddedVTableEntryOffset(invoke->GetVTableIndex(), kRiscv64PointerSize);
MemberOffset class_offset = mirror::Object::ClassOffset();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRiscv64PointerSize);
// temp = object->GetClass();
__ Loadwu(temp, receiver, class_offset.Int32Value());
MaybeRecordImplicitNullCheck(invoke);
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
MaybeUnpoisonHeapReference(temp);
// If we're compiling baseline, update the inline cache.
MaybeGenerateInlineCacheCheck(invoke, temp);
// temp = temp->GetMethodAt(method_offset);
__ Loadd(temp, temp, method_offset.Int32Value());
// RA = temp->GetEntryPoint();
__ Loadd(RA, temp, entry_point.Int32Value());
// RA();
__ Jalr(RA);
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
}
void CodeGeneratorRISCV64::MoveFromReturnRegister(Location trg, DataType::Type type) {
if (!trg.IsValid()) {
DCHECK_EQ(type, DataType::Type::kVoid);
return;
}
DCHECK_NE(type, DataType::Type::kVoid);
if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
XRegister trg_reg = trg.AsRegister<XRegister>();
XRegister res_reg = Riscv64ReturnLocation(type).AsRegister<XRegister>();
if (trg_reg != res_reg) {
__ Mv(trg_reg, res_reg);
}
} else {
FRegister trg_reg = trg.AsFpuRegister<FRegister>();
FRegister res_reg = Riscv64ReturnLocation(type).AsFpuRegister<FRegister>();
if (trg_reg != res_reg) {
__ FMvD(trg_reg, res_reg); // 64-bit move is OK also for `float`.
}
}
}
void CodeGeneratorRISCV64::PoisonHeapReference(XRegister reg) {
__ Sub(reg, Zero, reg); // Negate the ref.
__ ZextW(reg, reg); // Zero-extend the 32-bit ref.
}
void CodeGeneratorRISCV64::UnpoisonHeapReference(XRegister reg) {
__ Sub(reg, Zero, reg); // Negate the ref.
__ ZextW(reg, reg); // Zero-extend the 32-bit ref.
}
inline void CodeGeneratorRISCV64::MaybePoisonHeapReference(XRegister reg) {
if (kPoisonHeapReferences) {
PoisonHeapReference(reg);
}
}
inline void CodeGeneratorRISCV64::MaybeUnpoisonHeapReference(XRegister reg) {
if (kPoisonHeapReferences) {
UnpoisonHeapReference(reg);
}
}
} // namespace riscv64
} // namespace art